Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biological Macromolecules

  • Upload
    angel

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    1/11

    http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.ijbiomac.2015.04.076mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.ijbiomac.2015.04.076&domain=pdfhttp://www.elsevier.com/locate/ijbiomachttp://www.sciencedirect.com/science/journal/01418130http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.ijbiomac.2015.04.076
  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    2/11

    378 K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387

    polymers is their biodegradability, bioactivity, easy availability and

    nontoxic nature. With the progress in the research area of chem-

    istry, biology, materials and modern sciences, a vast array of novel

    synthetic polymeric materials have been introduced from last

    ten decades. Synthetic polymers such as nylon, polyethylene and

    polyurethanes have transformed daily life, are derived from non-

    renewable fossil fuel resources [6]. Petroleum derived synthetic

    polymers have been widely used in composites are not readily

    biodegradable and resistant to microbial degradation thus accu-

    mulated in the environment and become a major source of waste

    disposal [7,8]. Another problem is fossil fuel and petroleum prices

    volatility that forced to replace commercial synthetic polymers

    with natural biodegradable polymers such as polyesters, proteins

    and polysaccharides [919]. Sustainability of resources cannot be

    achieved if we will continue to use non-renewable resources.

    Polyurethanes, from a synthetic class of polymers are receiv-

    ing much attention as one of the most biocompatible material.

    Due to their easy availability and propensity to modify their

    properties, polyurethanes are used for various applications, e.g.

    coatings, sealants, adhesives, elastomers, foams, textile finish [20]

    and for biomedical applications due to having good biocompati-

    bility [21,22]. Use of natural polymers for PUs modification gained

    interest as they make them more environmentally green material.

    Much research has been conducted on polysaccharides, proteinsand lipids based PUs with their respective applications in different

    industrial fields especially for biomedical applications. The struc-

    ture of PU results to form a phasesegregatedstructure, whichmake

    them available for their use in various ways such as adhesives,

    coatings, biomedical materials and elastomers [23,24]. PU elas-

    tomers (PUEs) are having the capacityto use in various applications

    because they are moldable, injectable and recyclable [25].

    Morphological pattern of PUEs have been presented in the

    established literature. The effect of the diisocyanate structure and

    chain extender (CE) length using ,-alkane diols on the crys-tallinity, surface morphology and thermo-mechanical properties of

    PUEs have also been investigated [2628]. Published materials are

    also available on the synthesis, characterization and application of

    chitin based PUs [2931]. In vitro biocompatibility and cytotoxicityof chitin/1,4-butanediol blends based PUEs have been comprehen-

    sively reported [32,33]. Somedocuments areavailable onthe struc-

    tural characterizationof chitin-basedPUEs andtheir shape memory

    characteristics [34,35]. XRD studies and surface characteristics of

    UV-irradiatedand non-irradiatedchitin-basedPUEs have also been

    presented elsewhere [3641]. The microstructure of a PU block is

    generally known to be composed of differentphases, i.e., it is based

    on domains whichhave been built of hard urethane-type segments

    and on soft polyol segment [34]. A wide class of materials can be

    obtained by controlling variables such as the functionality, chemi-

    calcompositionand themolecular weight of thedifferentreactants.

    Natural bio-macromolecules serve as basic template for cell

    growth, are usually biocompatible, whereas, synthetic polymers

    can impart other toxic compounds or impurities that do not allowcell growth. Compared with natural polymers, however, synthetic

    polymers have much better thermal and mechanical properties

    [42]. The increasing interest in new polymeric material based on

    blends of 2 or more natural bio-macromolecules andblends of nat-

    ural bio-macromolecules and synthetic polymers can establish a

    newform of materialscalled bio-artificialor biosyntheticpolymeric

    materials with improved mechanical properties and biocompat-

    ibility compared with those of individual polymeric component

    [4347].

    1.1. Polysaccharides

    Bio-macromolecules are diverse and important class of poly-

    meric materials formed in nature during the growth cycles of

    organisms such as animals, bacteria, green plants and fungi hence

    also referred as one of the main class of natural biodegradable

    polymers [48]. Bio-macromolecules have potential array of appli-

    cations in almost all segments of the economy and can be used as

    adhesives, absorbents, lubricants, soil conditions, cosmetics, drug

    delivery vehicles, textile, good strength structural materials, etc.

    [6]. Polysaccharides are the mostabundant organic materials found

    in nature and are present in all living organisms where they carry

    out one or more of their diverse functions [49]. In comparison

    with other biopolymers, these molecules are characterizedby their

    chemical diversity, presence of large number of functional groups,

    strong hydrophilicity and their rigidity [50]. Polysaccharides are

    ubiquitous can be classified as either homo-polysaccharides or

    hetero-polysaccharide and found in algae (e.g. alginate), plants

    (e.g. starch, cellulose, glucomannan, pectin, guar gum), microbes

    (e.g. dextran, xanthan gum), and animals (chitosan, chondroitin)

    [5153].

