All Solutions for Yang

Embed Size (px)

Citation preview

  • 8/10/2019 All Solutions for Yang

    1/48

    Solutions to Stochastic Calculus for Finance II (Steven Shreve)

    Dr. Guowei Zhao

    Dept. of Mathematics and Statistics

    McMaster University

    Hamilton,ON L8S 4K1

    October 18, 2013

    Contents

    1 Chapter 1 21.1 Exercise 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Exercise 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Exercise 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Exercise 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.5 Exercise 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.6 Exercise 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.7 Exercise 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.8 Exercise 1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2 Chapter 2 7

    2.1 Exercise 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Exercise 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    2.3 Exercise 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.4 Exercise 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.5 Exercise 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.6 Exercise 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Chapter 3 12

    3.1 Exercise 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Exercise 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3 Exercise 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.4 Exercise 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.5 Exercise 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.6 Exercise 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.7 Exercise 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    4 Chapter 4 19

    4.1 Exercise 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.2 Exercise 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.3 Exercise 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Email: [email protected]

    1

    http://localhost/var/www/apps/conversion/tmp/scratch_3/[email protected]://localhost/var/www/apps/conversion/tmp/scratch_3/[email protected]
  • 8/10/2019 All Solutions for Yang

    2/48

    4.4 Exercise 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.5 Exercise 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.6 Exercise 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.7 Exercise 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.8 Exercise 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.9 Exercise 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    4.10 Exercise 4.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.11 Exercise 4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.12 Exercise 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5 Chapter 5 30

    5.1 Exercise 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305.2 Exercise 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315.3 Exercise 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.4 Exercise 5.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345.5 Exercise 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365.6 Exercise 5.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    6 Chapter 6 40

    6.1 Exercise 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406.2 Exercise 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416.3 Exercise 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416.4 Exercise 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436.5 Exercise 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7 Chapter 7 47

    8 Chapter 8 47

    9 Chapter 9 47

    10 Chapter 10 47

    11 Chapter 11 4711.1 Exercise 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    Introduction

    This solution manual will be updated anytime, and is NOT intended for any business use. The authorsuggests this manual as a reference book to the metioned book by Steven Shreve. Also anyone involvedin any mathematical finance courses shall not copy the solutions in this book directly. This is ideallyfor self-check purpose.

    If anyone find any mistakes or misprints in this book, please inform me. Thanks.

    1 Chapter 11.1 Exercise 1.4

    (i) On the infinite coin-toss space , for n = 1, 2, . . . we define

    Yn() =

    1, ifn= H

    0, ifn= T

    2

  • 8/10/2019 All Solutions for Yang

    3/48

    We setX=

    n=1Yn2n Then by Example 1.2.5, Xis uniformly distributed on [0, 1]. Furthermore,

    let

    N(z) =

    z

    ()d where () = 1

    2e

    2/2

    Then for Z= N1(X), by Example 1.2.6,

    Z[a, b] =P(: a Z() b) = P(: a N1(X()) b) = P(: N(a) X N(b)) = N(b)N(a)for any < a b < . So we conculde thatZ= N1(X) is a standard normal distributiononon (, F, P).

    (ii) Let

    Zn() = N1(Xn()) where Xn() =

    nk=1

    Yk()

    2k

    It is clear that

    limnZn() = limnN

    1(Xn()) = N1( limnXn()) = N

    1(X()) = Z() for every

    SinceYk() only depends on the kth coin toss, Xn will only depend on the first n coin tosses,which meansZn will also only depend on the first n coin tosses.

    1.2 Exercise 1.5

    First, since

    I(0,X())(x) =

    0, ifx / (0, X())1, ifx (0, X()) (1.1)

    we can compute the double integral as:

    0

    I(0,X())(x)dxdP() =

    [X() 0]dP() = E[X] (1.2)

    In the other hand, we may also compute the same double integral by changing the order f the integrationas:

    0

    I(0,X())(x)dxdP() =

    0

    I(0,X())(x)dP()dx

    Now let us consider the innner integral with respect to P(), in which we shall consider the functionI(0,X())(x) as a function of instead ofx. Now note the conditionx (0, X()) in (1.1) is equivalenttoX() x. So

    I(0,X())(x)dP() =

    I:X()x()dP() = P(: X() x) = P(X x) = 1P(X x) = 1F(x)

    Then

    0

    I(0,X())(x)dxdP() =

    0 I(0,X())(x)dP()dx=

    0

    [1

    F(x)]dx (1.3)

    By equating (1.1) and (1.3), we conculde that

    E[X] =

    0

    [1 F(x)]dx

    3

  • 8/10/2019 All Solutions for Yang

    4/48

    1.3 Exercise 1.6

    1.

    E[euX ] =

    euxf(x)dx

    =

    1

    2 expux (x )2

    22 dx=

    12

    exp

    ux x

    2 2x + 222

    dx

    = 1

    2

    exp

    1

    22

    x2 (2 + 2u2)x 222

    dx

    = 1

    2

    exp

    1

    22

    x ( + u2)2 + 122

    ( + u2)2 2

    22

    dx

    = 1

    2

    exp

    1

    22

    x ( + u2)2 dx exp 122

    ( + u2)2 2

    22

    = 1

    2 exp 1

    22y2 dy exp

    2u2

    22 +

    24

    22 = 1 exp

    u +

    1

    2u22

    2.E[(X)] = E[euX ] =eu+

    12u

    22 eu =() = (EX)

    1.4 Exercise 1.7

    1. f(x) = 0 for any x;

    2. limn

    fn(x)dx= 1 = 0 =

    f(x)dx;

    3. The sequencefi is not monotone. Refer to the following diagram for the graphs of the functions:

    Figure 1: Graphs of Exercise 1.7 with n=1,2,3,4 from the top respectively

    4

  • 8/10/2019 All Solutions for Yang

    5/48

    1.5 Exercise 1.8

    (i) We consider the sequence

    Yn() =etX() esnX()

    t snFirst note that

    limsnt Yn() = ddt [etX()] =X()etX()

    Also by the Mean value Theorem, there exists n [sn, t] (or [t, sn]) such that

    Yn() =etX() esnX()

    t sn =X()en()X()

    Note that for n sufficiently large, n max{t, sn} 2|t| since sn t, so

    |Yn()| =X()en()X() X()e2|t|X()

    Also note that for any n and E[XetX ]< for any t, so by Dominated Convergence Theorem,we have

    limnEYn = limn

    Yn()dP() =

    limnYn()dP() =

    X()etX()dP()

    =E[XetX ]

    i.e.,lim

    nEYn= E[ lim

    nYn] =E[Xe

    tX ]

    (ii) If X can take both positive and negative values, then write X = X+ X, where X+ =max{X, 0} and X = max{X, 0}. Then by the Mean value Theorem, there exists n [sn, t](or [t, sn]) such that

    Yn() = X()en()X()

    Then

    |Yn()| = X()en()X() |X| en()X() |X| e2|t||X| (1.4)Now we need to show thatE[|X| et|X|]< for anytto apply Dominated Convergence Theorem.For any t,

    E[|X| et|X|] =

    |X| et|X|dP()

    =

    1X()0 |X| et|X|dP() +

    1X()0 |X| et|X|dP()

    =

    1X()0 X+etX+

    dP() +

    1X()0 XetX

    dP()

    =E[1X()0

    X+etX+

    ] + E[1X()0

    XetX

    ]

    SinceE[|X| etX ]< for any t, so

    E[|X| etX ] =

    |X| etXdP()

    =

    1X()0 |X| etXdP() +

    1X()0 |X| etXdP()

    5

  • 8/10/2019 All Solutions for Yang

    6/48

    =

    1X()0 X+etX+

    dP() +

    1X()0 XetX

    dP()

    =E[1X()0 X+etX+

    ] + E[1X()0 XetX

    ]<

    which implies for any t

    E[1X()0 X+etX+

    ]< and E[1X()0 XetX

    ]< Or equivalently for any t, we have

    E[1X()0 X+etX+

    ]< and E[1X()0 XetX

    ]<

    HenceE[|X| et|X|] = E[1X()0 X+etX

    +

    ] + E[1X()0 XetX

    ]< for any t. Then E[|X| e|t||X|] 0, P(A) = 1/20

    Z()d=1/20

    0d= 0.

    1.7 Exercise 1.11

    By (1.6.4) of Text, we have for any u R

    EeuY

    =EeuYZ= Ee

    u(X+)eX12

    2

    =E

    e(u)X

    eu 12 2 =e 12 (u)2 eu 12 2=e

    12u

    2u+ 12 2+u 12 2

    =eu2/2

    thereforeYis standard normal under P.

    6

  • 8/10/2019 All Solutions for Yang

    7/48

    1.8 Exercise 1.14

    Since fora 0P(X a) = 1 ea =

    a

    f(x)dx

    where

    f(x) = ex, x 00, x

  • 8/10/2019 All Solutions for Yang

    8/48

    3. Here we only investigate the non-trivial cases:

    A (X) B (S1) A B P(A)P(B) P(A B){H T , T H } {H T , H H } {HT} (14 + 14) (14 + 14) = 14 14{H T , T H } {T H , T T } {TH} (14 + 14) (14 + 14) = 14 14

    {H H , T T

    } {H T , H H

    } {HH

    } (14 +

    14)

    (14 +

    14) =

    14

    14

    {H H , T T } {T H , T T } {TT} (14 + 14) (14 + 14) = 14 14

    therefore for anyA (X) andB (S1), we have P(AB) = P(A)P(B). So(X) and(S1)are independent under P.

    4. Again we only investigate the non-trivial cases:

    A (X) B (S1) A B P(A)P(B) P(A B){H T , T H } {H T , H H } {HT} ( 29 + 29) (29 + 49) = 827 29{H T , T H } {T H , T T } {TH} ( 29 + 29) (29 + 19) = 427 29{H H , T T } {H T , H H } {HH} ( 49 + 19) (29 + 49) = 1027 49{H H , T T } {T H , T T } {TT} ( 49 + 19) (29 + 19) = 527 19

    therefore for some A (X) and B (S1) (indeed for any non-trivial elements as shown), wehave P(A B) =P(A)P(B). So (X) and (S1) are not independent under P.

    5. If we are told thatX= 1, then we have S2 = 4, i.e., the event must be H T or T H. But sinceP(HT) = P(T H) = 2/9, we canot use the un-conditioned probability forS1 any longer. In otherwords, based on the current information, we shall estimate P(S1 = 8|X= 1) = 1/2 = P(S1 =2|X= 1).

    2.2 Exercise 2.3

    SinceV is normal random variable and

    E[V] =E[Xcos + Y sin ] = cos E[X] + sin E[Y] = cos

    0 + sin

    0 = 0

    V ar[V] =V ar[Xcos + Ysin ] = cos2 V ar[X] + sin2 V ar[Y] = cos2 1 + sin2 1 = 1soVis standard normal. Similarly Wis also standard normal.

