28
Almond Irrigation, Nutrition for High Yield and Stewardship Field Day Thursday June 16, 2011 Belridge, Kern County, California, USA Principal Investigators: Patrick Brown, Kenneth Shackel, Jan Hopmans, Bruce Lampinen, Blake Sanden, David Smart, Susan Ustin, and Michael Whiting Student Researchers Saiful Muhammad, Sebastian Saa Silva, Daniel Schellenberg, Andres Olivos, and Maziar M. Kandelous Funded by: United States Department of Agriculture, California Fertilizer Research Education Program (FREP) and Department of Food and Agriculture (CDFA) and Almond Board of California Sponsors and cooperators: Paramount Farming Company, Haifa Chemicals, Yara Fertilizers, Tessenderlo Kerley, Compass Minerals, PureSense, Soil Technology Inc., SQM, Bowsmith Irrigations, Irrometer, PMS, Toro Irrigations, Grundfos Pumps, Potassium Nitrate Association, NASA Student Airborne Research Program, and Mosaic.

Almond Irrigation, Nutrition for High Yield and

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

 

Almond Irrigation, Nutrition for High Yield and Stewardship

Field Day

Thursday June 16, 2011

Belridge, Kern County, California, USA

Principal Investigators:

Patrick Brown, Kenneth Shackel, Jan Hopmans, Bruce Lampinen, Blake Sanden, David Smart, Susan Ustin, and Michael Whiting

Student Researchers

Saiful Muhammad, Sebastian Saa Silva, Daniel Schellenberg, Andres Olivos, and Maziar M. Kandelous

Funded by:

United States Department of Agriculture, California Fertilizer Research Education Program (FREP) and Department of Food and Agriculture (CDFA) and Almond Board of California

Sponsors and cooperators:

Paramount Farming Company, Haifa Chemicals, Yara Fertilizers, Tessenderlo Kerley, Compass Minerals, PureSense, Soil Technology Inc., SQM, Bowsmith Irrigations, Irrometer, PMS, Toro Irrigations, Grundfos Pumps, Potassium Nitrate Association, NASA Student Airborne Research Program, and Mosaic.

Ac#vity  #1  –  Demand  es#ma#on  

Develop  phenology  and  yield  based  nutrient  demand  model  (Brown,  

Sanden,  Lampinen)  

Validate  ETa  models  (SEBAL,  NCAR-­‐WRF),  esFmate  orchard  water  needs  (UsFn,  

Sammis)  

InteracFve  effects  of  irrigaFon  and  nutrient  status  on  plant  water  use  and  plant  response  

(Shackel,  Brown,  Sanden)  Gaseous,  sub-­‐soil  N  

losses  (Smart,  Brown)  

Develop  ferFlizer  response  curve  (Brown,  Sanden,  

Lampinen)  

Remote  Sensing  of  yield,  phenology,  crop  development  (Slaughter,  Upadhyaya,  WhiFng)  

Physiological/soil  environmental  

controls  on  N  and  water  uptake  

(Shukla,  Lombardini)  

Modeling  of  crop  nutrient  and  water  demand  Climate/phenology  based  demand  modeling  

Water  (WhiFng,    Sammis,  Shackel)  Nutrient  (Brown,  Smart)  

FerFgaFon  Timing  and  Technology  (Sanden,  Brown)  

Ac#vity  #2  –  Status  determina#on  

Re-­‐evaluate  leaf  and  orchard  sampling  

methods  and  “CriFcal  Value”  concept  

(Brown,  Lampinen)  

Relate  ETa  to  plant  and  soil  water  status.    

(Shackel,  Smart,  Sanden,  Shukla)  

Evaluate  spectral  measurements  /  correlate  to  crop  status  

(WhiFng,  Lampinen,  Slaughter,  Upadhyaya)  

New  approaches  to  measure  and  predict  status.  

Sensing  Technologies  (Lampinen,  WhiFng)  N  and  water  modeling  in  pecan  and  almond  

(Sammis,  Brown,  )  

Model  solute  transport  (Hopmans,  Brown,  Kandelous,  Olivos)  

Determine  root  dynamics  (Brown,  Hopmans,  Olivos,  

Kandelous)  

PaVerns  of  root  growth,  N  and  water  uptake  in  Pecan  (Shukla,  Lombardini)  

Evaluate  soil  characterisiFcs  with  precision  sensing  and  

mapping  tools.  (Brown,  Sanden,  

STI  team)  

Two  Replicated  Trials  (A-­‐2011;  B&C-­‐2008)  

Paramount-­‐Belridge.  10  yo  50/50  NP:Monterey  

C: N and K Rate and Source-Drip

B: N and K Rate and Source: FJ

A:Fertigation Method/K source

RCBD: 15 tree plots with 6 replicate plots per treatment. 12

treatments. Individual tree (768 NP)

monitoring.

RCBD: 15 tree plots with 5

replicate plots per treatment. 7 treatments.

Individual tree (NP and M) monitoring.

You are Here

 

30 * * * * * * * * * * * * * * * * * * * * *29 * 48 * * 49 * 144 * * 145 * * 240 * * 241 * * 336 * *28 * * * * * * * * * * * * * * * * * * * * *27 * 47 * * 50 * 143 * * 146 * * 239 * * 242 * * 335 * *26 * * * * * * * * * * * * * * * * * * * * *25 * 46 * * 51 * 142 * * 147 * * 238 * * 243 * * 334 * *24 * * * * * * * * * * * * * * * * * * * * *23 * * * * * * * * * * * * * * * * * * * * *22 * * * * * * * * * * * * * * * * * * * * *21 * 45 * * 52 * 141 * * 148 * * 237 * * 244 * * 333 * *20 * * * * * * * * * * * * * * * * * * * * *19 * 44 * * 53 * 140 * * 149 * * 236 * * 245 * * 332 * *18 * * * * * * * * * * * * * * * * * * * * *17 * 43 * * 54 * 139 * * 150 * * 235 * * 246 * * 331 * *16 * * * * * * * * * * * * * * * * * * * * *15 * * * * * * * * * * * * * * * * * * * * *14 * 42 * * 55 * 138 * * 151 * * 234 * * 247 * * 330 * *13 * * * * * * * * * * * * * * * * * * * * *12 * 41 * * 56 * 137 * * 152 * * 233 * * 248 * * 329 * *11 * * * * * * * * * * * * * * * * * * * * *10 * 40 * * 57 * 136 * * 153 * * 232 * * 249 * * 328 * *9 * * * * * * * * * * * * * * * * * * * * *8 * * * * * * * * * * * * * * * * * * * * *7 * * * * * * * * * * * * * * * * * * * * *6 * 39 * * 58 * 135 * * 154 * * 231 * * 250 * * 327 * *5 * * * * * * * * * * * * * * * * * * * * *4 * 38 * * 59 * 134 * * 155 * * 230 * * 251 * * 326 * *3 * * * * * * * * * * * * * * * * * * * * *2 * 37 * * 60 * 133 * * 156 * * 229 * * 252 * * 325 * *1 * * * * * * * * * * * * * * * * * * * * *

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

30 * * * * * * * * * * * * * * * * * * * * *29 * 36 * * 61 * 132 * * 157 * * 228 * * 253 * * 324 * *28 * * * * * * * * * * * * * * * * * * * * *27 * 35 * * 62 * 131 * * 158 * * 227 * * 254 * * 323 * *26 * * * * * * * * * * * * * * * * * * * * *25 * 34 * * 63 * 130 * * 159 * * 226 * * 255 * * 322 * *24 * * * * * * * * * * * * * * * * * * * * *23 * * * * * * * * * * * * * * * * * * * * *22 * * * * * * * * * * * * * * * * * * * * *21 * 33 * * 64 * 129 * * 160 * * 225 * * 256 * * 321 * *20 * * * * * * * * * * * * * * * * * * * * *19 * 32 * * 65 * 128 * * 161 * * 224 * * 257 * * 320 * *18 * * * * * * * * * * * * * * * * * * * * *17 * 31 * * 66 * 127 * * 162 * * 223 * * 258 * * 319 * *16 * * * * * * * * * * * * * * * * * * * * *15 * * * * * * * * * * * * * * * * * * * * *14 * 30 * * 67 * 126 * * 163 * * 222 * * 259 * * 318 * *13 * * * * * * * * * * * * * * * * * * * * *12 * 29 * * 68 * 125 * * 164 * * 221 * * 260 * * 317 * *11 * * * * * * * * * * * * * * * * * * * * *10 * 28 * * 69 * 124 * * 165 * * 220 * * 261 * * 316 * *9 * * * * * * * * * * * * * * * * * * * * *8 * * * * * * * * * * * * * * * * * * * * *7 * * * * * * * * * * * * * * * * * * * * *6 * 27 * * 70 * 123 * * 166 * * 219 * * 262 * * 315 * *5 * * * * * * * * * * * * * * * * * * * * *4 * 26 * * 71 * 122 * * 167 * * 218 * * 263 * * 314 * *3 * * * * * * * * * * * * * * * * * * * * *2 * 25 * * 72 * 121 * * 168 * * 217 * * 264 * * 313 * *1 * * * * * * * * * * * * * * * * * * * * *

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

30 * * * * * * * * * * * * * * * * * * * * *29 * 24 * * 73 * 120 * * 169 * * 216 * * 265 * * 312 * *28 * * * * * * * * * * * * * * * * * * * * *27 * 23 * * 74 * 119 * * 170 * * 215 * * 266 * * 311 * *26 * * * * * * * * * * * * * * * * * * * * *25 * 22 * * 75 * 118 * * 171 * * 214 * * 267 * * 310 * *24 * * * * * * * * * * * * * * * * * * * * *23 * * * * * * * * * * * * * * * * * * * * *22 * * * * * * * * * * * * * * * * * * * * *21 * 21 * * 76 * 117 * * 172 * * 213 * * 268 * * 309 * *20 * * * * * * * * * * * * * * * * * * * * *19 * 20 * * 77 * 116 * * 173 * * 212 * * 269 * * 308 * *18 * * * * * * * * * * * * * * * * * * * * *17 * 19 * * 78 * 115 * * 174 * * 211 * * 270 * * 307 * *16 * * * * * * * * * * * * * * * * * * * * *15 * * * * * * * * * * * * * * * * * * * * *14 * 18 * * 79 * 114 * * 175 * * 210 * * 271 * * 306 * *13 * * * * * * * * * * * * * * * * * * * * *12 * 17 * * 80 * 113 * * 176 * * 209 * * 272 * * 305 * *11 * * * * * * * * * * * * * * * * * * * * *10 * 16 * * 81 * 112 * * 177 * * 208 * * 273 * * 304 * *9 * * * * * * * * * * * * * * * * * * * * *8 * * * * * * * * * * * * * * * * * * * * *7 * * * * * * * * * * * * * * * * * * * * *6 * 15 * * 82 * 111 * * 178 * * 207 * * 274 * * 303 * *5 * * * * * * * * * * * * * * * * * * * * *4 * 14 * * 83 * 110 * * 179 * * 206 * * 275 * * 302 * *3 * * * * * * * * * * * * * * * * * * * * *2 * 13 * * 84 * 109 * * 180 * * 205 * * 276 * * 301 * *1 * * * * * * * * * * * * * * * * * * * * *

