56
Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Embed Size (px)

Citation preview

Page 1: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Alkali-Surfactant-Polymer Process

Shunhua Liu

George J. Hirasaki

Clarence A. Miller

02.14.2006

Page 2: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Outline• Surfactant adsorption

• IFT measurement and ultra-low IFT region

• Characteristics of Alkali-Surfactant-Polymer process

• Implementation of ASP in dolomite and silica sand pack

Page 3: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Adsorption of 4:1 N67:IOS on Calcite in Varying Salinity and Alkalinity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.5 1.0 1.5 2.0Residual Surfactant Concentration (mmol/L)

Ad

so

rptio

n D

en

sity

, 10 -3

mm

ol/m

2

5% NaCl, 0% Na2CO3 5% NaCl with 1.21% Na2CO3

3% NaCl, 0% Na2CO3 3% NaCl, 1.21% Na2CO3

1% NaCl, 0% Na2CO3 1% NaCl, with 1.0% Na2CO3

0% NaCl, 0% Na2CO3 0% NaCl, with 1.0%Na2CO3

Page 4: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Adsorption of 4:1 N67:IOS on Calcite at 5% NaCl

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0Residual Surfactant Concentration (mmol/L)

Ad

so

rpti

on

Den

sit

y, 10 -3 m

mo

l/m

2

5% NaCl, 0% Na2CO3 5% NaCl with 0.178% Na2CO3

5% NaCl with 0.404% Na2CO3 5% NaCl with 1.21% Na2CO3

Page 5: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

the contour of maximal adsorption for N57 IOS(4:1)

Page 6: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Adsorption of N67 on Calcite (17.851 m2/g)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0

Residual Surfactant Concentration (mmol/L)

Ad

so

rptio

n D

en

sity, 1

0 -3

mm

ol/m

2

0% NaCl, 0% Na2CO3 0% NaCl, 1% Na2CO3

Page 7: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Adsorption of IOS on Calcite (17.851 m2/g)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Residual Surfactant Concentration (mmol/L)

Ad

so

rptio

n D

en

sity, 1

0 -3

mm

ol/m

2

0% NaCl, 0% Na2CO3 0% NaCl, 1% Na2CO3

Page 8: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Adsorption of 4:1 N67:IOS and Na Oleate on Calcite

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.5 1.0 1.5 2.0Residual Surfactant Concentration (mmol/L)

Ad

so

rptio

n D

en

sity, 1

0 -3 m

mo

l/m 2

No Na Oleate, 0% NaCl (1:2 mol)(Na Oleate: Surfactant), 0% NaCl

Without Na2CO3

Page 9: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Adsorption of N67IOS with sodium naphthenates on Calcite

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6Residual Surfactant Concentration (mmol/L)

Ad

so

rptio

n D

en

sity, 1

0 -3 m

mo

l/m 2

NI Blend only (1:2 weight) (sodium naphthenates:NI Blend

Without Na2CO3

Page 10: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Both alkali concentration and salinity influence the surfactant adsorption significantly. The presence of Na2CO3 can reduce the surfactant adsorption. However, higher salinity increases surfactant adsorption and counteracts the adsorption reduction by alkali.

The concentration domain with low surfactant adsorption for the current surfactant is: [Na2CO3]>0.2% and [NaCl]<3%.

The presence of Na2CO3 reduces the adsorption for N67 and IOS respectively significantly.

The presence of sodium oleate and sodium naphthenates from Fisher Scientific does not reduce the synthetic surfactant adsorption on calcite, in the absence of Na2CO3.

Conclusions 1

Page 11: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Outline• Surfactant adsorption

• IFT measurement and ultra-low IFT region

• Characteristics of Alkali-Surfactant-Polymer process

• Implementation of ASP in dolomite and silica sand pack

Page 12: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

What is the oil-rich emulsion?

oil-rich emulsion

lower-phase

excess oil

microemulsion

oil-rich emulsion

lower-phase

excess oil

microemulsion

Page 13: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Photos of spinning drop at

different time.