    To show the independence, we quote the fact that ifZis a standard normal random variable, thenfor anyu, E[euZ] = exp(u2/2) (Exercise 1.6). Then for any real numbers a and b,

    E[eaV+bW] = E[ea(Xcos +Y sin )+b(Xsin +Y cos )]

    =E[eX(a cos b sin )+Y(a cos +b sin )]

    =E[eX(a cos b sin )] E[eY(a cos +b sin )] by the independence ofXand Y

    = exp

    (a cos b sin )2

    2 +

    (a cos + b sin )2

    2

    = exp a2 cos2 + b2 sin2 2ab cos sin 2 + a2 cos2 + b2 sin2 + 2ab cos sin

    2

    = exp

    a2

    2 +

    b2

    2

    =E[eaV]E[ebW]

    SoV andW are independent.

    8

  • 8/10/2019 All Solutions for Yang

    9/48

    2.3 Exercise 2.4

    1. By the definition,

    E

    euX+vY

    =

    eux+vxzdZ(z)dX(x)

    = 12 eux+vx1 +12 eux+vx(1) dX(x)=

    1

    2

    e(u+v)xdX(x) +1

    2

    e(uv)xdX(x)

    =E[e(u+v)X ] + E[e(uv)X ]

    =1

    2e(u+v)

    2/2 +1

    2e(uv)

    2/2

    =e(u2+v2)/2 e

    uv + euv

    2

    for any u and v .

    2. Letu = 0 in the last result, then

    E[evY ] =e(02+v2)/2 e

    0v + e0v

    2 =ev

    2/2

    So Y must be a standard normal random variable.

    3. IfXand Yare independent, then by Theorem 2.2.7 of text, the joint moment generating functionmust factor as:

    EeuX+vY =EeuXEevY

    But apparently

    EeuX+vY =e(u2+v2)/2 e

    uv + euv

    2 =eu2/2 ev2/2 =EeuXEevY

    So they are not independent.

    2.4 Exercise 2.5

    fX(x) =

    fX,Y(x, y)dy

    =

    |x|

    2|x| + y2

    exp

    (2|x| + y)

    2

    2

    dy

    =

    |x|

    z2

    exp

    z

    2

    2

    dz (z = y + 2|x|)

    = 12

    exp[z2

    2]

    z=

    z=|x|

    = 12

    exp[x22

    ]

    fY(y) =

    fX,Y(x, y)dx

    =

    |x|y

    2|x| + y2

    exp

    (2|x| + y)

    2

    2

    dx

    9

  • 8/10/2019 All Solutions for Yang

    10/48

    ify 0, then

    fY(y) =

    2|x| + y2

    exp

    (2|x| + y)

    2

    2

    dx

    = 2

    0

    2x + y2

    exp

    (2x + y)

    2

    2 dx

    = 2y

    z2

    expz

    2

    2

    dz2

    (z= 2x + y)

    = 1

    2exp[y

    2

    2]

    ify 0, then

    fY(y) =

    y

    2|x| + y2

    exp

    (2|x| + y)

    2

    2

    dx +

    y

    2|x| + y2

    exp

    (2|x| + y)

    2

    2

    dx

    =

    y

    2x + y2

    exp

    (2x + y)

    2

    2

    dx +

    y

    2x + y2

    exp

    (2x + y)

    2

    2

    dx

    = 2y

    2x + y2

    exp (2x + y)22 dx= 2

    y

    z2

    exp

    z

    2

    2

    dz

    2 (z= 2x + y)

    = 1

    2exp[y

    2

    2]

    Therefore bothX andY are standard random variable.It is clear that fX,Y(x, y) =fX(x) fY(y), so they are not independent.And it is also clear that E[X] = E[Y] = 0, and

    E[XY]

    =

    xyfX,Y(x, y)dydx

    =

    |x|

    xy 2|x| + y2

    exp

    (2|x| + y)

    2

    2

    dydx

    =

    0

    x

    xy 2x + y2

    exp

    (2x + y)

    2

    2

    dydx +

    0

    x

    xy 2x + y2

    exp

    (2x + y)

    2

    2

    dydx

    =

    0

    x

    xy 2x + y2

    exp

    (2x + y)

    2

    2

    dydx +

    0

    t

    (t)y 2t + y2

    exp

    (2t + y)

    2

    2

    dy(dt)

    (t= x)

    =

    0

    x

    xy 2x + y2

    exp

    (2x + y)

    2

    2 dydx

    0

    x

    xy 2x + y2

    exp

    (2x + y)

    2

    2 dydx

    =0

    soE[XY ] =E[X]E[Y], which implies X andY are uncoorelated.

    10

  • 8/10/2019 All Solutions for Yang

    11/48

    2.5 Exercise 2.7

    Let = E[Y X], then we consider

    V ar(Y X) =E(Y X )2=E((Y E[Y|G]) + (E[Y|G] X ))

    2

    =E

    (Y E[Y|G])2 + (E[Y|G] X )2 + 2 (Y E[Y|G]) (E[Y|G] X )

    E(Y E[Y|G])2 + 0 + 2E[(Y E[Y|G]) (E[Y|G] X )]=V ar(Err ) + 2E[(Y E[Y|G]) (E[Y|G] X )]

    (2.1)

    The last step is since E(Err ) = 0, so V ar(Err) = E

    (Y E[Y|G])2.Now note that both X andE[Y|G] areGmeasurable random variables,

    E[(Y E[Y|G]) (E[Y|G] X )]=E[Y E[Y|G] XY Y E[Y|G]E[Y|G] + XE[Y|G] + E[Y|G]]=E[Y E[Y|G] XY Y E[Y E[Y|G]|G] + E[XY|G] + E[Y|G]] byGmeasurable=E[Y E[Y

    |G]]

    E[XY]

    E[y]

    E[E[Y E[Y

    |G]

    |G]] + E[E[XY

    |G]] + E[E[Y

    |G]]

    =E[Y E[Y|G]] E[XY] E[y] E[Y E[Y|G]] + E[XY ] + E[Y] by iterated conditioningE[E[Z|G]] =E[Z=0

    By substituting this result into (2.1), we will have

    V ar(Y X) V ar(Err)

    2.6 Exercise 2.10

    By the notations, for any A (X),

    A g(X)dP={:X()B}

    g(X())dP()

    =

    g(X()) (X B)dP()

    =

    g(x)fX(x) (x B)dx

    =

    yfX,Y(x, y)

    fX(x) dy

    fX(x) (x B)dx

    =

    y (x B)fX,Y(x, y)dxdy

    =E[Y

    (X

    B)] by the notation of (2.6.3)

    =E[Y (A)] by the notation of (2.6.2) and A = {X B}=

    A

    Y dP

    whic verifies the partial averaging property, hence proves E[Y|X] =g(X).

    11

  • 8/10/2019 All Solutions for Yang

    12/48

    3 Chapter 3

    3.1 Exercise 3.2

    For 0 s t,E[W2(t)

    t

    |F(s)]

    =E[(W(t) W(s))2 + 2W(t)W(s) W2(s) t|F(s)]=E[(W(t) W(s))2 t|F(s)] + E[(2W(t)W(s)|F(s)] + E[W2(s)|F(s)]=[(t s) t] + 2W(s)E[W(t)|F(s)] W2(s)= s + 2W2(s) W2(s)=W2(s) s

    so martingale.

    3.2 Exercise 3.3

    (u) = Eeu(X)

    = e12u

    22

    (u) = E

    (X )eu(X)

    = u2e12u

    22

    (u) = E

    (X )2eu(X)

    = (2 + u24)e12u

    22

    (3)(u) = E

    (X )3eu(X)

    =

    2u4 + (2 + u24) u2 e 12u22=

    3u4 + u36

    e12u

    22

    (4)(u) = E

    (X )4eu(X)

    =

    (34 + 3u26) + (3u4 + u36) u2 e 12u22=

    34 + 6u26 + u48

    e12u

    22

    In particular, (3)(0) = 0 and (4)(0) = 34. The latter implies the kurtosis of a normal randomvariable is(4)(0)/(2)2 = 3.

    3.3 Exercise 3.4

    1. Since

    n1j=0

    (W(tj+1) W(tj))2 max0kn1

    |W(tk+1 W(tk)| n1j=0

    |W(tj+1) W(tj)|

    By re-writing it, we have

    n1

    j=0|W(tj+1) W(tj)|

    n1j=0 (W(tj+1) W(tj))2

    max0kn1 |W(tk+1) W(tk)|T

    0 =

    for almost every path of the Brownina motion W as n and|| 0.

    12

  • 8/10/2019 All Solutions for Yang

    13/48

    2.

    0 n1j=0

    |W(tj+1) W(tj)|3

    = max0kn1 |

    W(tk+1)

    W(tk)

    |

    n1

    j=0 |W(tj+1) W(tj)|2

    0 T = 0

    for almost every path of the Brownina motion W as n and|| 0.

    3.4 Exercise 3.5

    Note that W(T) N(0, T), with probability density function f(x) = 12T

    exp(x2/2T). Then bythe definition of the expectation

    E

    erT(S(T) K)+=

    erT S(0)e(r 12

    2)T+x

    K

    +

    f(x)dx

    =

    A

    erT

    S(0)e(r12

    2)T+x K

    f(x)dx

    where A is the constant such that S(T) K for any x A and S(T) K for any x A. Moreprecisely,

    A= min{x: (r 12

    2)T+ x K}

    =min{x: x log

    KS(0)

    (r 122)T

    }

    =

    log KS(0) (r

    12

    2)T

    =

    T d(T, S(0))

    Therefore,

    E

    erT(S(T) K)+=

    Td

    erTS(0)e(r12

    2)T+xf(x)dx Td

    erTKf(x)dx

    =erTS(0)e(r12

    2)T

    Td

    exf(x)dx

    I

    erTKTd

    f(x)dx

    II

    13

  • 8/10/2019 All Solutions for Yang

    14/48

    Now we compute the two integrals separately:

    I= 1

    2T

    Td

    ex e x2

    2T dx

    = 1

    2

    d

    exp

    T t t2

    2 dt (t=

    xT

    )

    = 1

    2e

    2T/2d

    exp1

    2(t T)2

    dt (completing the square)

    = 1

    2e

    2T/2

    dT

    ex2

    2 dx (x= t

    T)

    = 1

    2e

    2T/2

    d+

    ex2

    2 dx (d+= d+

    T)

    =e2T/2N(d+)

    and

    II= 1

    2T

    Tde

    x2

    2T dx

    = 1

    2

    d

    exp

    t

    2

    2

    dt (t=

    xT

    )

    =N(d)

    By substituting IandI I,we have the expected payoff of the option

    E

    erT(S(T) K)+=erTS(0)e(r

    12

    2)Te2T/2N(d+) erTKN(d)

    =S(0)N(d+) erTKN(d)

    3.5 Exercise 3.6

    1. WriteE[f(X(t))|F(s)] = E[f(X(t) X(s) + X(s))|F(s)]

    We defineg(x) = E[f(X(t)X(s)+x)], then we haveE[f(X(t)X(s)+X(s))|F(s)] = g(X(s)).Now since

    X(t) X(s) = (t s) + W(t) W(s)is normally distibuted with mean(t s) and variance t s,

    g(x) = 12(t s)

    f(+ x)exp

    ( (t s))

    2

    2(t s)

    d

    = 1

    2(t s)

    f(y)exp(y x (t s))2

    2(t

    s) dyby changing variable y = + x.