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M * * * M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

30 * * * * * * * * * * * * * * * * * * * * *29 * 12 * * 85 * 108 * * 181 * * 204 * * 277 * * 300 * *28 * * * * * * * * * * * * * * * * * * * * *27 * 11 * * 86 * 107 * * 182 * * 203 * * 278 * * 299 * *26 * * * * * * * * * * * * * * * * * * * * *25 * 10 * * 87 * 106 * * 183 * * 202 * * 279 * * 298 * *24 * * * * * * * * * * * * * * * * * * * * *23 * * * * * * * * * * * * * * * * * * * * *22 * * * * * * * * * * * * * * * * * * * * *21 * 9 * * 88 * 105 * * 184 * * 201 * * 280 * * 297 * *20 * * * * * * * * * * * * * * * * * * * * *19 * 8 * * 89 * 104 * * 185 * * 200 * * 281 * * 296 * *18 * * * * * * * * * * * * * * * * * * * * *17 * 7 * * 90 * 103 * * 186 * * 199 * * 282 * * 295 * *16 * * * * * * * * * * * * * * * * * * * * *15 * * * * * * * * * * * * * * * * * * * * *14 * 6 * * 91 * 102 * * 187 * * 198 * * 283 * * 294 * *13 * * * * * * * * * * * * * * * * * * * * *12 * 5 * * 92 * 101 * * 188 * * 197 * * 284 * * 293 * *11 * * * * * * * * * * * * * * * * * * * * *10 * 4 * * 93 * 100 * * 189 * * 196 * * 284 * * 292 * *9 * * * * * * * * * * * * * * * * * * * * *8 * * * * * * * * * * * * * * * * * * * * *7 * * * * * * * * * * * * * * * * * * * * *6 * 3 * * 94 * 99 * * 190 * * 195 * * 286 * * 291 * *5 * * * * * * * * * * * * * * * * * * * * *4 * 2 * * 95 * 98 * * 191 * * 194 * * 287 * * 290 * *3 * * * * * * * * * * * * * * * * * * * * *2 * 1 * * 96 * 97 * * 192 * * 193 * * 288 * * 289 * *1 * * * * * * * * * * * * * * * * * * * * *

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Set 2 Fan Jet

Flat

Fl

at

Flat

Fl

at

Rep 3

Rep 4

Rep 5

Rep 2

Flat

Fl

at

Flat

Fl

at

Rep 1

Rep 3

Rep 5

Rep 6

N 200lb UAN K 200lb

N 350lb UAN K 200lb

N 350lb CAN K 200lb

K 200lb SOP N 275lb UAN

N 125lb UAN K 200lb

N 125lb UAN K 200lb

N 275lb UAN K 200lb

N 350lb UAN K 200lb

N 200lb CAN K 200lb

N 275lb CAN K 200lb

N 350lb CAN

N 125lb CAN K 200lb

N 275lb CAN K 200lb

N 275lb UAN

N 125lb CAN

N 125lb CAN K 200lb

N 125lb UAN K 200lb

N 350lb CAN K 200lb

N 200lb CAN K 200lb

N 125lb UAN K 200lb

N 200lb CAN K 200lb N 125lb CAN

K 200lb

N 200lb UAN

N 200lb UAN K 200lb

N 275lb CAN K 200lb N 350lb UAN

K 200lb

N 275lb UAN K 200lb

N 275lb UAN K 200lb

N 200lb UAN K 200lb

N 200lb CAN K 200lb

N 125lb CAN K 200lb N 200lb CAN

K 200lb

N 275lb CAN K 200lb

N 350lb UAN K 200lb

N 200lb UAN K 200lb

N 350lb CAN K 200lb

N 125lb UAN K 200lb

N 350lb UAN K 200lb

N 275lb CAN K 200lb

N 350lb CAN K 200lb

N 275lb UAN K 200lb

N 275lb UAN K 200lb

N 275lb CAN K 200lb

K 200lb SOP N 275lb UAN

K 200lb SOP N 275lb UAN

K 200lb SOP N 275lb UAN

K 200lb SOP N 275lb UAN

K 200lb SOP N 275lb UAN

K 200lb KCL N 275lb UAN

K 200lb KCL N 275lb UAN

K 200lb KCL N 275lb UAN

K 200lb KCL N 275lb UAN

K 200lb KCL N 275lb UAN

K 200lb KCL N 275lb UAN

K 100lb SOP, KTS N 275lb UAN

K 100lb SOP, KTS N 275lb UAN

K 100lb SOP, KTS N 275lb UAN

K 100lb SOP, KTS N 275lb UAN

K 100lb SOP, KTS N 275lb UAN

K 300lb SOP, KTS N 275lb UAN

K 300lb SOP, KTS N 275lb UAN

K 300lb SOP, KTS N 275lb UAN

K 300lb SOP, KTS N 275lb UAN

K 300lb SOP, KTS N 275lb UAN

Plot  B:  Same  Design  Replicated  in  drip  (Plot  C)  

 

Project  Summary:   It   has   been   several   decades   since   the   last   in-­‐depth   integrated   analysis   of   almond  

fertilization   and   irrigation   and   during   this   time   the   almond   industry   has   seen   tremendous   growth   in  

production   area,   significant   yield   increases   and   a   growing   interest   in   environmental   stewardship   and  

sustainability.   As   the   industry   grows   and   changes   there   is   a   need   to   continually   improve   the   efficiency   of  

management   of   irrigation   and   fertilization   so   that   economic   and   environmental   sustainability   can   be  

maintained.  To  optimize  the  use  of   irrigation  and   fertilizers   requires  1)  an  ability   to  accurately  measure  and  

estimate   the   amount   and   timing   of   nutrient   and  water   demanded   by   the   crop,   2)   an   understanding   of   the  

interactions  between  fertilizer  rate,   fertilizer  source,  and  application  technique  3)  an  understanding  of  plant  

response  to  irrigation  deficit  and  excess,  4)  an  understanding  of  the  basic  biology  of  the  tree,  specifically  the  

patterns   of   root   growth,   nutrient   uptake   and   plant   demand,   5)   an   ability   to   monitor   the   movement   and  

minimize  the  losses  of  nitrogen  and  water  from  the  system.  

The  projects  you  are  visiting  today  are  part  of  a  large  collaborative  effort  designed  to  address  each  of  

these  questions  and  to  provide  growers,  consultants,  regulators  and  educators  the  tools  they  need  to  ensure  

that  the  Californian  almond  industry  remains  profitable,  efficient  and  sustainable.  

 

SEVEN  STATIONS  REPRESENTING  12  PROJECTS  WILL  BE  PRESENTED  

Start  At  The  Station  Number  You  Are  Handed  as  You  leave  the  Tent  And  

Proceed  To  The  Next  Highest  Station  Every  19  Minutes.  

4  Stations  Then  Coffee:  3  Stations  Then  Lunch  

1.  Water  use  (ET)  &  plant  stress  guidelines  –  Blake  Sanden  (Kern  UCCE),  Ken  Shackel,  UCD  

2.  Learn  to  use  the  pressure  chamber,  hands  on  exercise  –  DeeAnn  Kroeker,  Kern  UCCE  

3.  Nutrient  budgets,  fertilizer  types  and  rate  responses  –  Patrick  Brown,  Saiful  Muhammad,  UCD  

4.  Early  season  sampling  and  new  critical  values  –  Brown,  Sebastian  Saa  Silva,  UCD  

5.  Spur  development,  light  and  canopy  potential  –  Bruce  Lampinen,  UCCE  Davis  

6.  Remote  sensing  and  spectral  imagery  as  future  tools  –  Mike  Whiting,  Susan  Ustin,  UCD  

7.  Nitrogen  management  &  fate:    Greenhouse  gases,  root  distribution  and  irrigation  impacts  –  Dave  Smart,  Daniel  Schellenberg,  Andres  Olivos,  UCD  

 

Fertigation: Case study of interaction of water and nutrient man-agement in almonds: 2008-2012 (Results from Blake Sanden, Kern UCCE) AKA: Advanced sensing and management technologies to optimize resource use in specialty crops: case studies of water and nitrogen in almonds under normal and resource-limited conditions Objectives (besides growing 5,000 lb/ac almonds!): 1. Document the amount of water applied to all the experimental plots of the Brown study (including the

collection of data related to ETc). 2. Monitor the effects of irrigation management on tree SWP at all sites. 3. For the southern San Joaquin Valley site (Sanden):

a) Quantify truly non-stressed almond water use, evapotranspiration (ET), using current meteorologi-cal energy balance instrumentation and soil moisture depletion.

b) Document the impacts / interaction of 5 nitrogen rate fertilizer treatments on kernel yield, soil moisture content and almond ET for microsprinkler and double-line drip irrigation systems.

FIELD DATA COLLECTION Ø Eddy covariance & surface renewal estimates of LE / ET, continuous. Ø Volumetric soil moisture: 48 neutron probe sites to 9 feet, metered site irrigation, weekly. 2 Pure-

Sense capacitance probes to 5 feet, continuous. Ø Soil moisture tension (3 sites), continous. Ø 80 stem water potential (SWP, pressure bomb) measurements, weekly Ø Irrigation application patterns, pressure, uniformity, as needed. Ø Soil salinity/ fertility, yearly. Ø 768 tree nut yields, trunk circumference yearly.

Table 1. Changes in soil salinity over three years.