    Polysaccharides have some special characteristics which are not

    available in other natural polymers which includes; water solubil-

    ity, flow behavior, gelling potential and/or surface and interfacial

    properties depending upon the difference in monosaccharide com-

    position and linkage type [54]. Polysaccharides have been used

    for decades in various industrial applications, e.g. pharmaceut-

    icals, biomaterials, foodstuff and nutrition, and biofuels, growingunderstanding and deeper investigations of the importance of

    Fig. 1. (a)Cations form of calciumalginate, (b)gel formationof calcium alginate in

    solution [86].

    Fig. 2. Alginate based impression material for dental applications [87].

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    3/11

    K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387 379

    Table 1

    Different techniques for the synthesis and characterization of various alginate-based materials and their prospective applications in various fields.

    Sr. No Name Techniques used for

    characterization

    Potential applications Reference

    1. Sodium alginate/poly(vinyl alcohol) alloy FT-IR, SEM, DSC, TGA Membrane for separation of dimethyl

    formamide/water mixtures

    [97]

    2. PVAalginate FT-IR, SEM Wound dressing membrane [98]

    3. PVAalginate FT-IR, EDAX For phosphate removal [99]

    4. PVAalginate Potentiometric Kinetic

    parameters

    Hydrolysis of pineapple waste [100]

    5. PVAalginate SEM, diffusion,

    coefficients, stability

    tests (pH)

    As a matrix for yeast immobilization [101]

    6. PVAalginate EDX, FT-IR Matrix for immobilization of invertase [102]

    7. PVAAlginate FESM, EDX Encapsulation of Fe2O3magnetic beads forphotocatalytic reduction of Cr(VI)

    [103]

    8. PVAalginate SEM Effective removal of N,N-dimethyl formamide

    from industrial effluents

    [104]

    9. MgAl LDHalginate/polyvinyl alcohol XRD, FESEM For water remediation [105]

    10. [A336][Mtba]/PVAalginate FTIR, SEM, TGA For removal of divalent mercury from aqueous

    solutions

    [106]

    11. Naalg/PVA composite FT-IR, SEM Nano-filtration and/or desalination [107]

    12. Maghemite PVAalginate Beads FESEM, XRD, FT-IR,

    XPS, EDX

    Cesium removal from radioactive waste water [108]

    13. PVAalginatesulfate FESEMEDX, HPLC Matrix for enzyme immobilization [109]

    14. Glutaraldehyde/sodium

    alginatepoly(vinyl alcohol)

    SEM For PV dehydration of isopropanol [110]

    15. Aluminum-rich z eolite b eta i ncorporated

    sodium alginate

    FT-IR, S EM, U TM Employed f or P V dehydration, e sterification

    reactions.

    [111]

    16. Sodium alginate/poly(vinyl alcohol) FT-IR, XRD, SEM For drug (diclofenac sodium) delivery systems [112]

    17. poly(vinyl alcohol)/sodium alginate XRD, TGA, DSC A good candidate for alkaline direct methanol fuel

    cells applications

    [113]

    18. CelluloseAlginate IC, SEM, EWC, GC Improved ethanol production [114]

    19. Carboxymethyl c ellulosesodium a lginate FT-IR, X RD, D TA, S EM For s eparation o f benzenecyclohexane m ixtures [115]

    20. NCCalginate FT-IR, SEM, XRD, DSC,

    TGA

    Biodegradable films [116]

    21. Chitosanalginate (CS/ALG) DLS, SEM, FT-IR Potential use for oral insulin delivery [117]

    22. Alginate/chitosan/PLA-H SEM, GPC, Mercury

    porosimetry

    Scaffolds for VEGF controlled release [118]

    23. Poly(acrylic a cid-Co-hydroxyethyl

    methacrylate) sodium alginate

    FTIR, SEM, XRD,

    DTATGA

    Foradsorption of twoimportant synthetic dyes, i.e.

    Congo redand methylViolet from water

    [119]

    24. Sodium a lginatepoly(N-isopropyl

    acrylamide)

    FT-IR, TGA For PV dehydration of ethanol [120]

    25. PLGA/chitosan cellulose alginate Rheometery,

    sonication. FESEM,FT-IR, DSC, TGA

    An emulsion stabilizer in synthesisof

    biodegradable polymers.