    ThereforeE[f(X(t))|F(s)] =g(X(s)), i.e. Xhas Markov property.2. Write

    E[f(S(t))|F(s)] = E

    f

    S(t)

    S(s) S(s)

    |F(s)

    14

  • 8/10/2019 All Solutions for Yang

    15/48

    We defineg(x) = E

    f

    S(t)S(s) x

    |F(s)

    , then since

    logS(t)

    S(s)=(t s) + (W(t) W(s))

    is normally distibuted with mean(t

    s) and variance 2(t

    s),

    g(x) = 12

    t s

    f(ex)exp

    ( (t s))

    2

    22(t s)

    d

    = 12

    t s

    0

    1

    yf(y)exp

    (log

    yx (t s))222(t s)

    dy

    by changing variable y = ex ( d = dy/y and x implies 0 y ).Therefore

    g(x) =

    0

    f(y)p(,x,y)dy with p( , x , y) = 12y

    exp

    (log

    yx )2

    22

    satisfiesE[f(S(t))|F

    (s)] = g(S(s)) for any f. HenceShas Markov property.

    3.6 Exercise 3.7

    1.

    E

    Z(t)F(s)

    =E

    Z(t)

    Z(s)Z(s)

    F(s)

    =Z(s)E

    Z(t)

    Z(s)

    F(s)

    =Z(s)Eexp(t s) + (W(t) W(s)) ( +1

    2

    2)(t

    s) F(s)

    =Z(s)e(ts)E

    e(W(t)W(s))

    e(+ 122)(ts) (by independence)=Z(s)e(ts) e 122(ts) e(+ 122)(ts) (sinceW(t) W(s) N(0, s t))=Z(s)

    2. since m is a stopping time, and a martingale which is stoped at a stopping time is still amartingale,

    E[Z(t m)] =E[Z(0 m)] =E[Z(0)] =Z(0) = 1which is exactly

    E[exp{X(t m)

    +12

    2

    (t m)}] = 1 (3.1)

    3. Form< ,limt

    Z(t m) = Z(m) = exp

    m ( +12

    2)m

    (3.2)

    Form= ,limt

    Z(t m) = limt exp

    X(t) ( +1

    22)t

    (3.3)

    15

  • 8/10/2019 All Solutions for Yang

    16/48

    since

    0 eX(t) em limt exp

    ( +1

    22)t

    = 0 (3.4)

    limtZ(t m) = limt exp[X(t)] limt exp

    ( +1

    22)t

    = lim

    t eX(t) 0 = 0 (3.5)

    therefore

    limt exp

    X(t m)

    +

    1

    22

    (t m)

    = Im

  • 8/10/2019 All Solutions for Yang

    17/48

    4. By differentiating

    d

    dE

    em

    = d

    d

    emm

    2+2

    E

    m em

    =

    m22 +

    2 2 emm

    2+2

    lim0+ E

    m em= lim0+ m2 + 2 emm2+2

    E[m] = m0 + 2

    emm

    0+2

    E[m] =m

    since >0

    And E[m] =m < follows immediately.

    5. For 2 > 0, we still have (3.2) and (3.3) respectively. The slight difference tothe argument in (3.4) will be,

    0

    limt

    exp( +1

    2

    2)t limt exp (+ 2)

    2

    t= 0as both >0 and + 2 > 0.

    Then (3.5)-(3.7) follow directly as part (iii), which is

    E

    Im

  • 8/10/2019 All Solutions for Yang

    18/48

    =

    eu/

    n

    rn+ 1 e/

    n

    e/n e/n

    eu/

    n

    rn+ 1 e/

    n

    e/n e/n

    n

    (ii) First by the substitution

    n= 1/x, we have

    log 1/x2(u) =

    t

    x2 log eux rx2 + 1

    ex

    ex ex eux rx

    2 + 1

    ex

    ex ex =

    t

    x2log

    (rx2 + 1)

    eux euxex ex +

    e(u)x e(u)xex ex

    = t

    x2log

    (rx2 + 1) sinh ux + sinh( u)x

    sinh x

    Then by sinh(A B) = sinh A cosh B cosh A sinh B, we have

    log 1/x2(u) = t

    x2log

    (rx2 + 1) sinh ux + sinh( u)x

    sinh x

    = t

    x

    2log

    (rx2 + 1) sinh ux + sinh x cosh ux cosh x sinh ux

    sinh x =

    t

    x2log

    cosh ux +

    (rx2 + 1 cosh x)sinh uxsinh x

    (iii) Since sinh z = z + O(z3),

    sinh ux

    sinh x=

    ux + O(x3)x + O(x3)=

    u

    + O(x3)

    This is because of the identity

    (x + O(x3)) ( u

    + O(x3)) = ux + O(x3) + O(x6) = ux + O(x3)

    And since cosh z= 1 + 12z2 + O(z4),

    1 cosh z = 12

    z2 + O(z4)

    Therefore

    cosh ux +(rx2 + 1 cosh x)sinh ux

    sinh x

    =1 +u2x2

    2 + O(x4) + (rx2

    2x2

    2 + O(x4)) ( u

    + O(x3))

    =1 +u2x2

    2 +

    rux2

    1

    2ux2+ O(x4) + O(x5) + O(x7)

    =1 + u2

    x2

    2 + rux

    2

    1

    2ux2+ O(x4)

    (iv) Since

    log 1/x2(u) = t

    x2log

    1 +

    u2x2

    2 +

    rux2

    1

    2ux2+ O(x4)

    18

  • 8/10/2019 All Solutions for Yang

    19/48

    = t

    x2log

    1 +

    u2

    2 +

    ru

    u

    2

    x2 + O(x4)

    = t

    x2

    u2

    2 +

    ru

    u

    2

    x2 + O(x4) + O(x6) + O(x8)

    = t

    x2

    u2

    2

    +ru

    u

    2 x2 +

    O(x4)

    =

    u2

    2 +

    ru

    u

    2

    t + O(x2)

    we have the moment generating function

    limx0

    log 1/x2(u) =

    u2

    2 +

    ru

    u

    2

    t

    =u

    rt

    t

    2

    +

    u2

    2 t

    This implies that1

    nMnt,n

    Nrt

    t

    2 , t as n Now by the following property of the normal random variables

    Z N(a, b) = cZ N(ca,c2b)

    we have

    nMnt,n N

    rt

    t

    2

    , 2t

    = N

    r

    2

    2

    t, 2t

    asn , i.e., the limiting distribution of

    nMnt,nis normal with mean (r2/2)tand variance

    2t.

    4 Chapter 4Theorem 1. Ifdx = a(x, t)dt + b(x, t)dW, wheredWis a Wiener process/Brownian motion then forG(x, t), we have

    dG=

    a

    G

    x +

    G

    t +

    1

    2b2

    2G

    x2

    dt + b

    G

    xdW (4.1)

    4.1 Exercise 4.1

    For any 0 s t T, without loss of generality, we assumes = tl and t = tk 1. Now

    E[I(t)|F(s)]

    =El1

    j=0 tj [M(tj+1 M(tj)) +

    l

    j=k1 tj [M(tj+1 M(tj))]F(tl)

    =l1j=0

    E

    tj [M(tj+1 M(tj))F(tl) + k1

    j=l

    E

    tj [M(tj+1 M(tj))F(tl)

    1since we can always re-arrange the indices to have a new partition over 0 to T

    19

  • 8/10/2019 All Solutions for Yang

    20/48

    =l1j=0

    [tj [M(tj+1 M(tj))] +k1j=l

    E

    E

    tj [M(tj+1 M(tj))F(tj) F(tl)

    =I(s) +k1j=l

    E

    E

    tj [M(tj+1 M(tj))F(tj)

    F(tl)

    =I(s) +k1j=l

    E

    [tj [M(tj M(tj))]F(tl)

    =I(s) +

    k1j=l

    E

    0F(tl)

    =I(s) + 0

    =I(s)

    soI(t) is a martingale for 0 t T.

    4.2 Exercise 4.2

    (i) Without loss of generality, we assumet = tk and s = tl where tl < tk. In other words, to showthatI(t) I(s) in independent ofF(s) if 0 s < t T, it is sufficient to show thatI(tk) I(tl)is independent ofF(tl) for 0 tl< tk T. Hence

    I(t) I(s) =k

    j=0

    (tj)[W(tj+1) W(tj)] l

    j=0

    (tj)[W(tj+1) W(tj)]

    =k

    j=l+1

    (tj)[W(tj+1) W(tj)]

    Now since (t) is a nonrandom simple process, each (tj) will be a constant; also since W(t) isa brownian motion, each W(tj+1) W(tj) will be independent ofF(tj) for j > l. Futhermore,sinceF(tl) F(tj) for all j < l, each W(tj+1) W(tj) will be independent ofF(tl), whichimplies each (t

    j)[W(t

    j+1)

    W(tj

    ) is independent ofF

    (tl). BY taking the summation, we have

    I(t) I(s) =kj=l+1(tj)[W(tj+1) W(tj)] is independent ofF(tl).(ii) Again, we consider

    I(t) I(s) =k

    j=l+1

    (tj)[W(tj+1) W(tj)]

    Now since each W(tj+1) W(tj) is a normal distribution random variable with mean 0 andvariance tj+1 tj , (tj)[W(tj+1) W(tj)] will have a normal distribution with mean 0 andvariance 2(tj)(tj+1 tj). Since the summation of any normal random variables is still a normalrandom variable, then

    I(t) I(s) N0,

    k

    j=l+12(tj)(tj+1 tj)

    As (t) is a nonrandom simple process, N

    0,k

    j=l+12(tj)(tj+1 tj)

    is exactly the defi-

    nition of the Riemann sumtktl

    2(u)du. Hence

    I(t) I(s) N

    0,

    ts

    2(u)du

    20

  • 8/10/2019 All Solutions for Yang

    21/48

    (iii) Since

    E[I(t)|F(s)] =E[I(t) I(s) + I(s)|F(s)]=E[I(t) I(s)|F(s)] + E[I(s)|F(s)]=E[I(t) I(s)] + I(s) sinceI(t) I(s) is independent ofF(s)=0 + I(s) since I(t)

    I(s) is normally distributed with mean 0

    =I(s)

    I(t) is a martingale.