0.2% NI blend / 1% Na2CO3 / 2% NaCl

Page 14: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Photo of two different spinning drops with different amount of oil-rich emulsion 0.2% NI blend / 1% Na2CO3 / 2% NaCl

Page 15: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Comparison of phase appearance of 0.2% NI / 1% Na2CO3 / x % NaCl at different settling time

NaCl%= 2.0 2.2 2.6 3.0 3.4 3.6 3.8 4.0

23 days settling

4 hours settling

NaCl%= 2.0 2.2 2.6 3.0 3.4 3.6 3.8 4.0

23 days settling

4 hours settling

Page 16: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

3 min 20 min

60 min

P=5.1

P=13.4 (Slower)

102 min

0.2% NI blend /1% Na2CO3 / 3.4% NaCl, 23 days settling with oil-rich emulsion

3 min 20 min

60 min

P=5.1

P=13.4 (Slower)

102 min

0.2% NI blend /1% Na2CO3 / 3.4% NaCl, 23 days settling with oil-rich emulsion

Page 17: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

2 min

135 min

210 min

0.2% NI blend /1% Na2CO3 / 3.4% NaCl, 23 days settling Remove most oil-rich emulsion

2 min

135 min

210 min

2 min

135 min

210 min

0.2% NI blend /1% Na2CO3 / 3.4% NaCl, 23 days settling Remove most oil-rich emulsion

Page 18: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

IFT of 0.2% NI blend / 1% Na2CO3 / 2% NaCl with different settling time

1E-04

1E-03

1E-02

1E-01

1E+00

0 100 200 300 400 500 600 700

Time, minutes

IFT

, dyn

e/cm

2 hours' settling 4 hours' settling1 hour's settling2 hours settling, clear aqueous + oil-rich emulsion

1E-04

1E-03

1E-02

1E-01

1E+00

0 100 200 300 400 500 600 700

Time, minutes

IFT

, dyn

e/cm

2 hours' settling2 hours' settling 4 hours' settling4 hours' settling1 hour's settling1 hour's settling2 hours settling, clear aqueous + oil-rich emulsion2 hours settling, clear aqueous + oil-rich emulsion

Page 19: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

The standard spinning drop IFT procedure

1. Mix the crude oil with the alkaline surfactant solutions 2. Rotate the mixture for 24 hours to reach the equilibrium.3. After settling the mixture for 4 hours, oleic and aqueous phases were

taken out into different syringes. 4. Since these samples in the syringes may continue to settle and the

settling time in the syringe may be different, they were shaken before the IFT spinning drop measurement so that they can be considered as the same sample that was obtained after 4 hours settling.

5. Before the spinning drop measurement, the aqueous phase was centrifuged in the spinning tube. Some of the oil-rich emulsion was removed by syringe because the sample will be too dark if too much oil-rich emulsion is left. The remaining oil-rich emulsion should be slightly less volume than the volume of the excess oil drop that is added into the spinning drop tube.

6. Let the oil drop settle in the vertical tube for some time (~12 hours) so that the oil-rich emulsion can equilibrate with the oil and the lower phase microemulsion.

7. Begin the spinning drop IFT measurement.

Page 20: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Dynamic IFT of 0.2%NI-1%Na2CO3-0%NaCl

1.E-03

1.E-02

1.E-01

1.E+00

0 50 100 150 200 250Time, minutes

IFT

, dyn

e/c

m

0% NaCl with step 6 0% NaCl without step 6

Page 21: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Dynamic IFT of 0.2%NI-1%Na2CO3-1%NaCl

1.E-03

1.E-02

1.E-01

1.E+00

0 50 100 150 200 250Time, minutes

IFT

, dyn

e/cm

1% NaCl with step 6 1% NaCl without step 6

Page 22: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Dynamic IFT of 0.2%NI-1%Na2CO3-2%NaCl