    [121]

    26. PLGA-alg-RGD MP. XPS, SEM Delivery system for vaccination [122]

    27. Chitosanpoly (caprolactone)/alginate SEM For controlled delivering of VEGF [123]

    28. Chitosanalginate Sonication, SEM. FT-IR,

    DSC

    Drug delivery [124]

    29. Chitosanalginate Nanogels for vaccine delivery [125]

    30. Alginatechitosan FT-IR, Optical

    microscopy

    A novel fiber forwound care application [126]

    31. Chitosanalginate SEM, optical

    microscopy

    Used in thepreparation of Pickering emulsion as

    potent carriers in biomedical area

    [127]

    32. Carboxymethyl chitosanalginate SEM Site selective protein delivery in intestine [128]

    33. Chitosan/alginate nano-layered PET film SEM, DSC, TGA, water

    contact angles

    For preparation of multilayer films

    Coating biomedical appliances or multilayer edible

    coatings

    [129]

    34. Alginate/HPMC Improved in vitro release of BSA [130]

    35. Alginate-G-poly(sodium a crylate) a nd p oly

    (vinyl pyrrolidone)

    SEM, FT-IR Potential candidate for drug delivery systems and

    water manageable materials

    [131]

    36. Alginate/chitosan/titanium ATRFTIR, XPS, SEM,

    XRD, DTA

    Potential applications in tissue engineering

    scaffolds field

    [132]

    37. Minocycline loaded

    chitosan/alginate/titanium

    XPS, SEM Inhibit biofilm formation [133]

    38. Carboxymethyl c hitosan/organic

    rectorite/alginate

    FT-IR, F ESEM, X RD Antimicrobial a ctivity f or fi brous m ats [134]

    39. Alginate/alginate-resistant starch FT-IR, XRD, DSC, SEM As a controlled release carrier for the food grade

    peptide, nisin.

    [135]

    40. Cellulosealginate FESEM, XRD High potential to be used as high

    Strength packaging materials.

    [34]

    41. Aluminum sulfatealginate As coagulant for wastewater treatment [136]

    42. Starchcalcium alginate DSC, FT-IR, SEM For encapsulation of antioxidants [137]

    43. Alginatestarch Bacterial encapsulation [138]

    44. Starchalginate FT-IR For agrochemical delivery system [139]

    45. Alginatesago starch-Ag-NP TGA, SEM, TEM Potential and economical wound dressing material. [140]

    46. Iron/montmorillonite/alginate ICP-MS, FT-IR Photo-Fenton catalysts for water

    Disinfection

    [141]

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    4/11

    380 K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387

    Table 1 (Continued)

    Sr. No Name Techniques used for

    characterization

    Potential applications Reference

    47. Alginate-graft-poly(ethylene glycol) SEM, NMR Encapsulation and intracellular delivery of a

    bioactive growth factor

    [142]

    48. Calcium phosphatesodium alginate FT-IR, XRD, SEM,

    ICP-OES

    Drug delivery carriers [143]

    49. Sodium alginate/heteropolyacid

    H14[Nap5w30o110 ] (HPA)

    FTIR, SEM, TGA, DSC,

    UTM and contact angle

    measurements

    Membranes for pervaporation

    Dehydration of ethanol

    [144]

    50. Alginate/collagen-I SEM Enhance wound healing properties [145]

    51. Alginatethiol-terminated peptides UV-VS, 1 H NMR Potential application for tissue engineering [146]

    52. Sodium alginatePNIPAM IR, NMR, SEM For biomedical applications [147]

    53. Alginate/polyethyleneimine

    and biaxially oriented poly(lactic acid)

    UV-VIS, FESEM, AFM Promising alternative to non-biodegradable

    synthetic food

    Packaging materials

    [148]

    54. Prosopis Juliflora

    Carbon/Ca/alginate

    FT-IR, S EM For t he a dsorptive r emoval o f aniline

    Blue dye (AB dye)

    [149]

    55. Hyaluronic acid/sodium

    alginate

    SEM, FT-IR,Water

    contact angle

    For pervaporation dehydration of ethanolwater

    mixtures

    [150]

    56. Sodium alginatepolyacrylamide FTIR, NMR SEM,

    DTATGA, XRD, PZC

    For drug delivery systems [151]

    57. AgNPsalginate FT-IR, SEM Treatment process for antibacterial finishing and

    textiles.