    (iv) First we write

    I2(t) t0

    2(u)du

    =(I(t) I(s))2 + 2I(t)I(s) I2(s) t0

    2(u)du

    =(I(t) I(s))2 + 2(I(t) I(s))I(s) + 2I2(s) I2(s) t0

    2(u)du

    then for 0 s t T,E

    I2(t)

    t0

    2(u)du|F(s)

    =E

    (I(t) I(s))2 + 2(I(t) I(s))I(s) + I2(s)

    t0

    2(u)du|F(s)

    =E

    (I(t) I(s))2 + 2(I(t) I(s))I(s)|F(s) + I2(s) t0

    2(u)du

    =E

    (I(t) I(s))2 + 2E[2(I(t) I(s))|F(s)] I(s) + I2(s) t0

    2(u)du

    =

    t

    s

    2(u)du + 2 0 I(s) + I2(s)

    t

    0

    2(u)du

    =I2(s) s0

    2(u)du

    which implies thatI2(t) t02(u)du is a martingale.4.3 Exercise 4.5

    1. In Theorem1, G(x, t) = log x, then

    d log S(t) =

    (t)S(t)

    1

    S(t)+ 0 +

    1

    22S2(t)

    1

    S2(t)

    dt + S(t)

    1

    S(t)dW(t)

    =

    (t) 1

    22

    dt + (t)dW(t)

    2.

    log S(t) log S(0) = t0

    (s) 1

    22

    ds +

    t0

    (s)dW(s)

    so

    S(t) = S(0)exp

    t0

    (s) 1

    22

    ds +

    t0

    (s)dW(s)

    21

  • 8/10/2019 All Solutions for Yang

    22/48

    4.4 Exercise 4.6

    Define Itos process

    X(t) =

    t0

    ((s) 12

    2)ds +

    t0

    (s)dW(s)

    Then

    dX(t) = ( 12

    2)dt + dW(t)

    dX(t)dX(t) = 2dt

    Now we use two different notations to compute d(Sp(t)):

    1. Under the notations in Theorem1, G(x, t) = Sp(0)epx, a = 122 andb = . Then

    d(Sp(t)) =

    ( 1

    22) pSp(0)epX(t) + 0 + 1

    22p2 Sp(0)epX(t)

    dt + Sp(0)pepX(t)dW(t)

    =

    p 1

    2p2 +

    1

    2p22

    Sp(t)dt + pSp(t)dW(t)

    2. Under the notations in Theorem 4.4.6 of Text,Sp(t) = f(X(t)), thenf(x) = Sp(0)epx , f(x) =pSp(0)epx andf(x) = p2Sp(0)epx. Now

    d(Sp(t)) = df(X(t))

    =pSp(0)epX(t)dX(t) +1

    2p2Sp(0)epX(t)dX(t)dX(t)

    =pSp(t)dX(t) +1

    2p2Sp(t)dX(t)dX(t)

    =pSp(t)

    ( 12

    2)dt + dW(t)

    +

    1

    2p2Sp(t) 2dt

    =

    p 1

    2p2 +

    1

    2p22

    Sp(t)dt + pSp(t)dW(t)

    4.5 Exercise 4.7

    Here we use the following version (4.4.1)of Itos lemma:

    df(W(t)) = f(W(t))dW(t) +1

    2f(W(t))dt (4.2)

    1. Setf(x) = x4 in (4.2), then f(x) = 4x3 andf(x) = 12x2. Then (4.2) becomes

    dW4(t) = 4W3(t)dW(t) +1

    2 12W2(t)dt= 4W3(t)dW(t) + 6W2(t)dt

    We may also write it in the integral form as:

    W4(T) = W4(0)+4 T0

    W3(t)dW(t)+6 T0

    W2(t)dt= 4 T0

    W3(t)dW(t)+6 T0

    W2(t)dt (4.3)

    2. First we note thatW(t) N(0, t), then by the symmetry of the integrand

    E[W3(t)] =

    x3 1

    2te

    x2

    2t dx= 0

    22

  • 8/10/2019 All Solutions for Yang

    23/48

    Now we take the expectation in (4.3),

    E

    W4(T)

    =E

    4

    T0

    W3(t)dW(t) + 6

    T0

    W2(t)dt

    = T

    0

    4EW3(t) dW(t) + 6 T

    0

    EW2(t) dt=

    T0

    40dW(t) + 6

    T0

    t2dt

    =3T2

    3. Setf(x) = x6 in (4.2), then f(x) = 6x5 andf(x) = 30x4. Then (4.2) becomes

    dW6(t) = 6W5(t)dW(t) +1

    2 30W4(t)dt= 6W5(t)dW(t) + 15W4(t)dt

    We may also write it in the integral form as:

    W6(T) = W6(0) + 6 T

    0

    W5(t)dW(t) + 15 T

    0

    W4(t)dt= 6 T

    0

    W5(t)dW(t) + 15 T

    0

    W4(t)dt

    It is easy to see thatE[W5(t)] = 0. Then by taking expectation in the above equation, we have

    E

    W6(T)

    =E

    6

    T0

    W5(t)dW(t) + 15

    T0

    W4(t)dt

    =

    T0

    6E

    W5(t)

    dW(t) + 15

    T0

    E

    W4(t)

    dt

    =6

    T0

    0dW(t) + 15

    T0

    3t2dt

    =15T3

    4.6 Exercise 4.8

    1. In (4.4.23) of text, let f(t, x) = etx, then ft = etx, fx = e

    t and fxx = 0. Then (4.4.23)becomes

    d

    etR(t)

    =etR(t)dt + etdX(t)

    =etR(t)dt + et [( R(t))dt + dW(t)]=etdt + etdW(t)

    2. Integrating the both sides of the above equation, we have

    etR(t) =e0R(0) + t

    0

    esds + t

    0

    esdW(s)

    =R(0) +

    et 1 + t

    0

    esdW(s)

    which implies

    R(t) = etR(0) +

    1 et + et t

    0

    esdW(s)

    23

  • 8/10/2019 All Solutions for Yang

    24/48

    4.7 Exercise 4.9

    1. It is clear that

    N(y) = 1

    2e

    y2

    2

    and

    d = d(T t, x) = 1

    T t log xK + (r 2

    2)(T t)Then

    N(d+)N(d)

    = exp

    d

    2+

    2 +

    d22

    = exp 1

    22(T t)

    log

    x

    K + (r

    2

    2)(T t)

    2

    log x

    K+ (r+

    2

    2)(T t)

    2

    = exp 1

    22(T t)4

    log

    x

    K + r(T t)

    2

    2(T t)

    = exp

    log x

    K + r(T t)

    = K

    xer(Tt)

    2. Firstdx

    = 1

    T txBy the definition

    c(t, x) = xN(d+(T t, x)) Ker(Tt)N(d(T t, x))

    cx= c

    x

    =N(d+(T

    t, x)) + xN(d+)

    d+

    x Ker(Tt)N(d

    )

    d

    x=N(d+) +

    xN(d+) Ker(Tt)N(d)

    1

    T tx=N(d+)

    3.

    ct =c

    t

    =xN(d+)d+

    t Ker(Tt)rN(d) Ker(Tt)N(d) d

    t

    = Ker(Tt)rN(d) + N(d+)

    xd+

    t Ker(Tt) d+

    t xKer(Tt)

    = Ker(Tt)rN(d) + xN(d+)d+t

    dt

    Now note that

    d+ d=

    T t(d+ d)

    t =

    2

    T t

    24

  • 8/10/2019 All Solutions for Yang

    25/48

    soct = Ker(Tt)rN(d) x

    2

    T t N(d+)

    4.

    ct+ rxcx+1

    2

    2x2cxx

    = rKer(Tt)N(d) x2

    T t N(d+) + rxN(d+) +

    1

    22x2

    d

    dx[N(d+(x))]

    = rKer(Tt)N(d) x2

    T t N(d+) + rxN(d+) +

    1

    22x2N(d+)

    d+x

    = rKer(Tt)N(d) x2

    T t N(d+) + rxN(d+) +

    1

    22x2N(d+) 1

    T tx=rxN(d+) rKer(Tt)N(d)=rc

    5. As t T, T t 0. And ln xK >0 ifx > K, and ln xK K, if 0< x < k

    Then

    limtT

    N(d)

    N() = 1, ifx > KN() = 0, if 0< x < k

    So

    limtT

    c(t, x) =

    x 1 Ker(TT) 1 = x K, ifx > Kx 0 Ker(TT) 0 = 0, if 0< x < K

    =(x K)+

    6. For 0 t < T, ln xK as x 0+.

    limx0+

    d = limx0+

    1T t

    log

    x

    K+ (r 1

    22(T t))

    =

    which implies N(d)

    N(

    ) = 0 as x

    0+. Thereforec(t, x)

    x

    0

    Ker(Tt)

    0 = 0

    as x 0+.7. For 0 t < T, ln xK as x .

    limx

    d= limx

    1T t

    log

    x

    K+ (r 1

    22(T t))

    =

    25

  • 8/10/2019 All Solutions for Yang

    26/48

    which implies N(d) N() = 1 as x .limx

    c(t, x)

    x er(Tt)K

    = lim

    x

    xN(d+) Ker(Tt)

    x er(Tt)K

    = lim

    x

    x(N(d+)

    1)

    = limx

    N(d+) 1x1

    = limx

    ddx [N(d+) 1]

    x2

    = limx

    N(d+) xTtx2

    = 1

    T t limxx3N(d+)

    = 1

    T t limxx3 1

    2ed

    2+/2

    = 1

    2T t limxK3

    exp3T td+ 3(T t)(r+ 2

    2) ed2+/2=

    1

    2

    T t exp3(T t)(r+

    2

    2)

    limx exp

    d

    2+

    2 + 3

    T td+

    = 1

    2

    T t exp3(T t)(r+

    2

    2)

    0

    =0

    4.8 Exercise 4.11

    Without confusion, we shorten the notations when it is proper through this problem:

    S= S(t), c= c(t, S(t)), cx= cx(t, S(t)), ct = ct(t, S(t)), cxx= cxx(t, S(t))

    By dS(t) = Sdt + 2SdW(t)

    we havedS(t)dS(t) = 2S2dtdt + 2S2SdtdW(t) +

    22SdW(t)dW(t) =

    22Sdt

    and

    dc(t, S(t)) = ctdt + cxdS+1

    2cxxdSdS

    Now we compute

    d(ertX(t)) = rertX(t)dt + ertdX(t)

    = rertX(t)dt + ert

    dc cxdS+ r(X c + Scx)dt 12

    (22 21)S2cxxdt

    =ert ctdt + cxdS+ 12 cxxdSdS cxdS+ r(X c + Scx)dt 12 (22 21)S2cxxdt

    =ert

    ct+1

    221S

    2cxx rc + rScx 12

    (22 21)S2cxx

    dt + ert (cx cx) dS

    =ert(ct rc + rScx+12

    21S2cxx)dt

    = 0

    26

  • 8/10/2019 All Solutions for Yang

    27/48

    which implies ertX(t) is a non-random constant and ertX(t) = er0X(0) = X(0) = 0 for any t.Sincer >0, so X(t) = 0 for any t.