Fan Jet Avg Fan Jet Avg Fan Jet Avg Fan Jet Avg2008 Spring 2008 Fall 2009 Fall 2010 Fall

SAMPLED 2/7-10/2008 SAMPLED 11/18-20/2008 SAMPLED 12/15-16/2009 SAMPLED 1/4-5/2011EC Cl NO3-N EC Cl NO3-N EC Cl NO3-N EC Cl NO3-N

dS/m meq/l ppm dS/m meq/l ppm dS/m meq/l ppm dS/m meq/l ppm0-18" 0.8 2.3 1.4 0-18" 0.8 3.0 2.0 0-18" 1.0 3.3 1.1 0-18" 0.6 0.7 1.318-36" 2.2 12.6 5.8 18-36" 1.7 9.1 1.2 18-36" 1.9 9.2 0.8 18-36" 0.9 1.9 0.7

4-5' 3.7 27.0 5.5 4-5' 4.6 30.2 7.2 4-5' 4.1 25.5 4.9 4-5' 5.0 24.1 11.96-7' 2.1 12.4 2.2 6-7' 3.0 19.1 2.3 6-7' 3.4 22.4 7.3 6-7' 5.0 34.9 15.98-9' 1.8 4.4 2.3 8-9' 2.0 5.5 2.5 8-9' 1.9 5.6 2.6 8-9' 3.1 14.6 10.2

Drip Avg Drip Avg Drip Avg Drip AvgEC Cl NO3-N EC Cl NO3-N EC Cl NO3-N EC Cl NO3-N

dS/m meq/l ppm dS/m meq/l ppm dS/m meq/l ppm dS/m meq/l ppm0-18" 1.9 2.7 2.7 0-18" 0.9 2.2 2.1 0-18" 1.3 4.1 1.8 0-18" 1.0 2.0 2.018-36" 2.2 13.1 0.6 18-36" 0.7 2.4 1.0 18-36" 1.2 4.4 0.6 18-36" 1.1 2.6 0.7

4-5' 3.5 25.2 0.4 4-5' 2.5 12.1 1.7 4-5' 2.4 10.7 0.8 4-5' 2.8 9.6 1.76-7' 2.9 22.7 3.9 6-7' 3.8 25.3 5.2 6-7' 2.8 16.0 0.5 6-7' 3.8 22.6 2.88-9' 1.6 7.6 5.0 8-9' 3.1 19.0 4.7 8-9' 3.0 16.9 3.3 8-9' 3.9 25.5 7.8

4 fertigations/yr: 20% Bloom, 30% April, 30% June, 20% post-harvest. Nitrogen, UAN32, po-tassium (winter applied banded K2SO4, and KTS fertigated)

Above data for 5 fertilizer rates, 4 reps N (lb/ac) K (lb/ac) 1. 125 200 2. 200 200 3. 275 200 (125-SOP, 75-KTS) 4. 275 300 (180-SOP, 125-KTS) 5. 350 200

1

Actual almond crop ET (as measured using eddy covariance heat flux) proved highly variable in the winter, early spring and fall of each season when compared to the Belridge CIMIS estimate of standard grass ET (ETo). Dividing the crop ET by ETo gives a crop coefficient value (Kc) that is assumed to be similar for all plantings of that crop in a like climate zone. The three years of Kc values for the fertigation trial are plotted below (Fig. 1). Large swings in Kc from 0.4 to 1.4 occur during the cool season because

ETo may be only 0.01 to 0.06”/day, but note that from mid May to mid August (Non-pariel harvest) all years have good agreement with Kc values running from 1.0 to 1.2. ETo can reach 0.30” during this time with measured almond ET as high as 0.35”/day.

Figure 2 compares 3 almond Kc curves on a biweekly basis. The lower one is the old UC almond curve from the 1960’s, with a Kern County “normal year” ET of 42 inches with a peak Kc of 0.95. The next curve is the Sanden model estimate from irrigation monitoring demonstrations in more than 50 almond blocks over 12 years at 52 inches and a peak Kc of 1.08. The top curve is not as smooth because it uses

the actual measured aver-age Kc values from March 2008 through December 2010 (Fig.1), for a final “normal year” ET of 60 inches and a peak Kc of 1.19. The or-chard is irrigat-ed with 2, A-40 Bowsmith Fan-jets per tree (21x24 foot spacing) planted as alternating Nonpareil and

Monterey. Note the dip in the Kc value for the end of August from harvest irrigation cutoff stress.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Bi-w

eekl

y Al

mon

d Cr

op C

oeffi

cien

t (Kc

)

Older Published KcSanden SSJV Kc2008 - 10 Measd Kc

Avg Kc 4/1 - 11/15 Calculated Avg ET Older Avg Kc = 0.81 42.2 in (4/1 - 11/15) Sanden Avg Kc = 0.93 52.3 in (year)Measured Avg Kc = 1.05 60.4 in (year)

(Using CIMIS Zone 15 "Historic Eto" = 57.9 in)

Comparison of “old” almond crop Kc values and Kern data

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1/1 1/29 2/26 3/26 4/23 5/21 6/18 7/16 8/13 9/10 10/8 11/5 12/3 12/31Wee

kly

Mea

sure

d Ed

dy C

ovar

ianc

e Cr

op C

oeffi

cien

t (Kc

)

2008: 52.8 in2009: 61.5 in2010: 54.9 in

Comparison of 3 years of mature almond crop coefficients geneed from EDDY COVARIANCE heat flux estimates of crop ET divided by the modified Penman ETo from the Belridge CIMIS station #146 1.5 miles due west of orchard. (2008 ET measured 3/19to 11/11. 2009 and 2010 are full year.)

Weekly crop coefficient values (Kc) for 2008-2010

Fig. 2 Biweekly almond crop coefficient curves.

Fig. 1 Weekly Kc values for all years

WHAT’S THE BOTTOM LINE ON KERNAL YIELD: does 60 inches of ET produce more lb/ac than 52” ET?

(NP ET for 2008 is for 2/7 to 11/17)2008

Treatment(N-K lb/ac)

125-200 -- -10.2 ab -- 12.6 a -- 55.3 a -- 3301 ab200-200 -9.6 a -9.7 b 16.8 a 14.9 b 54.5 a 56.1 a 3260 a 3360 b275-200 -8.5 ab -10.1 ab 17.4 ab 14.7 ab 57.3 a 57.7 a 3997 b 3338 ab275-300 -8.4 b -10.3 a 16.8 b 12.9 ab 55.9 a 55.3 a 3839 ab 3370 a350-200 -9.5 ab -10.0 ab 15.4 ab 13.9 ab 56.2 a 55.6 a 3518 ab 3963 ab

AVERAGE -9.0 -10.0 16.6 13.8 55.9 56.0 3653 3467LSD 0.05 1.1 0.6 2.3 2.3 4.8 2.5 715 517

(NP ET for 2009 is for 1/27 to 12/2)2009

Treatment(N-K lb/ac)

125-200 -9.6 a -10.5 ab 18.0 a 14.2 a 54.9 a 56.9 a 2722 a 3027 ab200-200 -9.3 ab -10.4 b 18.2 a 17.1 b 58.2 a 57.6 a 2642 a 3005 a275-200 -8.9 b -11.1 a 18.8 a 15.8 ab 60.5 a 58.3 a 3524 b 3164 abc275-300 -8.3 c -11.0 ab 18.6 a 14.2 a 59.2 a 57.0 a 3572 b 3783 c350-200 -9.7 a -11.0 ab 15.3 a 14.9 ab 58.3 a 56.5 a 3727 b 3858 bc

AVERAGE -9.2 -10.8 17.8 15.2 58.2 57.3 3237 3367LSD 0.05 0.6 0.7 6.2 2.7 6.9 3.5 752 844

(NP ET for 2010 is for 1/1 to 12/6 )2010

Treatment(N-K lb/ac)

125-200 -9.8 a 11.1 a 15.9 ab 14.4 a 56.8 a 55.5 a 3565 a 3280 a 2865 a 2909 a200-200 -9.7 a 11.9 b 17.2 b 15.1 a 57.0 a 54.4 a 3779 ab 3591 ab 3453 b 3405 b275-200 -9.7 a 12.5 b 17.7 b 16.2 a 56.6 a 55.0 a 4266 bc 3914 bc 3765 bc 3813 bc275-300 -10.1 a 12.1 b 16.7 ab 14.5 a 57.5 a 55.1 a 4069 cd 3804 bc 3844 bc 3806 bc350-200 -9.7 a 11.9 b 14.6 a 15.3 a 56.4 a 55.0 a 4717 d 4165 c 4064 c 3924 c

AVERAGE -9.8 11.9 16.4 15.1 56.9 55.0 4079 3751 3598 3571LSD 0.05 0.5 0.6 2.5 2.9 3.7 3.3 457 415

Trial Whole Plot Kernal Yield (lb/ac)

Drip Fanjet

Drip Fanjet Drip Fanjet

Stem Water Potential (bars)

Soil Water Content to 9 feet (in)

Cumulative Neutron Probe ET (in) Final Kernal Yield (lb/ac)

Stem Water Potential (bars)

Soil Water Content to 9 feet (in)

Cumulative Neutron Probe ET (in) Final Kernal Yield (lb/ac)

Drip Fanjet

Drip FanjetDrip Fanjet

Drip Fanjet

Stem Water Potential (bars)

Soil Water Content to 9 feet (in)

Cumulative Neutron Probe ET (in) Final Kernal Yield (lb/ac)

Drip Fanjet Drip Fanjet

FanjetDrip Fanjet Drip Fanjet Drip Fanjet Drip

3 years of water/yield data: only N fertilizer rate made

a significant difference.

The table above describes the results from 40 different neutron probe site trees (20 in the micro-sprinkler set and 20 in the double-line drip set) for UAN32 treatments. There is no difference in individual tree ET due to N.

The 125 lb/ac N rate produced a signifi-cantly lower kernel yield compared to the 350 lb/ac N rate with the 275 lb N rate trending lower but not statistically signifi-cant. We attempt to irrigate all trees with the same amount of water, but irrigation system and tree vigor non-uniformity produced annual individual tree ET esti-mates of 51 to 63 inches for all years. There was absolutely no correlation of tree yield with tree ET above 51 inches of almond ET. Finally, neutron probe tree yields were about 200 to 600 lb/ac higher than “whole plot” (15 trees/plot) yields – probably due to the fact that no “weak” trees are used for neutron probe monitor-ing while there is generally one or moreweak/barked trees in a plot.

1500

2000

2500

3000

3500

4000

4500

5000

5500

50 52 54 56 58 60 62 64Season-Long Soil Water Depletion ET (in)

Ker

nal Y

ield

(lb/

ac)

200820092010

Fig. 3. Correlation of indi-vidual tree ET & yield

Can we manage irrigation from outer space by measuring ET? Ken Shackel, Blake Sanden, Rick Snyder, Ted Sammis, Sam Prentice, Gerardo Spinelli

Currently, daily satellite data is available to the public that, in theory, can be used to detect water stress by remotely measuring actual orchard evapotranspiration (ETa) and comparing Eta to reference evapotranspiraiton (ETo). Stress is indicated if the ratio (ETa/ETo) is less than the value of the fully-irrigated crop coefficient (Kc). We are taking advantage of the fact that ETo, ETa, and plant-based stress (pressure bomb, SWP) measurements are all routinely made as part of this SCRI project, and we have been cooperating with a climatologist at NMSU who has developed a program to remotely measure ETa with satellite data and calculate a water stress index.