    [152]

    58. Sodium alginate/superabsorbent polymer FT-IR, TGA, SEM Effective recycling of textile dyes from textile

    effluents

    [153]

    59. Ag/alginate UVvis, FESEM For tissue engineering scaffolds, soft tissue

    implants, antimicrobial wound dressings

    [154]

    60. B-cyclodextrin/acrylic a cid/sodium

    alginate

    FT-IR, S EM, N MR As a n agricultural w ater r etention a gent i n saline

    soil

    [155]

    61. Polycaprolactone (PCL)/alginate FT-IR, SEM For biomedical applications [156]

    62. Alginic a cid/metal coordinated

    carboxylated alginic acid

    FTIR, EDAX, SEM For deflouridation process [157]

    63. Alginatezirconium FTIR, XRD, SEM, EDAX For deflouridation of water [158]

    64. Alginatelignin SEM, Micro-CT Scaffolds for tissue engineering [159]

    65. Halloysite/alginate EDX, FT-IR, FESEM, TGA Applications including bioprocessing and tissue

    engineering.

    [160]

    66. Methacrylated alginate/PEG Bioadhesive for clinical use in biomedical

    applications

    [161]

    67. AlginatePEGAc SEM Novel muco adhesive material for controlled drug

    release

    [162]

    68. Calcium phosphate/alginate optical microscopy,

    ESEM, TEM, SEM, FT-IR

    For protein imprinting [163]

    69. Alginate/HNT AFM, TEM, FTIR, XRD,

    TGA

    Great potential forapplicationsin tissue

    engineering.

    [164]

    70. Znoalginate XRD, XPS Controlled environment for antimicrobial activity [165]

    71. Alginatesilicate SEM For decolorization of the azo dye, reactive Red 22 [166]

    72. A lginatechitosanpoly(lactic-co-glycolic

    acid)

    SEM For protein delivery system [167]

    73. Alginate-glass ceramics SEM, EDAX, AFM, FTIR,

    XRD

    Useful for periodontal tissue regeneration [168]

    74. Alginate/polyacrylamide SEM Promising biomaterial for cartilage tissue [169]

    75. Alginategelatin SEM, FT-IR, XRD, DSC,

    PALS

    Membranes for enhancement of diffusion and

    sorption

    [170]

    polysaccharides in life science are driving the development of

    polysaccharides for novel (bio-molecular) applications [5561].

    1.2. Reasons for choosing alginates and polyurethanes

    Alginates have a potential array of commercial applications, as

    they are widely used in the food and textile industries as thick-

    eners, stabilizers, gel-formers, film-formers, etc. [62]. Due to the

    abundance of algae in water bodies, there is a large amount of algi-

    nate material present in nature with its excellent biocompatibility,

    biodegradability, non-toxicity, chelating ability and relatively low

    cost [63,64]. Hence, there is significant additional potential to

    design sustainable biomaterials based on alginates. Alginate can be

    easily modified in any form such as microspheres, microcapsules,

    sponges,hydrogels, foams, elastomers, fibers, etc.This property can

    increase the applications of alginate in various fields such as tis-

    sue engineering and drug delivery [65]. Significant research has

    been conducted on application of alginate as a bone tissue engi-

    neering material [6669], therapeutic cell entrapment [7073],

    nanoparticlesof alginates for drugdeliverysystems andfor enzyme

    immobilization [74]. Notable amount of research article has been

    published covering different aspects of alginates. Further PU has

    shown excellent characteristic regarding biocompatibility with the

    body cells. Following study has clearly demonstrates the poten-tial of PU regarding its use without any cytotoxicity. In one of the

    reported method, preparation of regenerated silk fibroin solution

    (SF) Cocoons ofB. mori silkworm was degummed 3 times in 0.5%

    (w/v) Na2CO3 solution at 98100C for 30min, rinsing with dis-

    tilled water to separate proteins and waxes [75].

    2. Alginate: an overview

    Inthe very first,alginatewas reportedby the British chemistE. C.

    C. Stanfordin 1881. Alginatean anionicand hydrophilicpolysaccha-

    ride is one of the most abundant biosynthesized natural materials

    thatis derived primarilyfrom twosources,marineplants,i.e. brown

    sea weed (40% of dry matter) and bacteria. Commercially, algi-

    nates species are derived primarily from brown algae, included

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    5/11

    K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387 381

    Fig. 3. Chemical procedure forsynthesis of PU(I) and PU-g-CaA (II) [113,178].

    Laminaria hyperborea, Ascophyllum nodosum and Macrocystis

    pyrifera. Alginates isolated from bacteria such as Azotobacterand

    Pseudomonasspecies are usually not economicallyfeasible for com-

    mercial applications and limited to small-scale research studies

    [76,77].

    In structural presentation, alginate contains linear blocks of

    (14)-linked -d-mannuronic acid (M) and -l-guluronic acid(G)monomers. Typically, the blocks are composedof three different

    forms of polymer segments: consecutive G residues, consecutive M

    residues and alternating MG residues. The copolymer composition,

    sequence and molecular weights vary with the source and species

    that produce the copolymer, also reflected in their properties. Vis-

    cosity depends upon molecular size, the affinity for cations and

    gel forming properties are mostly related to the block structure ofguluronic acidresidue.The contentsof G-blocksmainlycontributed

    to gel strength and stability [67,71,7883].