    4.9 Exercise 4.13

    Since B1(t) and B2(t) are Brownian motions, dB1(t)dB1(t) = dt and dB2(t)dB2(t) = dt. By substi-

    tuting the definition

    dB1(t) =dW1(t)

    dB2(t) =(t)dW1(t) +

    1 2(t)dW2(t)

    Note that these equations imply thatW1(t) is Brownian motion andW2(t) is a continuous martingalewith W2(0) = 0 (since we can write dW2(t) = dB2(t)/

    1 2(t)(t)dW1(t)/

    1 2(t) with

    1<

  • 8/10/2019 All Solutions for Yang

    28/48

    Then we compute the quadratic variation, or equivalently,

    dBi(t)dBi(t) =

    d

    j=1

    ij(t)

    i(t)dWj(t)

    d

    k=1

    ik(t)

    i(t)dWk(t)

    =

    1

    2i (t)

    dj=1

    ij(t)dWj(t) dk=1

    ik(t)dWk(t)=

    1

    2i (t)

    dj=1

    ij(t)dWj(t)ij(t)dWj(t) by (4.7)

    = 1

    2i (t)

    dj=1

    2ij(t)dt

    =1

    2.

    dBi(t)dBk(t) = d

    j=1

    ij(t)

    i(t)dWj(t)

    dl=1

    kl(t)

    k(t)dWl(t)

    = 1

    i(t)k(t)

    dj=1

    ij(t)dWj(t)

    dl=1

    kl(t)dWl(t)

    = 1

    i(t)k(t)

    dj=1

    ij(t)dWj(t)kj(t)dWj(t) by (4.7)

    = 1

    i(t)k(t)

    dj=1

    ij(t)kj(t)dt

    =ik(t)

    4.11 Exercise 4.18

    1. In (4.4.13), let

    f(t, x) = ex(r+2/2)t

    then

    ft(t, x) = (r+ 2/2)ex(r+2/2)t

    fx(t, x) = ex(r+2/2)t

    fxx(t, x) = 2ex(r+

    2/2)t

    Then Itoe Formula of (4.4.13) becomes

    d(t) = (r+ 2/2)eW(t)(r+2/2)tdt eW(t)(r+2/2)tdW(t)+

    1

    22eW(t)(r+

    2/2)tdW(t)dW(t)

    = (r+ 2/2)(t)dt (t)dW(t) +12

    2(t)dt

    = (t)dW(t) r(t)dt

    28

  • 8/10/2019 All Solutions for Yang

    29/48

    2. By Itos Product rule,

    d((t)Z(t)) =(t)d(Z(t)) + Z(t)d((t)) + d((t))d(Z(t))

    = [rXdt + ( r)Sdt + SdW(t)] + X [dW(t) rdt]+ [rXdt + ( r)Sdt + SdW(t)] [dW(t) rdt]

    = [rX+ (

    r)S

    rX

    S] dt

    + [S X] dW(t)=S[( r) ] dt + [S X]dW(t)=[S X ]dW(t) (since = ( r)/)

    i.e.,d((t)Z(t)) has no dt term. Therefore (t)Z(t) is a martingale.

    3. If an investor begin with initial capitalX(0) amd has portfolio value V(T) at time T, which isX(T) = V(T), then

    (T)X(T) = (T)V(T)

    SinceX(T) andV(T) are random, we take the expectation in the above formula

    E[(T)X(T)] =E[(T)V(T)]

    Now since (t)X(t) is a martingale,

    E[(T)X(T)] =(0)X(0) =X(0)

    By equating the above two equations, we have X(0) =E[(T)V(T)].

    4.12 Exercise 4.19

    1. By the definition, dB(t) = sign(t)dW(t), B(t) is a martingale with continuous path. Further-more, since dB (t)dB(t) = sign2(t)dW(t)dW(t) = dt, B (t) is a Brownian motion.

    2. By Itos product formula,

    d[B(t)W(t)] =d[B(t)]W(t) + d[W(t)]B(t) + d[B(t)]d[W(t)]

    =sign(W(t))W(t)dW(t) + B(t)dW(t) + sign(W(t))dW(t)dW(t)=[sign(W(t))W(t) + B(t)]dW(t) + sign(W(t))dt

    Integrate both sides, we will have

    B(t)W(t) =B(0)W(0) +

    t0

    sign(W(s))ds +

    t0

    [sign(W(s))W(s) + B(s)]dW(s)

    =

    t0

    sign(W(s))ds +

    t0

    [sign(W(s))W(s) + B(s)]dW(s)

    Note that the expectation of an Itos integral is 0 and W(s) N(0, s), which implies

    E[sign(W(s))] =

    sign(x)

    1

    2ex

    2/2sdx=

    0

    1

    2ex

    2/2sdx

    0

    1

    2ex

    2/2sdx= 0

    Then by taking expectation on both sides,

    E[B(t)W(t)] =

    t0

    E[sign(W(s))]ds= 0

    Note thatE[W(t)] = 0, the above result also implies that B (t) and W(t) are uncorrelated.

    29

  • 8/10/2019 All Solutions for Yang

    30/48

    3. By Itos product formula,

    d[W(t)W(t)] =d[W(t)]W(t) + d[W(t)]W(t) + d[W(t)]d[W(t)]

    =W(t)dW(t) + W(t)dW(t) + dW(t)dW(t)

    =2W(t)dW(t) + dt

    4. By Itos product formula,

    d[B(t)W2(t)] =d[B(t)]W2(t) + d[W2(t)]B(t) + d[B(t)]d[W2(t)]

    =sign(W(t))W2(t)dW(t) + [2W(t)dW(t) + dt] B(t)

    + sign(W(t))dW(t) [2W(t)dW(t) + dt]

    =[sign(W(t))W2(t) + 2B(t)W(t)]dW(t) + [B(t) + 2sign(W(t))W(t)]dt

    By taking the integral on both sides,

    B(t)W2(t) =

    t0

    [sign(W(s))W2(s) + 2B(s)W(s)]dW(s) +

    t0

    [B(s) + 2sign(W(s))W(s)]ds

    Note that again the expectation of an Itos integral is 0 and W(s) N(0, s). Then by takingthe expectation, we have

    E[B(t)W2(t)] =

    t0

    E[[B(s) + 2sign(W(s))W(s)] ds

    =2

    t0

    E[sign(W(s))W(s)] ds

    Now

    E[sign(W(s))] =

    sign(x) 1

    2ex

    2/2sdx

    =

    0

    x

    2ex

    2/2sdx

    0

    x

    2ex

    2/2sdx= 0

    =2

    0

    x2

    ex2/2sdx

    >0

    ThererforeE[B(t)W2(t)]> 0 = 0 = E[B(t)]E[W2(t)].IfB (t) andW(t) are independent, then B(t) andW2(t) will also be independent, which impliesE[B(t)W2(t)] = E[B(t)]E[W2(t)]. Contradiction. Therefore B(t) and W(t) are uncorrelatedbut not independent.

    5 Chapter 5

    5.1 Exercise 5.1

    Recall thatdtdt= 0, dtdW= 0 and dW(t)dW(t) = dt.

    1. First note that

    dX(t) = (t)dW(t) + ((t) R(t) 12

    2(t))dt

    30

  • 8/10/2019 All Solutions for Yang

    31/48

    Forf(x) = S(0)ex, we havef(x) = f(x) = f(x) andf(X(t)) = S(0)eX(t) =D(t)S(t), thereforeby Itos Lemma,

    d(D(t)S(t)) =df(X(t))

    =f(X(t))dX(t) +1

    2f(X(t))dX(t)dX(t)

    =S(0)eX(t)dX(t) +12

    S(0)eX(t)dX(t)dX(t)

    =D(t)S(t)

    (t)dW(t) + ((t) R(t) 1

    22(t))dt +

    1

    2

    2dt + 0 + 0

    =D(t)S(t) [(t)dW(t) + ((t) R(t))dt]=D(t)S(t)(t) [dW(t) + (t)dt]

    with (t) = ((t) R(t))/(t).2. The other way is by Itos Product Rule,

    d(D(t)S(t)) =S(t)dD(t) + D(t)dS(t) + dD(t)dS(t)

    =S(t) [R(t)D(t)dt] + D(t) [(t)S(t)dt + (t)S(t)dW(t)]+ [R(t)D(t)dt] [(t)S(t)dt + (t)S(t)dW(t)]

    = [(t)S(t)D(t) S(t)R(t)D(t)] dt + D(t)(t)S(t)dW(t)=D(t)S(t) [(t)dW(t) + ((t) R(t))dt]=D(t)S(t)(t) [dW(t) + (t)dt]

    5.2 Exercise 5.4

    1. Let us considerd(ln S(t)), by Itos Lemma

    d(ln S(t)) = 1

    S(t)S(t) +

    1

    2

    1S2(t)

    dS(t)dS(t)

    =r(t)dt + (t)dW(t)

    2

    2dW(t)dW(t)

    =

    r(t)

    2(t)

    2

    dt + (t)dW(t)

    By writing it in the integral form, we have

    ln S(T) =ln S(0) +

    T0

    r(t)

    2(t)

    2

    dt +

    T0

    (t)dW(t)

    S(T) =S(0) exp

    T0

    r(t)

    2(t)

    2

    dt +

    T0

    (t)dW(t)

    Under the form S(T) = S(0)eX ,

    X= T0

    r(t) 2(t)

    2

    dt +

    T0

    (t)dW(t)

    By Theorem 4.4.9 of Text,T0

    (t)dW(t) is a normal random variable with mean 0 and varianceT0

    2(t)dt, which implies Xis normal distributed with meanT0

    r(t) 2(t)2

    dt and varianceT

    0 2(t)dt.

    31

  • 8/10/2019 All Solutions for Yang

    32/48

    2. To simplify the notations, denote

    R=1

    T

    T0

    r(t)dt

    =1

    T T

    0

    2(t)dt

    ThenXis normal with mean RT T2/2 and variance T2.

    c(0, S(0))

    =E

    eRT(S(T) K)+=eRT

    x:S(T)K

    12

    T

    (S(0)ex K)exp

    x RT+ T2

    2

    2/2T2

    dx

    =S(0)

    x:S(T)K

    eRT2

    T

    ex exp

    x RT+ T2

    2

    2/2T2

    dx

    KeRT

    x:S(T)K

    1

    2T expx RT+ T2

    2 2

    /2T2 dx

    (5.1)

    Now x:S(T)K

    12

    T

    exp

    x RT+ T2

    2

    2/2T2

    dx

    =P(S(T) K)

    =P

    X lnS(0)

    K

    =P

    X (RT 12T2)

    T

    ln KS(0) (RT 12T2)

    T

    =P

    X (RT 12T2)

    T ln

    S(0)K + (RT 12T2)

    T

    =N

    1

    T

    ln

    S(0)

    K + (RT 1

    2T2)

    (5.2)

    32

  • 8/10/2019 All Solutions for Yang

    33/48

    and x:S(T)K

    eRT2

    T

    ex exp

    x RT+ T2

    2

    2/2T2

    dx

    =x:S(T)K1

    2expx RT

    T2

    2 2

    /2T2 dx=

    12

    ln K

    S(0)

    exp

    x RT T2

    2

    2/2T2

    dx

    =P

    X (RT+ 12T2)

    T

    ln KS(0) (RT+ 12T2)

    T

    =P

    X (RT+ 12T2)

    T ln

    S(0)K + (RT+

    12T

    2)

    T

    =N

    1

    T

    ln

    S(0)

    K + (RT+

    1

    2T2)

    (5.3)

    By substituting (5.2) and (5.3) into (5.1), we have

    c(0, S(0)) =BSM(T, S(0); K,R, )

    5.3 Exercise 5.5

    1. By the definition1

    Z(t)= exp

    t0

    (u)dW(u) +1

    2

    t0

    2(u)du

    Let

    X(t) =

    t0

    (u)dW(u) +1

    2

    t0

    2(u)du

    then

    d

    1

    Z(t)

    =

    d

    dt

    eX(t)

    =eX(t)dX(t) +

    1

    2eX(t)dX(t)dX(t)

    = 1

    Z(t)

    (t)dW(t) +

    1

    22(t)dt

    +

    1

    2Z(t)2(t)dt

    = 1

    Z(t)

    (t)dW(t) + 2(t)dt

    2. By Lemma 5.2.2 of text, since M(t) is a martingale, for 0 s t,

    E

    Z(t)M(t)F(s)= Z(s)E 1

    Z(t)Z(t)M(t)

    F(s)= Z(s)E M(t)F(s)= Z(s)M(s)which means M(t)Z(t) is a martingale.