Both orchard ET and remotely sensed ET showed a close relation to reference ET (ETo), with a seasonal peak in July.

There was a good correlation between orchard and remotely sensed ETa, but a poor correlation when the ratio of (ETa/ETo) was calculated. This was to some extent expected

because ratios can be more variable than absolute values, but based on this information, we also expect that measured ETa would be the more sensitive indicator of stress.

In 2009, there were periods in late May, early July, and around harvest/postharvest, when the trees of this orchard were significantly below the fully irrigated (“baseline”) SWP values, and hence under some stress, but there was no clear reduction in the (ETa/ETo) ratio corresponding to these periods. The same result, but with more variability, was found when (ETa/ETo) was calculated from satellite data (not shown).

SWP appears to be a more sensitive indicator of stress than satellite or orchard ETa. For 2009 there was decline in SWP with days after irrigation, which was most clear when the data was expressed as bars below baseline and mm of ETa since irrigation. At peak ETa, 45 mm corresponds to about 7 days, and a drop in SWP of about 5 bars from baseline. Since mid-summer baseline is about -9 bars, this would give a total SWP value of about -14 bars. This level of SWP only occurred a few times during the 2009 season. In previous almond research, we have found about a 50% reduction in stomatal opening associated with this level of stress, but the effect on tree productivity of this level of temporary stress at the end of an irrigation cycle has not been determined. We have however, found about a 20% reduction in kernel size associated with a chronic difference of -5 bars throughout the season, so a yield effect should not be ruled out.. We will be conducting tests in 2011 to determine whether leaf photosynthesis is reduced by stress at the end of the irrigation cycle, and whether orchard ETa is maintained under the same conditions. If this is the case, it indicates that canopy photosynthetic water use efficiency may be reduced by mild stress, rather than increased, as is often assumed to be the case.

Nutrient  Budget  approach  to  Nutrient  Management  in  Almond  Saiful  Muhammad  and  Patrick  H.  Brown  

Plant  Sciences,  University  of  California-­‐Davis  [email protected]  

Background:  In  Almond  and  most  fruit  trees  nutrient  management  has  been  based  on  leaf  sampling  and  critical  values.  The  critical  value  is  the  nutrient  concentration  in  a  standard  leaf  sample  at  a  specific  time  in  the  season  above  which  no  further  response  to  nutrient  addition  can  be  expected.  Critical  values  are  ideally  developed  on  the  basis  of  careful  experimentation  where  the  relationship  between  yield  and  nutrient  concentration  is  closely  monitored.  While  leaf  analysis  is  useful  to  identify  nutrient  deficiencies  and  to  provide  an  ongoing  record  of  crop  response,  the  methodology  has  some  limitations:  

• While  leaf  analysis  can  be  used  to  monitor  changes  over  time  and  identify  If  a  particular  nutrient  is  deficient,  it  cannot  provide  information  on  how  much  nutrient  is  required  by  the  crop.  

• Leaf  tissue  analysis  is  expensive  and  slow  and  often  difficult  to  interpret.  

• Leaf  tissue  analysis  is  reactive  and  cannot  be  used  to  predict  nutrient  demand  or  schedule  fertilizations.  

 Approach:  Development  Of  A  Nutrient  Budget  Approach  To  Fertilizer  Management.    In  many  high  value  crops  nutrient  budgets  have  been  developed  in  which  nutrient  demand  for  a  given  crop  yield  are  determined  and  used  to  estimate  fertilization  rates.    This  approach  is  based  upon  the  premise  that  a  given  yield  removes  a  specific  quantitiy  of  nutrient  from  the  field  and  that  fertilization  should  aim  to  replace  that  removal  with  as  great  an  efficiency  as  possible.    This  experiment  aims  to  develop  a  nutrient  budget  for  almond  based  on  the  expected  yield  and  tree  phenology  and  to  determine  the  effect  of  different  nitrogen  and  potassium  rates  and  sources  on  tissue  nutrient,  yield  and  nutrient  export  from  the  orchard.    Experimental  Design  (Table  1):  The  experiment  has  been  set  up  under  fan  Jet  and  drip  irrigations.  There  are  four  nitrogen  rates  ‘125,  200,  275  and  350lb/ac’  nitrogen  and  two  sources  of  nitrogen  as  Urea  Ammonium  Nitrate  32  (UAN  32)  and  Calcium  Ammonium  Nitrate  17  (CAN  17).  Three  potassium  rates  ‘100,  200  and  300lb/ac’  and  three  potassium  sources  ‘Sulphate  of  Potash  (SOP)’,  ‘60%  SOP+40%  Potassium  Thiosulfate  (KTS)’  and  ‘Potassium  Chloride  (KCl)’.  The  entire  SOP  applied  as  granular  in  December-­‐January  and  the  remaining  potassium  and  all  nitrogen  fertigated  in  four  fertigation  cycles  in  February  (before  bloom),  early  April,  mid  June  and  after  harvest  in  September-­‐October  at  20%,  30%,  30%  and  20%  respectively.    Leaf  samples  were  collected  four  times  and  fruit  samples  were  collected  five  times  during  the  season  from  768  individual  trees.  Trees  were  individually  harvested.  

 

3

Table  1.  Fertilization  treatments  

Treatment   N  source   N  amount  (lbs/ac)  

K  source   K  amount  (lbs/ac)  

A   UAN32   125   60%  SOP  /  40%  KTS   200  B   UAN32   200   60%  SOP  /  40%  KTS   200  C   UAN32   275   60%  SOP  /  40%  KTS   200  D   UAN32   350   60%  SOP  /  40%  KTS   200  E   CAN17   125   60%  SOP  /  40%  KTS   200  F   CAN17   200   60%  SOP  /  40%  KTS   200  G   CAN17   275   60%  SOP  /  40%  KTS   200  H   CAN17   350   60%  SOP  /  40%  KTS   200  I   UAN32   275   60%  SOP  /  40%  KTS   100  J   UAN32   275   60%  SOP  /  40%  KTS   300  K   UAN32   275   100%  SOP   200  L   UAN32   275   100%  KCl   200  

 Results  Yield.  Significant  effect  of  nitrogen  rates  were  observed  on  yield  in  2008,  2009  and  2010.  N  source  did  not  alter  yield  response  (Table  2).  No  significant  effect  of  K  rate  on  kernel  yield  has  been  observed  however  this  may  occur  in  2011  as  leaf  K  values  are  now  below  the  CV  at  the  100  lb  K  rate  (fig  2).  Potassium  sources  have  shown  significant  effect  on  yield  under  fan  jet  irrigation  (Table  3).  Kernel  yield  was  maximum  using  SOP+KTS  as  K  source  at  200lb/ac.    Table  2.  Effect  of  nitrogen  rate  and  source  on  plot  mean  Kernel  yield  (lb/ac)  in  2009  and  2010.  Yield  not  connected  by  the  same  letters  are  significantly  different.  

Kernel  Yield  2009  (lb/ac)  N  

(lb/ac)  UAN  32     CAN  17  

125   200   275   350   125   200   275   350  Drip    2,731   2,961   3,206   3,517   2,610   2,620   3,050   3,444       c   bc   b   a   c   c   b   a  Fan  Jet   2,828     3,088     3,296     3,325     3,087     3,138     3,309     3,218         b   ab   a   a                  

Kernel  Yield  2010  (lb/ac)  N  

(lb/ac)  UAN  32     CAN  17  

125   200   275   350   125   200   275   350  Drip   2865   3,452      3,765     4,064     2,622     3,313     3,728     3,960         c   b   ab   a   c   b   a   a  Fan  Jet   2909   3,405     3,813     3,924     2,990     3,336     4,172     3,866         c   b   ab   a   b   b   a   a      

Table  3.  Effect  of  potassium  rate  and  source  on  Kernel  yield  (lb/ac).  Yield  not  connected  by  the  same  letters  are  significantly  different.    

Kernel  Yield  2010  (lb/ac)  K  

(lb/ac)  K  rate  (SOP+KTS)   K  Source  

100   200   300   SOP+KTS   SOP   KCl  Drip   3,829     3,785     3,844     3,659     3,649     3,583                                Fan  Jet   3,835     3,813     3,806     3,829     3,758     3,353                     a   a   b      Leaf  and  Tree  Nutrients.  Changes  in  leaf  N  (fig  1)  and  K  (fig  2)  concentrations  over  the  year  (2010)  are  shown.  Total  tree  nutrient  content  in  the  harvested  fruits  for  N  (fig  3)  and  K  (fig  4)  are  shown.  More  than  80%  of  the  nitrogen  was  accumulated  in  the  fruit  by  late  June,  while  potassium  accumulation  in  the  fruit  continued  until  harvest.  N  rate  changes  N  removal  due  to  yield  effects  and  higher  N  in  harvested  fruit.  Over  the  three  year  period  at  the  275  lb  N  rate  a  1000lbs  kernel  yield  exports  198lbs  of  N  and  207lbs  of  K  respectively.    Nitrogen  Use  Efficiency:  The  efficiency  of  N  use  was  determined  by  dividing  total  applied  N  by  total  removed  N.    In  this  environment  we  are  seeing  very  little  N  leaching  (verified  by  soil  sampling)  and  low  levels  of  gaseous  N  loss  (see  station  #3  at  this  field  day).  Three  year  averaged  NUE  for  the  respective  treatments  (FJ  only)  are  shown  in  Figure  5.    An  apparent  NUE  of  greater  than  100%  suggests  that  the  tree  and  soil  N  reserves  are  being  depleted  that  tree  growth  and  yield  is  being  compromised.    

     Fig  1.  Leaf  nitrogen  content  from  N  rate  treatment  overtime  under  fan  jet  irrigation  

 

   Fig  2.  Leaf  potassium  content  from  K  rate  treatment  overtime  under  fan  jet  irrigation  

Leaf  nitrogen  content  declined  over  the  season  for  all  N  rate  treatments  while  leaf  potassium  content  declined  for  K  rate  100lb/ac  and  remained  unchanged  for  K  rate  300lb/ac  

   Fig  3.  Fruit  nitrogen  and  potassium  removal  by  1000lbs  kernel  from  N  and  K  rates  under  Fan  Jet  Irrigation  More  than  80%  of  the  nitrogen  accumulated  in  the  fruit  by  mid  June,  while  potassium  accumulation  continued  until  harvest.    