    Alginates have four reactive sites for contribution in a chemical

    reaction including carboxylic acid and hydroxyl functional groups,

    and two relatively not sustainable bonds, i.e. 14 glycosidic

    and internal glycolic bonds. The characteristics, e.g., hydrophilic-

    ity, solubility, and chemical and biological properties of alginate

    derivativesmay be modified by creatingnew functional groups into

    the alginate backbone [84]. Carboxyl groups and hydroxyl groups

    laterallyon the backbone of the alginate enable remarkably several

    modification approaches to enhance or tailor the properties suchas

    physicochemical, biological, mechanical, and other desired proper-

    ties [85]. Sodiumalginate is water soluble andwhen it trickled into

    a solution containing Ca

    2+

    ions, each Ca

    2+

    ion knocks away the two

    Na+ ions. Thealginate molecule containsloadsof OH group that can

    be coordinated to cations (Fig. 1a).

    Whenalginate is coordinated to Na+, its a very flexible chainand

    when Na+ is replaced by Ca2+ however, each Ca2+ ion (black dots in

    Fig. 1b) coordinates to two alginate chains, linking them together.

    The flexible chains become less flexible andform a huge network

    a gel within seconds after the alginate mixture is dripped into the

    water bath with the Ca2+ ions [86]. Due to its hydrophilic nature,

    alginate takes a good impression (Fig. 2) in a moist environment

    and can use as dental material [87].

    2.1. Applications, development and limitations

    Alginate forms a solid gelundermild handlingconditions whichallows it to be used for entrapping cells into beads and shapes [88].

    Interestingly, cell encapsulation of some types of alginate beads

    may actually enhance cell survival and growth. In addition, algi-

    nate has been explored for use in liver, nerve, heart, and cartilage

    tissue engineering [8993]. Pharmaceutical, food (as additive) and

    technical applications (such as in print paste for the textile indus-

    try) are quantitative hand the market for alginates. Alginate beads

    immobilized on PU matrix increasethe degradation of O-phthalates

    by enhancing the activity of Bacillus sp. cells. Widely used phtha-

    late is a plasticizer used in resins causing serious terrorism threats

    formulation intended to environment [94].

    In some recent studies, the MW of alginates (MW

    30,000690,000) and the mole fraction (FM 0.690.86) of man-

    nuronate residues present in alginate molecular chains were also

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    6/11

    382 K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387

    Fig. 4. Chemical procedure for the synthesis of (a) cationic aqueous PU dispersion [181], (b) anionic aqueous PU dispersion [181], (c) ionic PU dispersion extended with

    TBAAlg [182] and (d) non-ionic PU dispersion [182].

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    7/11

    K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387 383

    Fig. 5. SEMimages of (a)CaA and(b) PU-g-CaA; (c)XRD pattern of CaA andPU-g-CaA;(d) theinfluenceof reaction temperature on theswellingdegree of PU-g-CaA andCaA

    microspheres [178].

    identified as key factors relating to the immunological activity of

    alginates [95]. Unfortunately, in the literature, some drawbacks

    associated with alginates are poor cell adhesion and mechanical

    weaknesses have been reported. As a remedy to overcome thesedraw backs, the strength and cell behavior of alginate have been

    enhanced by mixing it with other materials, including the natural

    polymers agarose and chitosan [93,96]. Alginates based blends,

    copolymers and composites havebeen presentedin the established

    literature (Table 1).

    3. Alginate based polyurethanes

    Functionalizationof polyurethanes withnaturalpolymers espe-

    cially polysaccharide foundto be a suitable process for biomaterials

    development. Alginate-based polyurethanes are perhaps more

    interesting options because alginates retain advantages like low

    cost, abundance and range of applications [171176].

    3.1. PUAlg hydrogel

    PUalginate gel compositions are potentialmaterialfor biomed-

    ical application and food industry with various constituent ratios

    based on an anionic PU (APU) water dispersion (WD) and sodium

    alginate (AG) prepared by cross-linking with Ca+ ions. By opti-

    mizing the degree of cross-linking, by varying the composition

    ratio and Ca2+ quantity, systems with controlled thermo and pH-

    sensitivity, swelling ratio, and strength indexes can be obtained. It

    is worth to mention that the alginate contents increased the ten-

    sile strength of the material films. Mixtures of APU and AG formed

    structural non-Newtonian stable systems with higher viscosity in

    comparison with initial components in the absence of divalent

    cation [174].