    33

  • 8/10/2019 All Solutions for Yang

    34/48

    3. Note thatdM(t) = (t)dW(t), then

    d

    M(t)

    =d

    M(t) 1

    Z(t)

    =M(t)d 1Z(t)

    + 1Z(t)

    d [M(t)] + d [M(t)] d 1Z(t)

    =M(t)

    (t)

    Z(t)dW(t) +

    2(t)

    Z(t)dt

    +

    1

    Z(t) (t)dW(t) +

    (t)

    Z(t)dW(t) +

    2(t)

    Z(t)dt

    (t)dW(t)

    = 1

    Z(t)[(t) + M(t)(t)] dW(t) +

    1

    Z(t)

    (t)(t) + M(t)2(t)M(t)

    dt

    4. Now since d W(t) = dW(t) + (t)dt, if we define

    (t) =(t) + M(t)(t)

    Z(t)

    then

    d

    M(t)

    = 1

    Z(t)[(t) + M(t)(t)] dW(t) +

    (t)

    Z(t)[(t) + M(t)(t)M(t)] dt

    =(t)dW(t) +(t)(t)dt

    =(t)dW(t)

    Integrate both sides, we will have

    M(t) = M(0) +

    t0

    (u)dW(u)

    5.4 Exercise 5.12

    1. First each Bi(t) is a continuous martingale. Secondly, since dBi(t) =

    jij(t)/i(t)dWt(t),dBi(t)dt= 0 and furthermore we have

    dBi(t)dBi(t) = [dBi(t) + i(t)] [dBi(t) + i(t)] =dBi(t)dBi(t) = dt

    Bi(t) must be a brownian motion for every i.

    2. BydBi(t) = dBi(t) + i(t)

    we have

    dSi(t) =i(t)Si(t)dt + i(t)Si(t)dBi(t)

    =i(t)Si(t)dt + i(t)Si(t)[dBi(t) i(t)]= [i(t)Si(t) i(t)i(t)Si(t)] dt + i(t)Si(t)dBi(t)=R(t)Si(t)dt + i(t)Si(t)dBi(t)

    34

  • 8/10/2019 All Solutions for Yang

    35/48

    3. SincedBi(t)dBk(t) = ik(t)dt,

    dBi(t)dBk(t)

    = [dBi(t) + i(t)dt] [dBk(t) + k(t)dt]=dBi(t)dBk(t) + i(t)dtdBk(t) + k(t)dtdBi(t) + i(t)k(t)dtdt

    =dBi(t)dBk(t)

    =ik(t)dt

    4. By Itos product rule,

    d[Bi(t)Bk(t)] = Bi(t)dBk(t) + Bk(t)dBi(t) + dBi(t)dBk(t)

    then since dBi(t)dBk(t) = ik(t)dt, we have

    Bi(t)Bk(t) =

    t0

    Bi(u)dBk(u) +

    t0

    Bk(u)dBi(u) +

    t0

    ik(u)du

    Now note the fact that the expectation of an Itos integral is 0, if we take the expectation on theabove formula, then

    E[Bi(t)Bk(t)] = E t

    0

    ik(u)du

    = t0

    ik(u)du

    Similarly we haveE[Bi(t)Bk(t)] =t0

    ik(u)du.

    5. For E[B1(t)B2(t)], since dB1(t) = dW2(t) and dB2(t) = sign(W1(t))dW2(t) by Itos productrule,

    d[B1(t)B2(t)] =B1(t)dB2(t) + B2(t)dB1(t) + dB1(t)dB2(t)

    =W2(t)dB2(t) + B2(t)dW2(t) + sign(W1(t))dW2(t)dW2(t)

    By dW2(t)dW2(t) = dt, we may write it in the integral version as:

    B1(t)B2(t) = B1(0)B2(0) + t

    0

    W2(u)dB2(u) + t

    0

    B2(u)dW2(u) + t

    0

    sign(W1(u))du

    Note that the expectation of an Itos integral is 0 and W1(u) N(0, u), which implies

    E[sign(W1(u))] =

    sign(x) 1

    2uex

    2/2udx=

    0

    12u

    ex2/2udx

    0

    12

    ex2/2udx= 0

    Then we haveE[B1(t)B2(t)] = 0 (5.4)

    ForE[B1(t)B2(t)], sincedB1(t) = dB1(t) = dW2(t) = d W2(t) (5.5)

    and

    dB2(t) = dB2(t) = sign(W1(t))dW2(t) = sign(W1(t) t)dW2(t) (5.6)by Itos product rule,

    d[B1(t)B2(t)] =B1(t)dB2(t) + B2(t)dB1(t) + dB1(t)dB2(t)

    =W2(t)sign(W1(t) t)dW2(t) + B2(t)dW2(t) + sign(W1(t))dt=W2(t)sign(W1(t) t)dW2(t) + B2(t)dW2(t) + sign(W1(t) t)dt

    35

  • 8/10/2019 All Solutions for Yang

    36/48

    we may write it in the integral version as:

    B1(t)B2(t) = B1(0)B2(0)+

    t0

    [W2(u)sign(W1(u) u) + B2(u)]dW2(u) + t0

    sign(W1(u) u)du

    Note that the expectation of an Itos integral is 0 and W1(u) N(0, u), which implies W1(u)u N(

    u, u) and

    E[sign(W1(u) u)] =

    sign(x) 1

    2ue(xu)

    2/2udx

    =

    0

    12u

    e(xu)2/2udx

    0

    12u

    e(xu)2/2udx

    =

    0

    12u

    e(xu)2/2udx

    0

    12u

    e(x+u)2/2udx

    = 1

    2u

    0

    e(xu)

    2/2u e(x+u)2/2u

    du

    >0 since u >0

    Then we have

    E[B1(t)B2(t)] = t0

    E[sign(W1(u) u)du]> 0 (5.7)

    (5.4) and(5.7) are the exmaples that E[B1(t)B2(t)]> 0 = 0 = E[B1(t)B2(t)].

    5.5 Exercise 5.13

    1.

    E[W1(t)] =E[ W1(t)] = 0

    E[W2(t)] =E[ W2(t) t0

    W1(u)du] = E[ W2(t)] t0

    E[W1(u)]du= 0

    2. Note that the covariance

    Cov [W1(T), W2(T)] =E[W1(T)W2(T)] E[W1(T)]E[W2(T)]=E[W1(T)W2(T)]

    because ofE[W1(T)] = 0 = E[W2(T)].

    Now by Itos product rule, we have

    W1(T)W2(T) = W1(0)W2(0) +

    T0

    W1(t)dW2(t) +

    T0

    W2(t)dW1(t)

    Here since

    d W1(t) =dW1(t)

    d W2(t) =dW2(t) + W1(t)dt

    therefore,

    dW1(t) =d W1(t)

    dW2(t) =d W2 W1(t)dt

    36

  • 8/10/2019 All Solutions for Yang

    37/48

    then

    W1(T)W2(T) = W1(0) W2(0) +

    T0

    W1(t)d W2(t) T0

    W1(t) W1(t)dt +

    T0

    W2(t)d W1(t)

    Now since the expectation of any Itos integration is 0, and W1(0) = 0 =W2(0),

    E[W1(T)W2(T)] =

    T

    0

    E[

    W1

    2

    (t)]dt= T

    0 tdt= T2

    2

    here we used the fact that E[ W12

    (t)] = Cov[ W1] =t.

    5.6 Exercise 5.14

    1. Since

    d

    ertX(t)

    = rertX(t)dt + ertdX(t)= rertX(t)dt + ert(t)dS(t) erta(t)dt + rert (X(t) (t)S(t)) dt=ert

    (t)

    rS(t)dt + S(t)dW(t) + adt

    a(t)dt r(t)S(t)dt

    =S(t)ert(t)dW(t)(5.8)

    contains no dt term, ertX(t) is a martingale.

    2. (a) Let Z(t) = W(t) + (r 122)t, thendY(t) =d

    eZ(t)

    =eZ(t)dZ(t) +

    1

    2eZ(t)dZ(t)dZ(t)

    =Y(t)

    d W(t) + (r 1

    22)dt

    +

    1

    2Y(t)2(t)

    =rY(t)dt + d W(t)

    (b) Sinced

    ertY(t)

    = rertY(t)dt + ertdY(t)= rertY(t)dt + ertY(t)dt + ertY(t)dW(t)=Y(t)ertdW(t)

    contains nodt term, ertY(t) is a martingale.(c) By Itos product rule,

    dS(t) =S(0)dY(t) +

    t0

    1

    Y(s)dsdY(t) + Y(t) a

    Y(t)dt + dY(t) a

    Y(t)dt

    =S(0) + t

    0

    1

    Y(s)ds dY(t) + adt since d Y(t)dt= 0

    =S(t)

    Y(t)dY(t) + adt

    =S(t)

    Y(t)

    rY(t)dt + Y(t)dW(t)

    + adt

    =rS(t)dt + S(t)dW(t) + adt

    37

  • 8/10/2019 All Solutions for Yang

    38/48

    which is (5.9.7) of Text.

    3. First

    E[S(T)|F(t)]

    =E[S(0)Y(T) + Y(T) T

    0

    a

    Y(s)

    ds

    |F(t)]

    =S(0)E[Y(T)|F(t)] + E

    Y(T)

    t0

    a

    Y(s)ds|F(t)

    + E

    Y(T)

    Tt

    a

    Y(s)ds|F(t)

    =S(0)E[Y(T)|F(t)] + E[Y(T)|F(t)] t0

    a

    Y(s)ds + a

    Tt

    E

    Y(T)

    Y(s)|F(t)

    ds

    (5.9)

    by taking out the what is known.