 Fig.  4.  Nitrogen  use  efficiency  of  nitrogen  rate  treatments  under  fan  jet  irrigation  averaged  2008-­‐2010.    Nitrogen  use  efficiency  was  high  for  the  low  nitrogen  rate  suggesting  that  production  was  supported  at  the  expense  of  soil  and  plant  reserves  and  the  fruit  yield  from  the  low  N  rates  is  expected  to  decline  in  the  subsequent  years.  

Leaf  Nutrient  Sampling  Updates  Sebastian  Saa,  Patrick  Brown,  Emilio  Laca  

Plant  Sciences,  University  of  California-­‐Davis  Contact:  [email protected]  

   Preliminary  Results:  (this  is  year  four  of  a  five  year  project,  the  following  guidelines  may  be  amended  as  new  results  become  available.    We  welcome  your  ideas  and  experiences.)    

• New  Guidelines  For  Early  Season  Leaf  Nutrient  Sampling  For  California  Almond  Orchards  • New    Approaches  for  Almond  Tissue  and  Field  Sampling    • Evaluation  and  Improvement  of  Leaf  Critical  Values  and  Interpretation  Guidelines.  

 Introduction:    This  research  is  based  upon  the  results  of  a  survey  of  almond  growers  and  consultants  in  California  conducted  in  2007  that  suggested  that  leaf  sampling  and  comparison  with  established  standards  were  not  fully  meeting  grower  needs.  To  address  these  concerns  this  current  project  is  designed  to  provide  new  information  on:    

• Early  season  leaf  analysis  protocols  and  the  relationship  between  current  leaf  sampling  protocols,  new  leaf  sampling  protocols,  and  yield.    

• The  use  of  fruiting  spur  leaf  analysis  as  a  means  to  determine  almond  tree  nutrient  status,  nutrient  demand  and  possible  response  to  fertilization.    

• To  characterize  nutrient  variability  between  months,  years  and  within  orchards  so  that  tissue  sampling  can  become  more  robust  and  interpretable.  

Results  &  Conclusions:  

• Fruiting  spurs  can  exhibit  nutrient  deficiencies  that  can  limit  photosynthesis  even  when  non-­‐fruiting  leaves  on  the  same  tree  may  have  “adequate”  leaf  concentrations  (Figure  1).    

• This  observation  and  statistical  analysis  suggest  that  fruiting  spurs  may  be  better  indicators  of  tree-­‐nutrient-­‐status  than  non-­‐fruiting  spurs.  

• Some  existing  critical  values  may  be  incorrect  (like  S),  others  appear  to  be  correct  (N)  and  some  remain  uncertain  (K).      

• July-­‐nitrogen-­‐content  (and  likely  other  nutrients)  can  be  well  predicted  with  an  early  (April)  sampling  (figure  2).    

• April  leaf  sampling  can  be  used  to  effectively  predict  the  percentage  of  trees  that  will  be  nitrogen  limited  in  July  (figure  2).  

• Variability  of  nitrogen  and  other  elements  within  four  orchards  over  4  years  has  been  characterized  and  used  to  determine  how  many  tissue  samples  must  be  collected  to  reliably  determine  orchard  nutrient  status.    

o It  is  feasible  to  sample  orchards  for  N  status  and  to  use  that  value  to  prescribe  management.  

o However,  for  some  nutrients  (K  and  Mn)  it  is  NOT  feasible  to  sample  orchards  for  nutrient  status  and  to  use  that  value  to  prescribe  management  except  when  trees  are  exhibiting  clear  deficiency  (Figure  3).    

4

Take  Home  Message:  

• A  new  protocol  based  on  sampling  leaves  from  fruiting  spurs  during  April-­‐May  will  be  finalized  in  2011  and  made  available  to  growers  in  2012.  

• For  those  wishing  to  pre-­‐validate  this  approach  you  should  collect  April  samples  from  leaves  of  fruiting  spurs  and  include  analysis  of  eleven  essential  elements  (N-­‐P-­‐K-­‐B-­‐Zn-­‐Ca-­‐Mn-­‐Mg-­‐Fe-­‐S-­‐Cu).  

o This  approach  can  then  be  used  to  provide  your  own  correlation  with  July  nitrogen  content.  Sharing  these  results  with  us  ([email protected])  will  strengthen  our  model  development.  

• To  obtain  a  meaningful  estimate  of  average  orchard  leaf  nitrogen  concentrations  using  current  methodology,  at  least  4  independent  samples  should  be  collected  from  each  orchard  (4  samples  taken  from  discrete  trees  or  groups  of  trees  and  analyzed  separately).    The  average  of  these  4  trees  can  then  be  used  to  determine  field  N  status.  

• In  most  moderately  uniform  orchards,  our  multi-­‐site  and  multi-­‐year  analysis  demonstrates  that  a  July  leaf  nitrogen  value  of  2.4%  in  non  fruiting  leaves  indicates  that  95%  of  all  trees  in  your  orchard  are  above  the  critical  value  (CV),  while  a  July  leaf  N  value  of  2.3%  in  non  fruiting  leaves  suggests  that  85%  of  all  trees  will  be  above  the  critical  value  (CV).      

o Please  Note:    A  tree  that  is  below  the  critical  value  of  2.2%  has  the  potential  for  reduced  yield  however  the  extent  of  that  lost  yield  is  not  yet  quantified.  

• July  leaf  analysis  for  K  and  Mn  provide  little  useful  information  except  when  clearly  deficient.  Further  analysis  of  this  problem  is  underway.  

Selected  Results:  

Figure  1:  Nutrient  relationship  between  non-­‐fruiting  (NF),  one  fruited  spurs  (F1)  and  double  fruited  spurs  (F2)  and  their  consequences  on  photosynthesis.    

 

The  figure  above  shows  the  trends  in  tissue  nitrogen  concentration  over  time  in  leaves  from  non-­‐fruiting,  single  fruited  and  double  fruited  spurs.    July  nitrogen  concentrations  of  2.4%  or  lower  typically  result  in  impaired  photosynthesis  in  the  F2  leaves  at  the  end  of  the  season.    The  importance  of  this  phenomenon  in  yield  sustainability  is  being  examined.    

 

Figure  2:  Prediction  of  non  fruiting  (NF)  leaf  N  concentrations  in  July  from  double  fruited  (F2)  spur  leaves  collected  in  April.  Estimation  of  field  average  tissue  N  concentrations  from  April  F2  analysis.  

                     

Analysis  of  tissue  concentrations  of  11  essential  plant  nutrients  in  F2  leaves  collected  in  April,  it  is  possible  to  estimate  July  NF  leaf  concentrations  with  a  high  degree  of  accuracy  (compare  July  N  Predicted  against  July  N  Observed  at  each  of  4  sites  over  3  years).    Additionally,  knowledge  of  within  orchard  variability  allows  for  April  sampling  to  be  used  to  determine  the  %  of  trees  that  may  be  N  deficient  in  July.    This  approach  will  be  further  refined  to  provide  an  estimate  of  yield  loss.  

 

Figure  3:  Number  of  independent  leaf  samples  required  to  estimate  the  true  mean  of  a  particular  element  in  100  acre  orchard  monitoring.  

 

Leaf  sampling  is  only  of  value  if  enough  independent  samples  are  collected  to  represent  the  nutrient  status  of  the  orchard  as  a  whole.    Based  upon  12  site  x  year  analyses  of  moderately  uniform  and  good  producing  orchards  we  have  derived  the  minimum  sampling  sizes  required  to  effectively  estimate  orchard  nutrient  status  with  a  given  degree  of  confidence.    Thus,  4  independently  collected  and  analyzed  leaf  samples  can  provide  an  estimate  of  average  field  N  status  with  an  85%  confidence  level.  In  contrast  22  and  242  leaf  samples  would  be  required  to  predict  field  average  K  and  Mn  concentrations  with  85%  confidence.    

Infrared  thermometers(soil  surface  temperature)

spring  loadedsection

protective  cage reference  weatherstation

GPS

light  bars

720  photodiodes  active  in  PAR  rangeSampling  rate  of  10Hz  (cycles  per  second)Adjustable  from  ~8’  to  32’Driven  at  ~7  mphSub-­‐meter  GPS

UCCE/PFC  Almond  Fertility  Field  Day,  June  16,  2011    

Relationship  Between  Midday  Canopy  Light  Interception  and  Yield  Potential  in  Almond  Bruce  Lampinen,  Integrated  Management/Almond  and  Walnut  Specialist,  UC  Davis  

Sam  Metcalf,  Bill  Stewart,  Loreto  Contador  (UC  Davis)    It  is  well  known  that  a  major  factor  impacting  yield  potential  in  orchard  crops  is  tree  size.  We  have  developed  technology  and  methodology  to  quantify  tree  size  effects  by  measuring  canopy  light  interception.  Combined  with  load  cell  equipped  harvest  trailers,  we  can  evaluate  the  relationship  between  light  interception  and  yield.  This  allows  us  to  assess  relative  performance  of  orchards  or  treatments  within  an  orchard.    Mule  light  bar  The  Mule  light  bar  allows  us  to  measure  orchard  light  interception  at  midday.  We  can  map  approximately  14  miles  of  orchard  rows  during  the  period  within  one  hour  of  the  time  the  sun  is  directly  overhead.  Midday  canopy  light  is  measured  in  mid-­‐summer  and  then  the  same  rows  are  shaken,  dried  and  swept  and  the  total  crop  is  weighed  (subsamples  are  taken  to  adjust  to  kernel  yield  per  acre).    Besides  light  interception,  a  number  of  other  factors  can  impact  yield  including  pollination  weather,  bloom  overlap,  irrigation/fertility  management,  pruning/hedging,  etc.  The  best  way  to  look  at  the  canopy  light  interception  data  is  to  look  at  the  relationship  as  the  best  possible  yield  if  all  other  management  and  weather  factors  are  optimal.  

Measuring  yield  We  measure  yield  in  the  same  rows  using  load  cell  equipped  trailers  that  are  attached  to  the  harvester.  Nuts  are  swept  into  windrows,  picked  up  using  harvester  and  weighed  using  load  cell  equipped  trailers  that  attach  to  the  harvester.  Sub-­‐samples  are  taken  for  conversion  to  kernel  yield  per  acre.  