    The mechanical strength of alginate hydrogel is subject to

    biodegradation and swelling [177,178]. Numerous attempts have

    been made to control the swelling degree of alginate based mate-

    rials by modifying its structure with various methods such asblending, copolymerization, etc. [178]. Because of the crystalline

    character of PU, it contains high tensile strength and anti-swelling

    property [179]. The PU-grafted Ca+ alginate gel, therefore, can be

    synthesized by 2-hydroxyethyl methacrylate (HEMA) and dieth-

    ylene glycol (DEG) capped isophrone diisocyanate (IPDI) forming

    crystallizing area in the matrix of polysaccharide (Fig. 3). Grafted

    PU, side chains may affect the arrangement of alginates which may

    formed highly ordered crystalline region, andprovide alginatewith

    physical cross-linking points. As a result the thermodynamic prop-

    erties such as stability and anti-swelling stability were improved

    in PU-g-CaA samples due to intensified intermolecular force [178].

    One recent application of PUalginate hydrogels is in molecules

    imprinting such as sugars, amino acids and metal ions. For bovine

    serum albumin (BSA) imprinting, the PU grafted calcium alginate(PU-g-CaA) hydrogel microspheres were synthesized and charac-

    terized. It has been previously confirmed that the grafted PU side

    chains have constructed physical cross-linking points and improve

    the mechanical and chemical stability of hydrogel [178] which is

    therefore expected to be benefited for protein recognition which

    is confirmed by the enhanced imprinting efficiency and selective

    factors obtained at high grafting ratio. Compared with CaA, PU-g-

    CaA MIPs exhibit higher rebindingselectivityand are more capable

    of recognizing and separating target protein molecules, having

    promising applications as advanced material for chemical sensing

    and bio-separation [180]. Preparation of alginate-based PUs had

    beena significant challenge because of the final polymers tendency

    to the phase separation [174]. Alginate and PU are two incom-

    patible polymers with different glass transition temperatures.

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    8/11

    384 K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387

    Nevertheless, the development of such methods to improve the

    compatibility between the two polymers is a challenge.

    3.2. PUAlg blend

    Keeping in view the aim of improving compatibility of two

    polymers, aqueous PU dispersion sodium alginate compositions

    (PUD/SA) were synthesized. PU dispersions were prepared with

    polytetramethylene glycol (PTMG) and isophorone diisocyanate

    (IPDI), extended with dimethylol propionic acid (DMPA) (Fig. 4a

    and b). Both storage modulus andtan versus temperature showedidentical Tg and other thermal transition for control PUD and

    its blends with sodium alginate. The SEM and EDX showed the

    presence of alginate and its distribution as agglomerations in

    PU matrix. The surface properties including contact angle values

    decreased with increasing sodium alginate content that ascribed

    increase in the hydrophilicity of the blends. Such transformation

    was attributed to the presence of hydrophilic carboxylate, hydroxyl

    and ether functional groups attached to the alginate molecules

    [171]. Another approach for the preparation of compatible algi-

    nate based polyurethane withdesired properties was the synthesis

    of novel soluble alginate-based PUs in common aprotic organic

    solvent by the reaction of NCO-terminated PU prepolymer and tri-

    butyl ammonium alginate (TBA-Alg) for the first time (Fig. 4c).The presence of TBA-Alg into the backbone of PU was revealed

    byspecificpeaksof uronicacid residues in 1H NMR. Theionic nature

    of PU backbone not only effects on thermal properties of samples,

    but also changes the morphology of chemically-bonded alginate.

    Both polyether and polyester based non-ionic PUs extended by

    TBA-Alg illustrated the distinct alginate, i.e. aggregate-like struc-

    tures of alginate into the matrix of PU (Fig. 4d) whereas those

    ionomers extended by alginate were appeared as continuous sys-

    tems at nanoscale [182].

    The PU segment had a very important impact on the morphol-

    ogy of gel surface as shown in Fig. 5a and b. The Ca+ alginate

    (CaA) hydrogel microspheres possessed coarse surface and big cav-

    ity while PU-g-CaA showed a dense and smooth surface. As shown

    in Fig. 5c, the CaA exhibits characteristic 2values at 13.1, 25.06

    and 39.42, which is due to the stronger hydrogen as well as polar

    intramolecular andintermolecular interactions. In thisstudy, sharp

    peak observed at 18.46 correspond to PU-g-CaA in-spite of 39.42,

    which is attributed to the addition of carbamate groups and ether

    bond. Apart from above,PU interferes with the arrangementof CaA

    forming highly order crystal region, which indicate that PU was

    grafted on to the CaA. The relationship between reaction tempera-

    ture and swelling degree of PU-g-CaA is presented in Fig. 5d. It can

    be observed that the increase in of reaction temperature results

    to first swelling degree decreased and then increased. Such phe-

    nomenon is mainly attributed to PU side chains that intense the

    intermolecular interaction, forming crystal structure and facilitat-

    ing the loss of inner water. Meanwhile, the hydrophobic nature of

    PU also resists water from inward diffusion.