    Secondly, since ertY(t) is a martingale under P, we have

    E[Y(T)|F(t)] = E[Y(T)erT|F(t)]erT =Y(t)erterT =Y(t)er(Tt)

    And by the definition ofY(t), we have

    Y(T)

    Y(s) =exp

    W(T) W(s)

    + (r 12

    2)(T s)

    =exp

    W(T) W(s)

    e(r12

    2)(Ts)(5.10)

    Since W(T) W(s) is normally distributed with mean 0 and variance T s, by taking theexpectation on both sides of the above equation, we have

    E

    Y(T)

    Y(s)

    =E[e(

    W(T)W(s))]e(r12

    2)(Ts)

    =e12

    2(Ts) e(r 122)(Ts)=er(T

    s)

    (5.11)

    Now by substituting (5.10) and (5.11) into (5.9), we have

    E[S(T)|F(t)]

    =S(0)er(Tt)Y(t) + er(Tt)Y(t) t0

    a

    Y(s)ds + a

    Tt

    er(Ts)ds

    =er(Tt)S(t) + a Tt

    er(Ts)ds

    =er(Tt)S(t) +a

    r

    er(Tt) 1

    (5.12)

    4. Now we differentiate (5.12)

    d(E[S(T)|F(t)])=d

    er(Tt)S(t)

    +

    a

    rd

    er(Tt) 1

    =erTd

    ertS(t) aer(Tt)dt

    (5.13)

    38

  • 8/10/2019 All Solutions for Yang

    39/48

    Since

    d

    ertS(t)

    = rertS(t)dt + ertdS(t)= rertS(t)dt + ertrS(t)dt + ertS(t)dW(t) + aertdt

    =ert

    S(t)dW(t) + ae

    rt

    dt

    (5.14)

    by substituting (5.14) into (5.13), we have

    d(E[S(T)|F(t)])=erTd

    ert)S(t)

    + aer(Tt)dt

    =er(Tt)S(t)dW(t) + aer(Tt)dt aer(Tt)dt=er(Tt)S(t)dW(t)

    There is no dt term ind(E[S(T)|F(t)]). Therefore E[S(T)|F(t)] is a martingale under P.5. Since

    E

    er(Tt)(S(T) K)|F(t)

    =E

    er(Tt)S(T)|F(t)

    er(Tt)K by linearility=er(Tt)E[S(T)|F(t)] er(Tt)K by taking out what is known

    E

    er(Tt)(S(T) K)|F(t)= 0 implies that K= E[S(T)|F(t)], i.e.,F orS(t, T) = K= E[S(T)|F(t)] = F utS(t, T)

    6. According to the hedgeing strategy, the value of the portfolio at timet is governed by (5.9.7) ofText with (t) = 1, i.e.,

    dX(t) = dS(t) adt + r(X(t) S(t))dt

    Then (5.8) implies thatd

    ertX(t)

    = S(t)ertdW(t)

    By integrating both sides from 0 to T, we have

    erTX(T) X(0) = T0

    S(t)ertdW(t)dt

    =

    T0

    ert (dS(t) rS(t)dt adt) by (5.9.7) of Text

    = T

    0

    d ertS(t) T

    0

    aertdt

    =erTS(T) S(0) ar

    1 erT

    Associated with the fact that X(0) = 0, we can rewrite it as

    X(T) = S(T) S(0)erT ar

    erT 1

    39

  • 8/10/2019 All Solutions for Yang

    40/48

    By (5.12),

    S(0)erT +a

    r

    erT 1= F utS(0, T) = F orS(0, T)

    SoX(T) = S(T) F orS(0, T)

    Therefore eventually, at time T, she delivers the asset at the price F orS(0, T), which is exactly

    the amount that she needs to cover the debt in the money market X(T) S(T) = S(0)erT +ar

    erT 1.

    6 Chapter 6

    6.1 Exercise 6.1

    1. It is easy to seeZ(t) = e0 = 1 sincett (v)dW(v) = 0 =

    tt(b(v) 2(v)/2)dv. Let

    S(u) =

    ut

    (v)dW(v) +

    ut

    (b(v) 2(v)/2)dv

    . ThenZ(u) = eS(u) and

    dS(u) = (u)dW(u) + b(u) 2(u)/2 dvNow setf(t, x) =ex in Itos Formula (4.4.23) of text, then fx = fxx= ex and ft = 0. Then wehave

    dZ(u) =df(t, S(u))

    =eS(u)dS(u) +1

    2eS(u)dS(u)dS(u)

    =Z(u) [(u)dW(u) + b(u) 2(u)/2 dv]+ Z(u)

    1

    2 [(u)dW(u) + b(u) 2(u)/2 dv] [(u)dW(u) + b(u) 2(u)/2 dv]

    =Z(u)

    b(u) 2(u)/2

    +1

    22(u)

    du (sincedW(u)dW(u) = du)

    + Z(u) [(u) + 0] du (since dW(u)du= 0 =dudu)=b(u)Z(u)du + (u)Z(u)dW(u)

    2. It is clear that ifX(u) = Y(u)Z(u), then X(t) = Y(t)Z(t) = x 1 = x. Furthermore, by Itosproduct rule, dW(u)dW(u) = du and dW(u)du= 0 = dudu, we have

    dX(u) =d[Y(u)Z(u)]

    =Y(u)dZ(u) + Z(u)dY(u) + dZ(u)dY(u)

    = [bzdu + zdW(u)] Y(u) +

    a Z

    +

    ZdW(u)

    Z(u)

    + [bzdu + zdW(u)] a

    Z +

    ZdW(u)

    = [(a )du + dW(u)] + [bZY du + ZY dW(u)] +

    Z

    Z du + 0

    = [a + bZY + ] du + [+ Z Y] dW(u)= (a(u) + b(u)X(u)) du + ((u) + (u)X(u)) dW(u) (since X= Z Y)

    i.e. X(u) = Z(u)Y(u) solve the stochastic differential equation (6.2.4).

    40

  • 8/10/2019 All Solutions for Yang

    41/48

    6.2 Exercise 6.3

    1.d

    ds

    e

    s

    0 b(v)dvC(s, T)

    = b(s)e

    s

    0 b(v)dvC(s, T) + e

    s

    0 b(v)dvC(s, T) = e

    s

    0 b(v)dv

    2. Tt

    d

    ds

    e

    s

    0 b(v)dvC(s, T)

    ds=

    Tt

    es

    0 b(v)dvds

    eT

    0 b(v)dvC(T, T) e

    t

    0 b(v)dvC(t, T) =

    Tt

    es

    0 b(v)dvds

    By C(T, T) = 0,

    C(t, T) =

    Tt

    es

    0 b(v)dvds

    et

    0b(v)dv

    =

    Tt

    es

    0 b(v)dv

    et

    0b(v)dv

    ds=

    Tt

    est b(v)dvds

    3.

    A(T, T)

    A(t, T) = T

    t a(s)C(s, T) +2(s)

    2 C2(s, T) ds

    The result follows fromA(T, T) = 0.

    6.3 Exercise 6.4

    1.

    (t) = (t) ddt

    2

    2

    Tt

    C(u, T)dt

    =

    2

    2(t)C(t, T)

    (t) = 2

    2(t)C(t, T)

    2

    2(t)C(t, T)

    therefore,

    C(t, T) =(t) 22 (t)C(t, T)

    2

    2(t)

    = 2(t)

    2(t)

    (t)(t)

    C(t, T) = 2(t)

    2(t)+

    2

    2C2(t, T)

    2. Rearrange (6.5.14) into

    C 2

    2C2 =b C 1

    we have

    2(t)

    2(t)= b 2

    (t)2(t)

    1

    which implies (6.9.10)

    3. By the characteristic equation2

    b

    1

    2

    2 = 0, we have

    = b b2 + 22

    2 =

    b

    2

    Then(t) = a1e

    ( b2+)t + a2e( b2)t

    41

  • 8/10/2019 All Solutions for Yang

    42/48

    Indeed, by the facts (T) = 1 and (T) = 22 (T)C(T, T) = 0, we have a set of equations:a1e

    ( b2+)T + a2e( b2)T = 1

    a1(b2 + )e

    ( b2+)T + a2(b2 )e(

    b2)T = 0

    which imples a1 =

    b2

    2 e( b2+)T = 2

    4(r+ b2 )e( b2+)T

    a2 = + b22

    e(b2)T =

    2

    4(r b2 )e(

    b2)T

    so c1 = c2 = 2/4.

    4. (6.9.12) is straightforward from (6.9.11) by differentiatin w.r.t t. Again, since (T) = 22 (T)C(T, T) =0, we have

    c1 e0 c2 e0 = 0i.e. c1 = c2.

    5. By =

    b2 + 22/2, we have

    2 b2

    4 = (+ b

    2)( b

    2) =

    2

    2

    then

    (t) = c1e b2 (Tt)

    1b2 +

    e(Tt) 1b2

    e(Tt)

    =c1e b2 (Tt)

    b2

    2 + b24e(Tt)

    b2 +

    2 + b24e(Tt)

    =c1e b

    2 (Tt) 22

    ( b

    2 )e(Tt) + ( b

    2+ )e(Tt)

    =c1eb2 (T

    t) 2

    2 b e(Tt)

    e(Tt)

    2 + 2 e(Tt) + e(Tt)

    2 =c1e

    b2 (Tt) 22

    [b sinh((T t)) + 2cosh((T t))]

    and

    (t) = c1eb2 (Tt)

    e(Tt) e(Tt)

    = 2c1e b2 (Tt) sinh((T t))

    Therefore

    C(t, T) = 2(t)

    2(t)

    = 4c1e b2 (Tt) sinh((T t))

    2c1eb2 (Tt) 2

    2 [b sinh((T t)) + 2cosh((T t))]

    = sinh((T t))

    b2sinh((T t)) + cosh((T t))

    42

  • 8/10/2019 All Solutions for Yang

    43/48

    6. By the fact(T) = 1, we have

    c1e b2 (TT) 2

    2[b sinh((T T)) + 2cosh((T T))] = 1

    c12

    2 2= 1

    c1 =2

    4

    Eventually,

    A(t, T) = A(T, T) Tt

    A(s, T)ds

    = 0 Tt

    2a(s)2(s)

    ds

    =

    Tt

    a C(s, T)ds

    =a log((t))

    2/2

    = 2a

    2log

    2c12

    b sinh((T t)) + 2cosh((T t))eb2 (Tt)

    = 2a2

    log

    e

    b2 (Tt)

    b sinh((T t)) + 2cosh((T t))

    6.4 Exercise 6.5

    1. Sinceg(t, x1, x2) = E

    t,x1,x2h(x1(T), x2(T))

    we have for any 0 s t T similarly as Theorem 6.3.1 of Text,

    E

    h(X1(T), X2(T))F(t)= g(t, X1(t), X2(t))

    E

    h(X1(T), X2(T))F(s)= g(s, X1(s), X2(s))

    Then

    E

    g(t, X1(t), X2(t))F(s)= EE[h(X1(T), X2(T))|F(t)] F(s)

    =E

    h(X1(T), X2(T))F(t)

    =g(s, X1(s), X2(s))

    Similarly, Since

    ertf(t, x1, x2) = Et,x1,x2

    erTh(x1(T), x2(T))

    = erTEt,x1,x2 [h(x1(T), x2(T))]

    ertf(t, X1(t), X2(t)) is also a martingale.