 

5

Hand light bar data 2000-2008 Mule light bar data 2009-2010

Midday light interception (%)

0 20 40 60 80 100

Ker

nel y

ield

(lbs

/acr

e)

0500

10001500200025003000350040004500500055006000

WalnutAlmond

Fig. 1. Midday photosynthetically active radiation(%) interception versus pounds per acre of kernel yield for almond and walnut data from various trials

3222 72

*pink and yellow dots in right hand graph indicate two year average yield and light interception for Nickels training/pruning trial (where we are standing) and for Nickels rootstock block (next block to the west) respectively

All almond light bar sites 2009 and 2010

Midday canopy PAR interception (%)0 20 40 60 80 100

Yiel

d (k

erne

l lbs/

ac)

0

1000

2000

3000

4000

5000

60002009 all data2010 all data2009 Belridge drip2009 Belridge fanjet2010 Belridge drip2010 Belridge fanjet

Relationship  between  midday  canopy  light  interception  and  yield  When  light  interception  is  plotted  against  yield,  there  appears  to  be  an  upper  limit  which  is  about  50  kernel  pounds  of  almonds  that  can  potentially  be  produced  with  each  1%  of  the  total  incoming  light  that  is  intercepted  (Fig.  1).  The  maximum  light  interception  is  approximately  90-­‐93%  in  a  fully  canopied  orchard  so  maximum  yield  potential  is  about  4500  (90x50=4500)  kernel  pounds  per  acre  for  almond.  This  would  assume  all  other  factors  are  optimal  including  minimal/no  pruning,  optimal  water/nutrition  management,  good  bloom  weather,  good  pollinizer  bloom  overlap,  quality  bee  hives,  etc.  

Fig.  1.  Midday  canopy  light  interception/yield  data  

collected  with  a  hand  light  bar  (left)  and  with  the  Mule  light  bar  (right).  The  large  number  of  sites  that  were  above  optimal  line  in  2009  season  (right  hand  graph  above),  were  largely  due  to  alternate  bearing  and  these  sites  were  lower  in  2010  and/or  in  2008.  Data  for  Belridge  SCRI  orchard  are  shown  in  color.  

Spur  Dynamics  We  have  not  found  orchards  that  can  produce  consistently  above  4300  kernel  pounds  per  acre  or  above  50  kernel  pounds  per  1%  light  intercepted.  From  data  we  have  collected  so  far,  an  orchard  that  is  above  this  level  one  year  will  be  below  this  level  the  next  year.  At  least  part  of  the  reason  for  this  is  that  individual  spurs  alternate  bear.  If  an  orchard  produces  above  50  kernel  pounds  per  1%  light  intercepted,  it  likely  means  that  more  spurs  were  bearing  than  a  tree  can  sustain  from  year  to  year.  Therefore,  in  the  following  year,  all  of  the  spurs  that  bore  fruit  the  previous  year  will  be  either  dead  or  in  a  vegetative  state  and  yield  will  be  below  50  kernel  pounds  per  1%  light  intercepted.  

Food  safety  related  issues  There  are  potential  food  safety  related  issues  for  orchards  with  very  high  midday  canopy  light  interception.  When  midday  canopy  light  interception  increases  above  about  75%  or  so  (yield  potential  of  about  3800  kernel  pounds  per  acre,  food  safety  risk  is  likely  increased  due  to  cooler  soil  conditions  that  are  conducive  to  Salmonella  survival  and  also  because  the  shaded  conditions  on  the  orchard  floor  make  it  more  difficult  to  dry  nuts  at  the  time  of  harvest.  Therefore,  if  your  orchard  has  produced  above  3800  kernel  pounds  per  acre,  you  should  pay  particular  attention  to  food  safety  risk.  This  would  include  making  sure  that  nuts  are  adequately  dry  before  they  are  picked  up  (particularly  if  they  are  going  to  be  stockpiled)  and  that  pathogens  are  not  introduced  inadvertently  (i.e.  with  manure  applications).    

Hand  light  bar  data  2001-­‐2008                                                    Mobile  platform  light  bar  data  2009-­‐10  

 

Remote  sensing  The  canopy  light  interception  data  from  the  mobile  platform  light  bar  is  being  used  to  ground  truth  remotely  sensed  imagery  collected  by  other  colleagues  involved  in  this  project  (see  station  #6-­‐  Whiting/Ustin  et.al.).    Other  uses  of  this  technology  This  technology  allows  us  to  assess  new  varieties  regarding  their  yield  potential  compared  to  existing  varieties.  In  particular,  we  can  identify  whether  a  new  variety  is  more  productive  per  unit  light  intercepted  or  if  it  simply  grows  faster  than  existing  varieties.  It  also  allows  pruning/hedging  trials  to  be  evaluated  in  terms  of  productivity  per  unit  light  intercepted.  In  addition,  we  can  evaluate  soil  treatments  (e.g.  fumigation,  soil  amendments,  etc.)  to  be  evaluated  as  to  their  impacts  on  canopy  growth  versus  direct  effects  on  yield  potential  per  unit  light  intercepted.    Light  interception/yield  results  from  Belridge  SCRI  orchard    Midday  canopy  light  interception  tended  to  increase  with  increasing  nitrogen  application  rate  in  both  years  and  in  both  drip  and  fanjet  orchards  (Fig.  2a,  2b).  In  the  fanjet  orchard,  midday  canopy  light  interception  increased  in  all  treatments  from  2009  to  2010  (Fig.  2b).  However,  in  the  drip  orchard,  midday  canopy  light  interception  decreased  in  all  treatments  from  2009  to  2010  (Fig.  2a;  except  the  high  N  level  which  stayed  constant).  It  is  unclear  what  caused  this  decrease.  You  would  expect  midday  canopy  light  interception  to  be  increasing  from  2009  to  2010  since  the  orchard  was  mechanically  hedged  before  the  2009  season.  One  potential  explanation  might  be  lower  canopy  leaf  loss  due  to  hull  rot.  We  are  assessing  disease  incidence  in  both  orchards  in  2011  to  attempt  to  understand  these  results.    Based  on  the  light  interception  data  from  2010,  we  would  expect  to  see  higher  yields  in  the  fanjet  orchard  compared  to  the  drip  orchard  in  2011.  The  yields  in  the  drip  and  fanjet  orchards  ranged  from  3000  to  4200  kernel  pounds  per  acre  in  2010  which  are  very  good  yields  (Fig.  2c,  2d).  The  yield  per  unit  light  intercepted  reached  the  50  kernel  pounds  per  unit  light  intercepted  level  in  2010  which  is  the  highest  sustainable  yield  we  might  expect  based  on  previous  data  (see  diagonal  line  in  Fig.  1).      

Fig.  2.  Midday  canopy  light  interception  for  the  drip,  yield  and  yield  per  unit  light  intercepted  for  the  drip  and  fanjet  orchards.  

Land,  A ir  and  Water  ResourcesDepartment  of

University  of  California,  DavisLand,  A ir  and  Water  ResourcesDepartment  of

University  of  California,  Davis

Center for Spatial Technologies and Remote Sensing

CIMIS (California Irrigation Management Information System) has gone spatial by interpolating station data over the entire state. CSTARS provides modeling and support to Spatial CIMIS. Interpolation algorithms use weather satellite data to increase precision to 2 km grids. Growers download data for single and multiple dates and spreadsheet tools to generate time series of ETo, temperatures and other data for each grid cell. URL: http://www.cimis.water.ca.gov

NDVI: ratio RED and NIR

(Before Classing) GeoG2 Solutions, Inc.14 March 2010

GreenNDVI: ratio Green and NIR

(class into colors) Britz Company,

29 Apr 2009

Enhanced color of 15 cm pixel for individual tree evaluations

Color Infrared photo of Fertigation Study Block (PFC), GeoG2 Solutions, Inc. 14 March 2010

Readily available hi-resolution Color Infrared (CIR) photos show variation in individual tree canopy size and vigor. Simple band ratios enhance specific plant and soil light absorption regions. NDVI (Normalized Difference Vegetation Index, ratio of red and near infrared) developed in 1978 Landsat analysis is commonly used today for leaf area index estimates. Other ratios such as GNDVI and NDWI (ND Water Index from NIR and longer IR wavelenghts) show plant and soil characteristics.

MANAGEMENT TOOLS AND ANALYSIS FROM REMOTE SENSING TODAY

UC Cooperative Extension Almond Field Meeting -- June16, 2011 Paramount Farming Co. Belridge Ranch 3360B

6

Contact: Mike Whiting ([email protected]) or Susan Ustin ([email protected]) CSTARS, LAWR, University of California, One Shields Ave., Davis, 95616

Every 16 days Landsat images provide same 30 m pixel areas for analyzing multiple seasons of canopy reflectance to relate variation to water and nutrient stress, and yield. Time series can also be created for CIMIS and other continuous environmental and farm management data to compare to images time series.

2007 2008 2009 2010 20 April

7 June 10 August

27 September

Landsat NDWI values for same pixel with fitted curve for analysis

Time Series analysis for understanding season to season variation

Interpolations vs. WRF Model for temperature

Improved Atmospheric Model: Forecast ETc at 1km high-resolution

National Atmospheric Research Center: WRF-ACASA models ETc with NWS

forecast to 5 days ahead.

01 June 2008 12:00PST, southern San Joaquin Valley model

(integrating landcover mapping) Red: High ETa in crop areas, Blue: Low ETa in dry range land

FUTURE MANAGEMENT TOOLS AND ANALYSIS FROM REMOTE SENSING Sponsored research by USDA-NIFA Specialty Crop Research Initiative, Almond Board of California, and California Pistachio Research Board

Environmental Monitoring of Greenhouse Gases, Roots and Soil Nitrogen in Almond under Micro-Irrigation

Daniel L. Schellenberg, Maria M. Alsina, Maziar M. Kandelous, Andres Olivos,

Blaine R. Hanson, Patrick H. Brown, Jan W. Hopmans and David R. Smart University of California Davis

• Methane (CH4) is burned to produce hydrogen gas (H2) and carbon dioxide (CO2).

Atmospheric dinitrogen gas (N2) combines with hydrogen under high heat and pressure to

form ammonia gas (NH3). The combination of ammonia, carbon dioxide from burning

methane, and cooling produces urea ((NH2)2CO) up to 100 million tons globally.

• Urea hydrolyses into ammonium (NH4+) and carbon dioxide, which is rapidly converted to

nitrate (NO3-) through the process of nitrification where nitrous oxide may be lost. During

denitrification nitrate is converted into nitrous oxide or completes the nitrogen cycle into N2.