1.E-03

1.E-02

1.E-01

1.E+00

0 100 200 300 400 500 600Time, minutes

IFT

, dyn

e/c

m

2% NaCl with step 6 2% NaCl without step 6

Page 23: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Dynamic IFT of 0.2%NI-1%Na2CO3-3%NaCl

1.E-03

1.E-02

1.E-01

1.E+00

0 50 100 150 200 250 300 350Time, minutes

IFT

, d

yne/

cm

3% NaCl with step 6 3% NaCl without step 6

Page 24: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Dynamic IFT of 0.2%NI-1%Na2CO3-4%NaCl

1.E-03

1.E-02

1.E-01

1.E+00

0 50 100 150 200 250Time, minutes

IFT

, dyn

e/c

m

4% NaCl With step6 4% NaCl Without step 6

Page 25: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Dynamic IFT of 0.2%NI-1%Na2CO3-5%NaCl

1.E-03

1.E-02

1.E-01

1.E+00

0 20 40 60 80 100Time, minutes

IFT

, dyn

e/c

m

5% NaCl without step 6

Page 26: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

IFT change with salinity for 0.2NI-1%Na2CO3/WOR=3

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5Salinity(% NaCl)

IFT

(dyn

e/cm

)

1 day settling & remove all oi-rich emulsion by centrifugeIFT vs Salinity (standard procedure)4 hours settling in step 3 & no step 623 days settling in step 3 & no step 640 days settling in step 3 & no step 6

Page 27: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

In the alkali-surfactant system, the oil-rich emulsion plays an important role in the low IFT.

A spinning drop IFT measurement procedure which can reach the equilibrium IFT quickly for alkali-surfactant system was introduced.

The NI Blend-MY4-Na2CO3 system has a wider low IFT region than normally seen for single surfactant systems.

Conclusions 2

Page 28: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Outline• Surfactant adsorption

• IFT measurement and ultra-low IFT region

• Characteristics of Alkali-Surfactant-Polymer process

• Implementation of ASP in dolomite and silica sand pack

Page 29: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

The width of low-tension region

Log10 IFT

Over-optimum

Under-optimum

Narrow Low IFT contour (extrapolated from the synthetic surfactant only)

Page 30: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Wide Low IFT contour (extrapolated from experimental data)

Log10 IFT

Over-optimum

Under-optimum

Page 31: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Soap /synthetic surfactant ratio =0.35

Page 32: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Narrow low IFT regionWide low IFT region

Page 33: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Recovery=62.3%Recovery=95.0%

Narrow low IFT regionWide low IFT region

Page 34: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Narrow low IFT regionWide low IFT region

Page 35: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Recovery vs Injecting Brine Salinity

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6Injecting Brine Salinity(%)

Reco

very

Wide low IFT region

Narrow low IFT region

Page 36: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

2. The effect of viscosity

Page 37: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

injecting solution viscosity=24cp

Mobility Ratio = 0.91

injecting solution viscosity=40cp

Mobility Ratio =0.54

Page 38: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

injecting solution viscosity=40cp

Mobility Ratio =0.54

injecting solution viscosity=24cp

Mobility Ratio = 0.91

Recovery=86.1%Recovery=95.0%

Page 39: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

injecting solution viscosity=40cp

Mobility Ratio =0.54

injecting solution viscosity=24cp

Mobility Ratio = 0.91

Page 40: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

The width of the low IFT region is a key factor for recovery. Narrow low IFT region will have less recovery because oil will be trapped again when the IFT increases. When the low IFT region is wide enough, less oil will be trapped after the low tension region.

ASP process is more robust because of its large operational salinity region with wide low IFT region.

The injection solution viscosity has significant effect on recovery. Lower aqueous phase viscosity, i.e., higher mobility ratio, has lower oil recovery even with wide low IFT region. This is because the oil fractional flow increases with the aqueous phase viscosity.