    3.3. PUAlg elastomer

    Modification in the chemical structure of PU to improve the

    incompatibility of alginate based PU was previously focused

    in researches [181184]. The role of emulsifier on the final

    properties of composites containing PUDs and alginates was rel-

    atively a new strategy, studied by Daemi et al. [181,182]. Two

    different anionic and cationic PUs samples using DMPA and N-

    methyldiethanolamine emulsifiers respectively were synthesized.

    A series of the alginate-based PUEs were formulated by solution

    blending of the PUDs and sodium alginate. The nano-composite

    elastomers of cationic PUs and SA showed excellent miscibility,

    excellent mechanical properties with high elongation at break and

    Fig. 6. Invitrotestof ratfibroblast cell (a)thecellsgrownin cell culture media only,

    (b) thecells grown in EGF-loaded AHPtreated media for48 h [185].

    increased hydrophilicity that may be due to formation of tertiary

    ammonium carboxylate salts produced from electrostatic inter-

    action between cationic PU and poly-anionic alginate while the

    anionic ones were appeared as the relatively incompatible ingre-

    dients and their elongation was significantly dropped because of

    the immiscibility of the SA and anionic PUs [181]. Alginates and

    other natural polysaccharides can be used in different applica-

    tions in drug delivery and control release systems as they can

    be used as micro and nano encapsulation agents [183,184]. Some

    investigation has been reported for drug delivery application of

    PUAlg elastomer/hydrogel [185189], in vitro test of rat fibro-

    blast cells, the cells grown in cell culture media only and the cells

    grown in epidermal growth factor (EGF)-loaded AHP treated media

    were studied. The EGF-treated, EGF-loaded alginate hydrogel, andEGF loaded alginate hydrogel polyurethane (AHP) cells were pro-

    liferated 2.7, 2.5, and 2.2 times compared with cell only group,

    respectively [185]. Fig. 6 shows that AHP treated well group was

    much more packed with cells. However, EGF-treated cells were the

    most proliferated, hydrogel-treated cells were the next, and AHP-

    treated cells were the last order. Regardingthe EGF release profiles

    from alginate hydrogel and AHP at four different pH conditions;

    the cumulative release increased rapidly with time and reached an

    equilibriumvalue aftera certain time. In general, the release behav-

    ior of EGF was similar withthat of BSA since bothof these drugs are

    protein drug [185]. However, EGFrelease rate from alginate hydro-

    gel only and AHP was different. EGF release rate from AHP was

    slower than that from alginate hydrogel because of its composite

    structure.

  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    9/11

    K.M. Zia et al. / International Journal of Biological Macromolecules 79 (2015) 377387 385

    Fig. 7. (a) Schemeof theelementary unit of APU, (b) schematic performance of alginate unit [174].

    3.4. PUAlg nanocomposite

    Compatible aqueous cationic PUDsodium alginate nanoparti-

    cles (CPUD/SA) elastomers were prepared by solution blending of

    cationic PUDs based on PTMG and IPDI extended with N-methyl

    diethanolamine (MDEA), 1,4-BDO chain extenders and sodium

    alginate (SA). Pristine CPUD and its nano-composite elastomers

    with SA showed excellent miscibility that arise from different

    charges of both anionic alginate and cationic PU and hydrogen

    bonding which was supported by DMTA and FTIR results. The

    prepared composites indicated two interesting nano-bead (low

    molecular weight SA) and nano-rod (higher molecular weight SA)

    morphologies in respect of different molecular weights of sodium

    alginate samples proved by SEM and EDX. The phase separation of

    PU segments decreased resulting in lower elongation and higher

    mechanical strength, in thepresence of greater amounts of Na algi-

    nate. Moreover, with increasing alginate content in the elastomers,

    the thermal stability and hydrophilicity increases because of the

    presence of quite thermally stable uronic acid residues and pres-

    ence of hydrophilic carboxylate and hydroxyl groups [172]. While

    progressing in another study, anionic water based PU (APU) was

    formed (Fig. 7) as a result of interaction of an isocyanate precur-

    sor on the basis of oligo(oxytetramethylene) glycol (MM1000) and

    aliphatic diisocyanate (HMDI) (1:2) with dianhydride of pyromel-

    litic acid and dihydrazide of dicarbonic acid in acetone solutionfollowed by carboxylic groups transfer to a salt form and consecu-

    tive dispersion in water [174].