• Assembly Bill 32 mandates a rollback of Greenhouse Gas emissions to 1990 levels

• Environmental Protection Agency established an

endangerment finding for Greenhouse Gases • The California Air Resources Board inventories

and regulates Greenhouse Gas emissions • California Agriculture is estimated to contribute

only 8.3% of State’s Greenhouse Gas emissions • Over 50% of agricultural Greenhouse Gas

emissions come from nitrous oxide (N2O) • To address the mandate we estimate N2O

emissions for California crops like almond

• Water and nitrogen management requires an understanding of N2O during fertilization

Fertilizer production [solid green arrows] and soil N transformations [dashed green arrows] of N

fertilizer sources [soild blue boxes] results in Greenhouse Gas emissions [dashed red boxes]

7

• Roots collected during a initial survey in July 2010 give background information

• Minirhizotron imagery provides insight into root production rates

• Root monitoring offers the opportunity to observe roots in situ

Modeling Soil Water and Nitrogen using HYDRUS-2D

Given the collection of valuable data sets by UC researchers, modeling provides the next step to generate

predictions for a host of management scenarios and almond-growing locations throughout California.

Objectives of the HYRUS model:

• To evaluate the results of the HYDRUS-2D model using extensive field data

• To determine optimal irrigation and fertigation practices for micro-irrigation

• To improve water and nitrate use efficiencies

• To reduce leaching and gaseous losses of nitrogen

The soil profile, hydraulic properties and evapotranspiration from weather station along with

irrigation/fertigation rate for each irrigation system will be used as an input file for the numerical model

HYDRUS-2D to simulate soil water movement, solute transport and root water uptake.

Top view of the soil sensor installation Sensors at different depth in the root zone

Root monitoring using minirhizotron images – pictures taken on May 3rd (left) and May 16th (right)

Suitability of potassium nitrate and continuous fertigation under drip and microsprinkler irrigation to optimize California almond productivity 2011-14 Project Leaders: Blake Sanden, Patrick Brown Location: Belridge, CA (NW Kern County) Cooperating Personnel: Ken Shackel, Bruce Lampinen, Bob Beede Collaborators: Haifa, SQM, Potassium Nitrate Association (providing funding for fertilizer inputs and Brown

plant-based monitoring), Paramount Farming Company, Grundfos Pumps, Bowsmith Irrigation, Toro Irrigation

30 - - - - - - - + + + + + + + + + + + + + + + - - - -29 - - - - - - - 24 25 72 73 120 121 168 169 216 217 264 265 312 313 360 - - - -28 - - - - - - - + + + + + + + + + + + + + + + - - - -27 - - - - - - - 23 26 71 74 119 122 167 170 215 218 263 266 311 314 359 - - - -26 - - - - - - - + + + + + + + + + + + + + + + - - - -25 - - - - - - - 22 27 70 75 118 123 166 171 214 219 262 267 310 315 358 - - - -24 - - - - - - - + + + + + + + + + + + + + + + - - - -23 - - - - - - - + + + + + + + + + + + + + + + - - - -22 - - - - - - - + + + + + + + + + + + + + + + - - - -21 - - - - - - - + + + + + + + + + + + + + + + - - - -20 - - - - - - - + + + + + + + + + + + + + + + - - - -19 - - - - - - - + + + + + + + + + + + + + + + - - - -18 - - - - - - - + + + + + + + + + + + + + + + - - - -17 - - - - - - - + + + + + + + + + + + + + + + - - - -16 - - - - - - - + + + + + + + + + + + + + + + - - - -15 - - - - - - - + + + + + + + + + + + + + + + - - - -14 - - - - - - - + + + + + + + + + + + + + + + - - - -13 - - - - - - - + + + + + + + + + + + + + + + - - - -12 - - - - - - - + + + + + + + + + + + + + + + - - - -11 - - - - - - - + + + + + + + + + + + + + + + - - - -10 - - - - - - - + + + + + + + + + + + + + + + - - - -9 - - - - - - - + + + + + + + + + + + + + + + - - - -8 - - - - - - - + + + + + + + + + + + + + + + - - - -7 - - - - - - - + + + + + + + + + + + + + + + - - - -6 - - - - - - - 21 28 69 76 117 124 165 172 213 220 261 268 309 316 357 - - - -5 - - - - - - - + + + + + + + + + + + + + + + - - - -4 - - - - - - - 20 29 68 77 116 125 164 173 212 221 260 269 308 317 356 - - - -3 - - - - - - - + + + + + + + + + + + + + + + - - - -2 - - - - - - - 19 30 67 78 115 126 163 174 211 222 259 270 307 318 355 - - - -1 - - - - - - - + + + + + + + + + + + + + + + - - - -

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

31 - - - - - - - + + + + + + + + + + + + + + + - - - -30 - - - - - - - 18 31 66 79 114 127 162 175 210 223 258 271 306 319 354 - - - -29 - - - - - - - + + + + + + + + + + + + + + + - - - -28 - - - - - - - 17 32 65 80 113 128 161 176 209 224 257 272 305 320 353 - - - -27 - - - - - - - + + + + + + + + + + + + + + + - - - -26 - - - - - - - 16 33 64 81 112 129 160 177 208 225 256 273 304 321 352 - - - -25 - - - - - - - + + + + + + + + + + + + + + + - - - -24 - - - - - - - + + + + + + + + + + + + + + + - - - -23 - - - - - - - + + + + + + + + + + + + + + + - - - -22 - - - - - - - + + + + + + + + + + + + + + + - - - -21 - - - - - - - + + + + + + + + + + + + + + + - - - -20 - - - - - - - + + + + + + + + + + + + + + + - - - -19 - - - - - - - + + + + + + + + + + + + + + + - - - -18 - - - - - - - + + + + + + + + + + + + + + + - - - -17 - - - - - - - + + + + + + + + + + + + + + + - - - -16 - - - - - - - + + + + + + + + + + + + + + + - - - -15 - - - - - - - + + + + + + + + + + + + + + + - - - -14 - - - - - - - + + + + + + + + + + + + + + + - - - -13 - - - - - - - + + + + + + + + + + + + + + + - - - -12 - - - - - - - + + + + + + + + + + + + + + + - - - -11 - - - - - - - + + + + + + + + + + + + + + + - - - -10 - - - - - - - + + + + + + + + + + + + + + + - - - -9 - - - - - - - + + + + + + + + + + + + + + + - - - -8 - - - - - - - + + + + + + + + + + + + + + + - - - -7 - - - - - - - + + + + + + + + + + + + + + + - - - -6 - - - - - - - 15 34 63 82 111 130 159 178 207 226 255 274 303 322 351 - - - -5 - - - - - - - + + + + + + + + + + + + + + + - - - -4 - - - - - - - 14 35 62 83 110 131 158 179 206 227 254 275 302 323 350 - - - -3 - - - - - - - + + + + + + + + + + + + + + + - - - -2 - - - - - - - 13 36 61 84 109 132 157 180 205 228 253 276 301 324 349 - - - -1 - - - - - - - + + + + + + + + + + + + + + + - - - -

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

30 - - - - - - - + + + + + + + + + + + + + + + - - - -29 - - - - - - - 12 37 60 85 108 133 156 181 204 229 252 277 300 325 348 - - - -28 - - - - - - - + + + + + + + + + + + + + + + - - - -27 - - - - - - - 11 38 59 86 107 134 155 182 203 230 251 278 299 326 347 - - - -26 - - - - - - - + + + + + + + + + + + + + + + - - - -25 - - - - - - - 10 39 58 87 106 135 154 183 202 231 250 279 298 327 346 - - - -24 - - - - - - - + + + + + + + + + + + + + + + - - - -23 - - - - - - - + + + + + + + + + + + + + + + - - - -22 - - - - - - - + + + + + + + + + + + + + + + - - - -21 - - - - - - - + + + + + + + + + + + + + + + - - - -20 - - - - - - - + + + + + + + + + + + + + + + - - - -19 - - - - - - - + + + + + + + + + + + + + + + - - - -18 - - - - - - - + + + + + + + + + + + + + + + - - - -17 - - - - - - - + + + + + + + + + + + + + + + - - - -16 - - - - - - - + + + + + + + + + + + + + + + - - - -15 - - - - - - - + + + + + + + + + + + + + + + - - - -14 - - - - - - - + + + + + + + + + + + + + + + - - - -13 - - - - - - - + + + + + + + + + + + + + + + - - - -12 - - - - - - - + + + + + + + + + + + + + + + - - - -11 - - - - - - - + + + + + + + + + + + + + + + - - - -10 - - - - - - - + + + + + + + + + + + + + + + - - - -9 - - - - - - - + + + + + + + + + + + + + + + - - - -8 - - - - - - - + + + + + + + + + + + + + + + - - - -7 - - - - - - - + + + + + + + + + + + + + + + - - - -6 - - - - - - - 9 40 57 88 105 136 153 184 201 232 249 280 297 328 345 - - - -5 - - - - - - - + + + + + + + + + + + + + + + - - - -4 - - - - - - - 8 41 56 89 104 137 152 185 200 233 248 281 296 329 344 - - - -3 - - - - - - - + + + + + + + + + + + + + + + - - - -2 - - - - - - - 7 42 55 90 103 138 151 186 199 234 247 282 295 330 343 - - - -1 - - - - - - - + + + + + + + + + + + + + + + - - - -

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

30 - - - - - - - + + + + + + + + + + + + + + + - - - -29 - - - - - - - 6 43 54 91 102 139 150 187 198 235 246 283 294 331 342 - - - -28 - - - - - - - + + + + + + + + + + + + + + + - - - -27 - - - - - - - 5 44 53 92 101 140 149 188 197 236 245 284 293 332 341 - - - -26 - - - - - - - + + + + + + + + + + + + + + + - - - -25 - - - - - - - 4 45 52 93 100 141 148 189 196 237 244 285 292 333 340 - - - -24 - - - - - - - + + + + + + + + + + + + + + + - - - -23 - - - - - - - + + + + + + + + + + + + + + + - - - -22 - - - - - - - + + + + + + + + + + + + + + + - - - -21 - - - - - - - + + + + + + + + + + + + + + + - - - -20 - - - - - - - + + + + + + + + + + + + + + + - - - -19 - - - - - - - + + + + + + + + + + + + + + + - - - -18 - - - - - - - + + + + + + + + + + + + + + + - - - -17 - - - - - - - + + + + + + + + + + + + + + + - - - -16 - - - - - - - + + + + + + + + + + + + + + + - - - -15 - - - - - - - + + + + + + + + + + + + + + + - - - -14 - - - - - - - + + + + + + + + + + + + + + + - - - -13 - - - - - - - + + + + + + + + + + + + + + + - - - -12 - - - - - - - + + + + + + + + + + + + + + + - - - -11 - - - - - - - + + + + + + + + + + + + + + + - - - -10 - - - - - - - + + + + + + + + + + + + + + + - - - -9 - - - - - - - + + + + + + + + + + + + + + + - - - -8 - - - - - - - + + + + + + + + + + + + + + + - - - -7 - - - - - - - + + + + + + + + + + + + + + + - - - -6 - - - - - - - 3 46 51 94 99 142 147 190 195 238 243 286 291 334 339 - - - -5 - - - - - - - + + + + + + + + + + + + + + + - - - -4 - - - - - - - 2 47 50 95 98 143 146 191 194 239 242 287 290 335 338 - - - -3 - - - - - - - + + + + + + + + + + + + + + + - - - -2 - - - - - - - 1 48 49 96 97 144 145 192 193 240 241 288 289 336 337 - - - -1 - - - - - - - + + + + + + + + + + + + + + + - - - -