Conclusions 3

Page 41: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Outline• Surfactant adsorption

• IFT measurement and ultra-low IFT region

• Characteristics of Alkali-Surfactant-Polymer process

• Implementation of ASP in dolomite and silica sand pack

Page 42: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Treatment before ASP

Oil Flooding Water Flooding

Aged in 60ºC for 60 hours

0.1PV 0.3PV 0.5PV 1.0 PV 2.0PV 3.0PV

Dolomite sand pack

Page 43: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Oil Recovery of Water Flooding

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Pore Volumes

Cu

mu

lative O

il R

eco

very

.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Oil

Cu

t

Cumulative Oil Recovery Oil Cut

Dolomite sand pack

Page 44: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

ASP Process

Injecting solution viscosity: 40 cp

Injecting surfactant concentration:0.2%

Surfactant slug size: 0.5PV

Injecting salinity: 2% NaCl

Injecting alkalinity: 1.0%Na2CO3

Initial oil saturation: 0.18

Dolomite sand pack

Page 45: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.90 1.50

Injecting Pore Volumes

ASP ProcessDolomite sand pack

Page 46: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Oil Recovery of ASP Alkaline surfactant flooding after water flooding

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Pore Volumes

Cu

mu

lative O

ilR

eco

very

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Oil

Cu

t

Cumulative Oil Recovery Oil Cut

Dolomite sand pack

Page 47: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

History of pressure drop

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Pore Volume (PV)

Pre

ssu

re d

iffe

ren

ce (p

si)

.

Surfactant Slug

Polymer Drive

Surfactant Breakthrough

Dolomite sand pack

Page 48: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Effluent of ASP

0.09 0.27 0.45 0.63 0.81 0.99 1.17 1.35 1.53 1.71 1.89 2.070.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1.80 1.98

Effluent Pore Volumes

Dolomite sand pack

Page 49: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Comparison between simulation and experiments

Dolomite sand pack

Page 50: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

ASP Experiment in 40 darcy Sandpack0.5% NI, 2% NaCl

0 PV 0.1 PV 0.2 PV 0.3 PV 0.4 PV 0.5 PV 0.6 PV 0.7 PV 0.8 PV 1.5 PV

Silica sand pack

Page 51: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Pore Volume

Pre

ssu

re d

iffe

ren

ce (

psi)

Surfactant Slug

Polymer Drive

Surfactant Breakthrough

Silica sand pack

History of pressure drop

Page 52: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Comparison between simulation and experiments

Silica sand pack

Page 53: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

0 PV 0.17 PV 0.33 PV 0.5 PV 0.67 PV 0.83 PV 1.0PV 2.0 PV

Silica sand pack

0.5% NI, 4% NaCl

ASP Experiment in 40 darcy Sandpack

Page 54: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

0

5

10

15

20

25

30

0 0.5 1 1.5 2

Pore Volume

Pre

ssu

re D

iffe

ren

ce (

psi)

Surfactant Slug Polymer DriveSurfactant Breakthrough

History of pressure drop

Silica sand pack

0.5% NI, 4% NaCl

Page 55: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Phase behaviors of different ASP solutions after 1 week

0.5% N67-7PO&IOS(4:1),

0.5% FLOPAM 3330S,

4% NaCl, 1% Na2CO3

0.5% N67-7PO&IOS(4:1),

0.5% FLOPAM 3330S,

2% NaCl, 1% Na2CO3

Separate layer

Page 56: Alkali-Surfactant-Polymer Process Shunhua Liu George J. Hirasaki Clarence A. Miller 02.14.2006

Experimental results show that the ASP process with only 0.2% surfactant recovers 98% of the oil that is trapped after water-flooding. Good recoveries (>95%) were obtained in both dolomite sand pack and silica sand pack.

High salinity causes the phase separation for alkaline surfactant polymer solution. This results in loss of mobility control.

The simulation matches the experimental data.

High salinity can cause the phase separation of ASP solutions. This may result in loss of mobility control.

Conclusions 4