16
Alternatives for Autonomous Navigation of Small Solar System Explorers G. González Peytaví, A. Probst, T.P. Andert, B. Eissfeller, R. Förstner 5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May 2016

Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

Alternatives for Autonomous Navigation of Small Solar System Explorers

G. González Peytaví, A. Probst, T.P. Andert, B. Eissfeller, R. Förstner

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May 2016

Page 2: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

• Distributed networks in Solar system exploration

• Autonomous navigation – What for?

• AutoNav alternatives – Absolute navigation – Relative navigation

• Evaluation of alternatives

Outline Alternatives for Autonomous Navigation of Small Solar System Explorers

The next 20 minutes…

Page 3: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

Increase spatial

coverage

Cooperative Remote Sensing

Increase temporal coverage

Larger baselines

Multi-node experimentation

Controlled baselines

Separation of payload

critical modules

Mission safety Spatially

distributed redundancy

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Distributed networks in Solar system exploration Alternatives for Autonomous Navigation of Small Solar System Explorers

Cooperative Scientific Exploration and Prospection

Attractive solution • reduced launch mass

increments

Strong dependency on SC master • Propulsion • Communication • Navigation

Interplanetary CubeSat Networks

Page 4: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Autonomous Navigation – What for? Alternatives for Autonomous Navigation of Small Solar System Explorers

During interplanetary cruise

Self-reliant course corrections

Independent targeting/observation sequences

Reduce contact to ground-control for orbit determination

During proximity operations

Near-real time mission planning

Independent surface targeting/observation sequences

Support investigations of trajectory perturbing phenomena

(gravity, radiation, drag, etc.)

Why AutoNav?

𝑂 𝒓� = 100 𝑘𝑘 ,3𝜎 trajectory planning 𝑂 𝒓� = 10 𝑘𝑘 , 3𝜎 rendezvous planning

𝑂 𝒓� = 1⋯100 𝑘𝑘 ,3𝜎 during fly-by 𝑂 𝒓� = 100 𝑘 , 3𝜎 small-body orbiting 𝑂 𝒓� = 1 𝑘 , 3𝜎 small-body landing

Page 5: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Absolute Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Absolute Navigation

Page 6: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Absolute Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Pulsar-based Navigation

Ray et al., 2006

Optical Solar Interferometry

Celestial Navigation

Page 7: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Absolute Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Optical Solar Interferometry

CCD detector Sun entrance

Star-light entrance

Attenuator

Coupled Sun Star Tracker

LOS Velocity Signal Frequency Doppler Shift fD

1 mm/s 8x109 Hz (radio) 0.027 Hz

1 mm/s 5x1014 Hz (visible) 1667 Hz

• Modes: – Sun imager – Sun line-of-sight – Conventional imaging system

(Wide-angle camera)

𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑓𝑣𝑐

Resonance Scattering Interferometer

Helioseismic and magnetic Imager (HMI) aboard the Solar Dynamics Observatory. Scherrer, 2005

σ = 0.026 rad σ = 1 cm/s

Page 8: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Absolute Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Optical Solar Interferometry + Celestial Navigation

Cruise Nav.

EKF Particle Filter

�̅�𝑠𝑠 , �̅�𝑠𝑠

Resonance Scattering Interferometer

Coupled Sun Star Tracker

WA Camera

�̅�𝐷𝑟𝑟𝑟𝑟𝐷

𝑙�̅�𝑠𝑠

𝑙�̅�𝐷𝑟𝑏

Page 9: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Absolute Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Optical Solar Interferometry + Celestial Navigation

3σ after 5 yrs UKF PF

15 m

in

𝑂 𝒓� km 126.7 39.0

𝑂 𝒓�̇ km/s 151.1 53.6

24 h

r 𝑂 𝒓� km 207.3 167.9

𝑂 𝒓�̇ km/s 39.3 57.4

Page 10: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Absolute Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Pulsar-based Navigation

NICER X-ray Timing Instrument Source: NASA

3D Position error < 5km with simultaneous observation of 3 pulsars following ROSETTA trajectory (Simulations) Bernhardt, M. G. Bad Honnef ,2015

Page 11: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Relative Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Relative Navigation

Page 12: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Relative Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Surface landmark tracking

Global model matching

Shape Model

Simultaneous Localization and Mapping

Visual Odometry

• Optical Camera • Imaging LiDAR

Page 13: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Relative Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

LIDAR Point Cloud Matching

Image: Courtesy of H. Gómez (ISTA)

Light Curves

Source: Dr. T.M.Ho (DLR-Planetenforschung)

Asteroid 2008 TC3

Image Matching – Bundle adjustment

Images: Courtesy of R. Jacob (ISTA)

Navigation side-product: Object state estimation

Page 14: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Alternatives – Relative Navigation Alternatives for Autonomous Navigation of Small Solar System Explorers

Grid-information maps

• Hazards • Fuel • Landing sites • Terrain slope

Shape reconstruction

Navigation side-product: Target modelling

Page 15: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May, 2016

Evaluation of Alternatives Alternatives for Autonomous Navigation of Small Solar System Explorers

Criteria Ground-based Radio

Optical Solar Interfer.

Optical Celestial Nav.

Pulsar-based Nav.

Optical Odometry

with Cameras

Optical Odometry with LiDAR

On-board autonomy No Yes Yes Yes Yes Yes

TRL 9 3-4 5-6 5-6 7-8 5-6

Navigation accuracy 10-100 km 300 km 100 - 1000 km 5 – 100 km 100 km - 1 m 1m – 10cm

SoA Power demands 1 kW 100 W 10 - 15 W 15 W 10 – 15 W 5 – 10 kg

SoA Mass demands 10 kg 50 kg 5 – 10 kg 10 – 15 kg 5 – 10 kg 30 – 40 W

Illumination dependant

No Yes Yes No Yes No

Scale Invariant No No No Yes No Yes

Spatial range > 15 AU 4-5 AU 2-3 AU Solar system

< 1000 km < 2-5 km

Development costs

Sensor/Payload reusability

Radio Comm., Radio Science

Sun attitude Imaging, Astronomy

X-ray or Radio

astronomy

Mapping Opt. Comm. Terminal and

Mapping

System complexity Low High Medium High Medium Medium

Other requirements - Thermal Thermal Timing , Thermal, Long

obs.

Thermal Pointing

Page 16: Alternatives for Autonomous Navigation of Small Solar ... · Separation of payload critical modules . Mission safety . Spatially distributed redundancy . 5. th. Interplanetary CubeSat

Alternatives for Autonomous Navigation of Small Solar System Explorers

G. González Peytaví, A. Probst, T.P. Andert, B. Eissfeller, R. Förstner

5th Interplanetary CubeSat Workshop, Oxford, UK, 24-25 May 2016