M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M NP M1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

NORTH -- SET 1 FANJETSFl

atFl

at

Rep 4

Flat

Flat

Flat

4

5

C300 NKN 300

C300 NKN 200

FiltersFertilzer Inject

D

D

7

8

F300 UNKTS 75

F300 UNKTS 75

F300 UNKTS 75

D

F300 NKN 75

D

F300 UNKTS 75

F300 UNKTS 75

DC300 N

SOP 200

C300 NSOP 200

C300 NSOP

C300 NKN 75

D

C300 NSOP 200

D

C300 NKN 300

D

D

F300 UNK = 0

F300 UNK = 0

F300 UNK = 0

F300 UNK = 0

F300 UNK = 0

F300 NKN 75

D

F300 NKN 75

D

F300 NKN 75

D

C300 NKN 75

D

C300 NKN 75

D

C300 NKN 75

D

D

C300 NKN 200

D

C300 NKN 200

D

C300 NKN 200

D

D

6

3

1

2

Rep 1 Rep 2 Rep 3 Rep 5

C300 NKN 200

C300 NSOP 200

D

C300 NKN 300

C300 NKN 75

C300 NKCl 150

C300 NKN 300

F300 NKN 75

C300 NKN 300

Double-line drip

Weekly neutron probe monitor-ing, annual soil sampling to 9 feet, Nonprl, Mont, Nonprl

D

C300-150 KCl 150 KNO3

C300-200SOP

C300-75KN

C300-200KN

C300-300KN

F300-75KN125 SOP

F300-0

F300-75KTS125 SOP

C300 NKCl 150

C300 NKCl 150

C300 NKCl 150

C300 NKCl 150

KNO3 CONTINUOUS FERTIGATION TRIAL

Double-line drip

G: 300 lb K as KNO3 and 128 lbs N as UAN (total N 300) continuous. (Manifold 4)

H: 150 lb K as KCL, 150 lb K as KNO3, 248 lbs N as UAN continuous fertigation. (Manifold 5)C300-150 KCl 150 KNO3

C300-200SOP

C300-75KN

C300-200KN

C300-300KN

C: 200 lb K. 125 lb K as SOP band February, 75 lb as KNO3 and 273 lb N as UAN in 4 in season fertigations 20% Feb, 30% April, 30% June, 20% post harvest.

F300-75KN125 SOP

F300-0 A: No K, 300 lbs N as UAN in 4 in season fertigations 20% Feb, 30% April, 30% June, 20% post harvest.

F300-75KTS125 SOP

B: 200 lb K. 125 lb K as SOP band February, 75 lb as KTS and 300 lb N as UAN in 4 in season fertigations 20% Feb, 30% April, 30% June, 20% post harvest (Grower Standard).

D: 200 lb K as SOP dissolved in gypsum mixer and 300 lbs N as UAN (total N 300), continuous application. (Manifold 1)E: 200 lb K. 125 lb K as SOP in band February, plus 75 lb K as KNO3 and 273 lb UAN continuous. (Manifold 2)

F: 200 lb K as KNO3 and 193 lbs N as UAN (total N 300) as continuous application. (Manifold 3)

Weekly neutron probe monitoring, annual soil sampling to 9 feet, Nonprl, Mont, NonprlD

TREATMENTS KNO3 CONTINUOUS FERTIGATION TRIAL LAYOUT

There are 5 mainlines in the drawing: one for each of the continuous fertigation treatments (5 total). Thus, all mixing and fertilizer injection occurs at the pump/filter station and flows in its own mainline to each manifold run, 1 through 5, where the solution enters the one manifold line for each respective treatment as indicated. All treatments have DRIP and FANJET irrigation on Nonpareil to test for system differences.

The 4 times/year fertigation treatments will be done with the standard plumbing for the block. Treatment (B) is essentially the Control/standard for this block. The rows designated for treatments (A) (no K) and C (75 lbs K as fertigated KNO3) will simply be turned off during the 1 to 2 hour injection of KTS 4 times/year. The KNO3 for Treatment (C) will be injected at the hoses with a mobile tank/injection unit and hose valves turned off before the end of the UN32 injection to maintain total N @ 300 lb/ac. Ground applied SOP using a Ranchero will be laid down in dual 8 inch bands at the edge of the berm in January @ 125 lb K/ac for treatments (B), (C) and (E). =============================================================================================== SUMMER MICRO IRRIGATION SYSTEMS TUNE-UP: Why use drip or microsprinklers?

The first answer most people gave 10 to 15 years ago was, “Save water.” For most growers in Kern County, this is about the last reason they’d give. Potential water savings alone do not pay for a micro system. The following list is my favorite ranking of reasons to consider micro systems.

1) Minimize stress: This actually increases ET which increases photosynthesis and carbohydrate production. Benefits can be reduced mite infestations and better fruit set in almonds.

2) Irrigation scheduling/uniformity: Applied water is a mechanical function of system capacity and not the uncertain infiltration rate of flood water into the ground. More uniform application. Knowing this amount makes it easier to …

3) Manage stress: Better control of deficit irrigation to harden trees before shaking, improve splits in pistachios or to improve characteristics of varietal wines. Encourage fruit set in tomatoes and peppers.

4) Fine-tune fertilization: Apply when plant needs it. No field compaction from shanking. Costs only for material. Fertilizer leaching is decreased or eliminated. Phosphoric acid is concentrated in small wetted areas with drip. Soluble gypsum can be injected anytime.

5) Disease management: Drip only. Decrease humidity. 6) Save WASTED water!

How uniform is the average micro system in Kern?

Over 400 field evaluations, the Irrigation Mobile Lab in Kern County, CA found that average DU for drip systems was only slightly better than furrow irrigation (75 compared to 72%). Micro-sprinkler systems averaged 78%. This was not due to poor design, but lack of maintenance. Some of these systems were later tuned up to 85%. A system with 75% DU takes 16% more water to adequately irrigate than a 90% system.

How can I tune-up my micro system? 1) Check in-field emitter type. The single most important thing to check is that you have the same type of emitters throughout the field. The biggest reason that average micro irrigation DU drops is because clogged emitters or micro-sprinkler heads are replaced with others that have a different flow rate than the old system. Not only is the same flow rate critical, but it is a good idea to stick with the same brand so that the flow curve for different pressures will be the same. If your satisfied that you have uniform emitters in the field then go back to the filter station. 2) Clean the filter station. Growers generally do a good job at keeping screen and disk filters clean and functioning because these clog up too quickly to be ignored. Sand media filters may need some help in the spring. Open the porthole in the tank and scoop out some sand from against the side of the tank. If it falls apart and is not slimy and the level of sand is about two thirds full then you’re set. If the sand is chunky then you have some algae growth that will decrease the effectiveness of the filter and cause excessive back flushing. Close the valve to the field. Leave the portholes open. Turn on the pump to just fill the tanks and then shut down. Dump in about a half gallon of bleach for a 4 foot diameter tank and leave it sit overnight. Close up the portholes and open the field valve a quarter of the way and set the back flush cycle for 90 seconds. Turn the booster on and adjust the backpressure to give about 50 to 60 psi. Put a bucket under the back flush outlet to make sure your not blowing sand out. When all filters have back flushed keep the booster running and open the field valve to adjust for design field pressure. 3) Check subunit regulator pressures and operation. Next to mixed emitters this is the biggest problem in large systems. For large acreage sets there may be 20 or more pressure regulators in the field. These can be as simple as a gate valve or as complex as a $200 diaphragm operated self-adjusting pressure regulator with a solenoid for automatic cycling. Achieving uniform pressure to all your irrigation laterals is easier with self-adjusting regulators when they function correctly. Using two pressure gauges check the upstream and downstream pressure at the regulator. Set the downstream pressure to system design. You should have 5 to 15 psi more pressure going into the regulator than coming out. Slowly close the gate valve in front of the regulator so you go from say 12 psi difference to a 6 to 8 psi difference across the regulator. The downstream pressure should stay the same. If this pressure drops then you need to clean or rebuild the regulator. Sometimes this means only cleaning accumulated silt out of the pilot valve, or it may mean replacing springs and/or diaphragms. Consult the manufacturer. Adjust subunit pressures starting closest to the pump. Go through the field twice. 4) Check hose screens. These little troublemakers can be as bad as the above problem, and can be worse from the standpoint of plugging up multiple times during the season. These are little 60 to 80 mesh screens molded in the gasket that makes the seal between the riser and the hose. Made as a safeguard to prevent sand from plugging a hose and emitters if there was a blowout, these things can collect filamentous algae and cause pressure drops of 15 psi. If you use canal water you will get algal spores and filaments in the water that can snake through the sand media and get trapped on these little screens. Dedicate your self to cleaning these every 2 to 3 weeks or throw them out and use plain washers. Over the last 11 years I have never seen these screens ‘save’ a system, but I have seen many settings where one hose only has 8 psi and the one next to it has 22 psi. 5) Flush hoses and check for algae, slime, etc. Open only 10 to 15 hoses at a time to get good velocity. Put a nylon sock over the end and check for the type of material flushed out. If the water clears in 10 to 15 seconds and the solids are mostly suspended clays, then you’re probably okay. Any slime or algae means that you need to sanitize the system within the month. Injection of chlorine, as a gas or bleach, is the most common material. 6) Check individual, random emitters for flow rate. Once pressures are properly adjusted and all hoses in the set are clean, put out little catch cans for drippers or use milk jugs for microsprinklers, and measure the flow. Compare this to the pressure/flow curve of the emitter when it was new. Check a total of 40 emitters from different areas. If the average flow is more than 10% different from the design specifications than you should consider new emitters. Divide the average flow from the lowest 10 emitters by the overall average to get the DU of your system.