    43

  • 8/10/2019 All Solutions for Yang

    44/48

    2. IfW1 and W2 are independent, dW1(t)dW1(t) = dt = dW1(t)dW1(t) anddW1(t)dW2(t) = 0. ByItos formula,

    dg(t, X1(t), X2(t))

    =gtdt + gx1dX1(t) + gx2dX2(t) +1

    2gx1x1dX1(t)dX1(t) + gx1x2dX1(t)dX2(t) +

    1

    2gx2x2dX2(t)dX2(t)

    =gtdt + gx1 [1dt + 11dW1(t) + 12dW2(t)]+ gx2 [2dt + 21dW1(t) + 22dW2(t)]+

    1

    2gx1x1[1dt + 11dW1(t) + 12dW2(t)] [1dt + 11dW1(t) + 12dW2(t)]

    + gx1x2 [1dt + 11dW1(t) + 12dW2(t)] [2dt + 21dW1(t) + 22dW2(t)]+

    1

    2gx2x2 [2dt + 21dW1(t) + 22dW2(t)]

    =

    gt+ 1gx1+ 2gx2+

    1

    2gx1x1

    211+

    212

    + gx1x2(1121+ 1222) +

    1

    2gx2x2

    221+

    222

    dt

    + [11gx1+ 21gx2 ] dW1(t) + [12gx1 + 22gx2 ] dW2(t)

    Since g(t, X1(t), X2(t)) is a martingale, there is no dt term in dg(t, X1(t), X2(t)). Therefore by

    setting thedtterm to zero in the above differential form, we will have (6 .6.3) of Text immediately.

    Smilarly by Itos formula,

    d

    ertf(t, X1(t), X2(t))

    =rertf+ ertft dt + ertfx1dX1(t) + ertfx2dX2(t)+ ert

    1

    2fx1x1dX1(t)dX1(t) + e

    rtfx1x2dX1(t)dX2(t) +1

    2ertfx2x2dX2(t)dX2(t)

    =ertrf+ ft+ 1fx1 + 2fx2+

    1

    2fx1x1

    211+

    212

    + fx1x2(1121+ 1222) +

    1

    2fx2x2

    221+

    222

    dt

    + ert [11fx1+ 21fx2 ] dW1(t) + ert [12fx1 + 22fx2 ] dW2(t)

    Since ertf(t, X1

    (t), X2

    (t)) is a martingale, there is no dt term in d [ertf(t, X1

    (t), X2

    (t))].(6.6.4) of Text follows immediately by setting the dt term to zero in the above differential form.

    3. IfdW1(t)dW2(t) = dt, dW1(t)dW1(t) = dt = dW1(t)dW1(t), then by Itos formula,

    dg(t, X1(t), X2(t))

    =gtdt + gx1dX1(t) + gx2dX2(t) +1

    2gx1x1dX1(t)dX1(t) + gx1x2dX1(t)dX2(t) +

    1

    2gx2x2dX2(t)dX2(t)

    =gtdt + gx1 [1dt + 11dW1(t) + 12dW2(t)]+ gx2 [2dt + 21dW1(t) + 22dW2(t)]+

    1

    2gx1x1[1dt + 11dW1(t) + 12dW2(t)] [1dt + 11dW1(t) + 12dW2(t)]

    + gx1x2

    [1dt + 11dW1(t) + 12dW2(t)]

    [2dt + 21dW1(t) + 22dW2(t)]

    +12

    gx2x2 [2dt + 21dW1(t) + 22dW2(t)]

    =

    gt+ 1gx1+ 2gx2+

    1

    2gx1x1

    211+

    212

    + gx1x2(1121+ 1222) +

    1

    2gx2x2

    221+

    222

    dt

    + [gx1x11112+ gx1x2(1122+ 1221) + gx2x22122] dt

    + [11gx1+ 21gx2 ] dW1(t) + [12gx1 + 22gx2 ] dW2(t)

    44

  • 8/10/2019 All Solutions for Yang

    45/48

    Since g(t, X1(t), X2(t)) is a martingale, there is no dt term in dg(t, X1(t), X2(t)). Thereforeby setting the dt term to zero in the above differential form, we will have (6.9.13) of Textimmediately.

    Smilarly by Itos formula,

    d ertf(t, X1(t), X2(t))= rertf+ ertft dt + ertfx1dX1(t) + ertfx2dX2(t)+ ert

    1

    2fx1x1dX1(t)dX1(t) + e

    rtfx1x2dX1(t)dX2(t) +1

    2ertfx2x2dX2(t)dX2(t)

    =ertrf+ ft+ 1fx1 + 2fx2+

    1

    2fx1x1

    211+

    212

    + fx1x2(1121+ 1222) +

    1

    2fx2x2

    221+

    222

    dt

    + ert [gx1x11112+ gx1x2(1122+ 1221) + gx2x22122] dt

    + ert [11fx1+ 21fx2 ] dW1(t) + ert [12fx1 + 22fx2 ] dW2(t)

    Since ertf(t, X1(t), X2(t)) is a martingale, there is no dt term in d [ertf(t, X1(t), X2(t))].(6.9.14) of Text follows immediately by setting the dt term to zero in the above differential form.

    6.5 Exercise 6.71. By the iterated conditioning, for 0 s t T, we have

    E

    ertc(t, S(t), V(t))F(s)=EertEer(Tt)(S(T) K)+F(t) F(s)

    =E

    erter(Tt)(S(T) K)+F(s)

    =E

    erT(S(T) K)+F(s)

    =ersE

    er(Ts)(S(T) K)+F(s)

    =ersc(s, S(s), V(s))

    Then since it is a martingale, the dt term in the differential d[ert

    c(t, S(t), V(t))] should be 0,d[ertc(t, S(t), V(t))]

    =ertrcdt + ctdt + csdS(t) + cvdV(t) +1

    2cssdS(t)dS(t) + csvdS(t)dV(t) +

    1

    2cvvdV(t)dV(t)

    =ertrc + ct+ csrS+ cv(a bV) +1

    2cssV S

    2 + csvV S +1

    2cvv

    2V

    dt

    + ert

    cs

    V S

    d W1(t) + ert

    cv

    V

    d W2(t)

    which is

    rc + ct+ csrs + cv(a bv) +12

    cssvs2 + csvvs +

    1

    2cvv

    2v= 0

    This is the same as (6.9.26) of text.

    2. To simplify the notations, we denotef=f(t, log s, v),g = g(t, log s, v) and their paritial deriva-

    45

  • 8/10/2019 All Solutions for Yang

    46/48

    tives as well. Then

    c(t,s,v) =sf(t, log s, v) er(Tt)Kg (t, log s, v)ct =sft er(Tt)Kgt rer(Tt)Kgcs=f+ sfx 1

    s er(Tt)Kgx 1

    s=f+ fx er(Tt)Kgx 1

    s

    cv =sfv er(Tt)Kgvcss=

    1

    sfx+

    1

    sfxx er(Tt)Kgxx 1

    s2

    csv=fv+ fxv er(Tt)Kgxv 1s

    cvv =sfvv er(Tt)KgvvThen the left handside of (6.9.26) of Text becomes

    ct+ rscs+ (a bv)cv+ 12

    s2vcss+ sv+1

    22vcvv

    =s ft+ rf+ rfx+ (a bv)fv+v

    2

    fx+v

    2

    fxx+ vfv+ vfxv+2v

    2

    fvv+ er(Tt)K

    gt+ rg rgx+ (a bv)gv+ v

    2gxx+ vgxv+

    2v

    2 gvv

    =rsf rer(Tt)Kg=rc

    which verifies (6.9.26) of Text.

    3. One method is to observe first thatf(t, X(t), V(t)) is a martingale, and take differentiation andthen setdt = 0 to get the equation.

    Here we apply the Two Dimensional Feynman-Kac Theorem (Exercise 6.5 of Text)directly 2 Nowby the definition ofdX(t) and dV(t),

    1 = r +12

    v , 11 =v, 12 = 0

    2 = a bv+ v , 21 = 0, 12 =

    v

    Then (6.9.13) yields

    ft+ (r+1

    2v)fx+ (a bv+ v)fv+ v

    2fxx+ vfxv+

    1

    22vfvv = 0

    Also for the boundary condition, in (6.6.1)of Text h(x, v) = IxlogK, then

    f(T , x , v) = IxlogK

    4. Here we still apply the Two Dimensional Feynman-Kac Theorem directly, by the definition ofdX(t) anddV(t),

    1 = r 12

    v , 11 =

    v, 12 = 0

    2 = a bv , 21 = 0, 12 =

    v

    2Here we cannot apply (6.6.3) or (6.6.4) of Text since they are for independent Brownian motions.

    46

  • 8/10/2019 All Solutions for Yang

    47/48

    Then (6.9.13) yields

    gt+ (r 12

    v)gx+ (a bv)gv+ v2

    gxx+ vgxv+1

    22vgvv = 0

    Also for the boundary condition, in (6.6.1)of Text h(x, v) = IxlogK, then

    gT,x,v) = IxlogK

    5. Apparently the functionc(t,x,v) defined by (6.9.34) satisfies the equation (6.9.26). Now by theprecise definition

    c(T , s , v)

    =sf(T, log s, v) er(TT)Kg(T, log s, v)

    =

    s K, if log s log K

    s 0 K 0, otherwise=(s K)+

    which implies that such c satisfies the boundary condition.

    7 Chapter 7

    8 Chapter 8

    9 Chapter 9

    10 Chapter 10

    11 Chapter 11

    11.1 Exercise 11.1

    Since

    M2(t) M2(s)=

    N2(t) N2(s) + 2(t2 s2) 2tN(t) + 2sN(s)=

    (N(t) N(s))2 + 2N(t)N(s) 2N2(s) + 2(t2 s2) 2t[N(t) N(s)] + 2N(s)(s t)=[N(t) N(s)]2 + 2N(s)[N(t) N(s)] + 2(t2 s2) 2t[N(t) N(s)] + 2N(s)(s t)

    we have

    E[M2(t) M2(s)F(s)]

    =E[[N(t) N(s)]2 + 2N(s)[N(t) N(s)] + 2(t2 s2)

    2t[N(t)

    N(s)] + 2N(s)(s

    t)F(

    s)]

    =2(t s)2 + (t s) + 2N(s) (t s) + 2(t2 s2) 2t (t s) + 2N(s)(s t)

    =2(t2 + s2 2ts + t2 s2 2t2 + 2ts) + (t s)=(t s)

    Therefore, for any 0 s t,

    47

  • 8/10/2019 All Solutions for Yang

    48/48

    1.

    E[M2(t)F(s)]

    =E[M2(t) M2(s) + M2(s)F(s)]

    =E[M2(t)

    M2(s)F(s)] + M2(s)=(t s) + M2(s)M2(s)

    i.e., M2(t) is submartingale.

    2.

    E[M2(t) tF(s)]

    =E[M2(t) M2(s) (t s) + M2(s) sF(s)]

    =E[M2(t) M2(s)F(s)] (t s) + M2(s) s

    =(t s) (t s) + M2(s) s=M2(s) s

    i.e., M2(t) t is martingale.