    In a study [174], the APU and aqueous solution of alginate

    (5wt.%) were mixed in various compositions and the sample films

    were cast by pouring the compositions on glass substrates, dried

    at room temperature for 72h, and then dried at 60C to constant

    weight in a vacuum oven. The prepared material was used for var-

    ious potential applications.

    4. Summary

    From the last fewdecades the trend of utilization of polysaccha-

    ride in various industrial fields owing to their structural diversity,

    biodegradability, biocompatibility, abundance, non-toxicity and

    specific bioactive properties is rapidly increasing. The most abun-

    dant marine polysaccharide, alginate, with their inherent well

    known gelling and stabilizing properties proved to be a poten-

    tial candidate for syntheticmodifiedbiomaterials.However certain

    limitations associated with this unique polymer can be overcome

    either by modification in their structure or blending with other

    natural and synthetic polymers. Polyurethanes/alginate hydrogels,

    elastomers and nanocomposites systems with novelty in their

    propertiesare making thealginates a potent polymer to be explored

    further.

    References

    [1] R. Augustine, R. Rajendran,U. Cavelbar, M. Mozetic, A. George, in:S. Thomas,D. Durand, C. Chassenieux, P. Jyotishkumar (Eds.), Handbook of BiopolymerBased Materials: From Blends and Composites to Gel, vol. 1, John Wiley &Sons, Germany, 2013, pp. 851875.

    [2] G.S.Misra, Introductory PolymerChemistry, 1st ed.,NIP, New Delhi, 2005,pp.16.

    [3] W.D. Callister Jr., Fundamentals of Materials Science and Technology: AnIntegrated Approach, 2nd ed., John Wiley & Sons, New York, 2005.

    [4] P.Ghosh,Polymer Scienceand Technology, Plastics,Rubbers,Blends andCom-posites, 2nd ed., Tata McGraw-Hill, New Delhi,2001, pp. 111.

    [5] D.M. Teegarden, Polymer Chemistry: Introduction to An Indispensable Sci-ence, NSTA Press,Virginia, 2004, pp. 2742.

    [6] R.C. Herdman, Biopolymers Making Materials Natures Way, DIANE, USA,1993, pp.16.

    [7] J.J. Kester, O.R. Fennema, Food Technol. 40 (1986) 4759.[8] I. Vroman, L. Tighzert, Bio. Polym.Mater. 2 (2009) 307344.[9] M.N. Angles, A. Dufresne,Macromolecules33 (2000) 83448353.

    [10] L. Averous, N. Boquillon, Carbohydr. Polym. 56 (2004) 111122.[11] K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundqukit, B.D. Seiler, M.C.

    Shelton, D. Tindall, Prog. Polym. Sci. 26 (2001) 16051688.[12] R.A. Gross, B. Kalra, Science 297 (2002) 803807.[13] S. Guilbert,B. Cuq, N. Gontard,Food Addit. Contam. 14 (1997) 741751.[14] M. Zuber,K.M. Zia, M.A. Iqbal,Z.T. Cheema, M. Ishaq,T. Jamil,Korean J. Chem.

    Eng. 32 (2015) 184190.[15] K. M. Zia, Wase em -ul-Arifee n, M. A. Iq bal, M. Zuber , M. Ish aq, M.A. F ar-

    rukh, M.N. Ahmad, J. Elastomers Plast. (2014), http://dx.doi.org/10.1177/0095244314526747;C.S.K. Reddy, R. Ghai, Rashmi, V.C. Kalia, Bioresour. Technol. 87 (2003)137146.

    [16] K.M. Zia, A. Ahmad, S. Anjum, M. Zuber, M.N. Anjum, J. Elast, Plast (2014),

    http://dx.doi.org/10.1177/0095244314526746;

    http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526746http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1177/0095244314526747http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1015http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1010http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1005http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1000http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0995http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0990http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0985http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0980http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0975http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0970http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0965http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0960http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0955http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref0950
  • 7/25/2019 Alginate Based Polyurethanes a Review of Recent Advances and Perspective 2015 International Journal of Biologic

    10/11

    http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1560http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1555http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1550http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1545http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1540http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1535http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1530http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1525http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1520http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1515http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1510http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1505http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1500http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1495http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1490http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1485http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1480http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1475http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1470http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1465http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1460http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1455http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1450http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1445http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1440http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1435http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1430http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1425http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1420http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1415http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1410http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1405http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1400http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1395http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1390http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1385http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380http://refhub.elsevier.com/S0141-8130(15)00328-1/sbref1380ht