Am or Us Op a Per 1

  • Upload
    nmf77

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/2/2019 Am or Us Op a Per 1

    1/75

    / ) B - I R - o 3 - " ?

    EULERANGLESAND QUATERNIONSINSIXDEGREEOFFREEDOMSIMULATIONS

    OFPROJECTILES

    jJO^-**

    byMichaelJ .Amoruso

    March1996

    Approvedforpublicrelease;distributionunlimited.

    REVIEWEDBYAerospace

    APPROVEDBY:Branch,MATD,AED

    Dr.William Ebihara^--Chief,Materials&AeroballisticsTechnologyDivision,AED

    AEROBALLISTICS BRANCHMATERIALS&AEROBALLISTICSTECHNOLOGYDIVISIONARMAMENTENGINEERINGDIRECTORATEARMAMENTRESEARCH, DEVELOPMENTANDENGINEERING CENTERU.S.ARMYARMAMENT, MUNITIONSANDCHEMICALCOMMANDPICATINNYARSENAL,NEWJERSEY07806-5000

    2 0 0 3 0 9 2 90 4 9PIQAJIUUMM;

  • 8/2/2019 Am or Us Op a Per 1

    2/75

    CONTENTS

    ContentsFiguresTablesPreface

    Pagei

    iiiiiiv

    1.0Introduction2.0Review of Matrix AlgebraforOrthogonalTransformation3.0Euler Angles

    3.1RotatingCoordinateFrames3.2Plane-Fixed Coordinates 4

    4.0Quaternions 85.0Equationsof Motion 76.0IntegrationofEquationsofMotion 3

    6.1Plane-FixedEquations 36.2Body-FixedEquations 46.3Aeroballistics(Zero-P)Equations 7

    AppendixAlgorithmsforImplementationoftheEquationsofMotioninSixDegreeofFreedom ComputerSimulations 58

    DistributionList 0

    A(5^^3w^'^f2|

  • 8/2/2019 Am or Us Op a Per 1

    3/75

    FIGURESPage

    1oordinateSystem2omponentEuler AngleRotations3maginary NumberiInterpretedasaRotationOperator 9

    XI

  • 8/2/2019 Am or Us Op a Per 1

    4/75

    TABLESPage

    1btainingtheQuaternionsfromtheRotationMatrixT 22valuationofARCTAN (A,B)overAllFourQuadrants 363ody-FixedEquations 74imeDevelopmentoftheBody-FixedTransformationMatrixParameters 85lane-FixedEquations 96imeDevelopmentofthePlane-Fixed TransformationMatrixParameters 07eroballisticEquations 18imeDevelopmentofthe AeroballisticTransformationMatrixParameters 2

    iix

  • 8/2/2019 Am or Us Op a Per 1

    5/75

    PREFACETheuthoraseennvolvednheimulationfuidedrojectilesormanyyears.Differentnvestigatorsdoptifferentoordinaterames,uchsody-fixed,lane-fixednderoballisticzero).omeseheulernglerepresentationoealwithotationsndomeseuaternions.ource'swhichexplainheignificancenddvantagesndisadvantagesfheseariousapproachesreoteadilyvailable,tsdifficultoinderivationsndhereis ackfdvicenncorporatinghesemethodsntoomputerimulations.Theuthorecamespeciallyrustratedhenettemptedoollectheequationsoonvertnxistingixegreeofreedom6DOE)imulationromtheEulerngleohequaternionepresentation.everalourcesforheeededequationswereoundutowogreedxactly.inceittlenhewayfderivationswereprovided,twasotrivialoerifyhequationsoreconciletheiscrepancies.hisocumentesultedromheuthor'sttemptomakesomeenseofthisconfusion.Theirsthapterontainsnverviewofheproblem.nheecondhapter,briefeviewfheareminimumfmatrixlgebrasprovidedoemindhereaderofomeofhemportantpropertiesoforthogonalransformations.hethirdhapterevelopsheEulerngleormalismwithnntroductionohedifferenceetweenody-fixed,lane-fixednderoballisticoordinates.hequaternionlgebrasevelopednhapter.Thissnxtensiveubject.OnlyenoughoftheormalismwasdevelopedoprovideunderstandingofquaternionsandTntroduceheoolseededorhisocument.nhapter heigidodyequationsofmotionredevelopedorhehreeoordinateramesdiscussed,n bothheulernglenduaternionepresentations.heiscussionfhedistinctionetweenody-fixed,lane-fixednderoballisticoordinatessdistributedhroughouthapters o.nhapter,hentegrationfheequationsfmotionsiscussed.iscussionsfhereatmentfCoriolisndcentripetalorrectionsinaflatarthmodel,gravityforanon-flatarth,ndimevaryingmassndmomentfnertiaaveeenncludednhiseport.hesetopicswillereatedn utureeport.heppendixrovides ummaryfthealgorithmsneededforimplementingtheseresultsin DOEimulation.TheuthorwishesohankDr.RichardHaddadfPolytechnicUniversityfNewYork,MessrsRomelCampbellndohnGrauofARDEC,Dover,NJ,ndMr.homasHarkinsfARL,Aberdeen,D,_foraluableiscussionsnd.suggestions.ewishesohankMrSungChungorheckinghemathematicalderivations.

    IV

  • 8/2/2019 Am or Us Op a Per 1

    6/75

    1 INTRODUCTIONWhenevelopingimulationsfircraft,missilesrun-launchedrojectiles,investigatorsequireoordinateramenhichoollowheotion.Newton'sawsequirennertialunaccelerated)rame.hearthsconvenienteferencerameutsotnertia!incehearthotates.hearthmayonthelesseused,withCoriolisndentripetalccelerationsncludedo accountfortheearth'srotation.However,heprojectilesothranslatingndotating.Thustsonvenientoexpresshequationsfotionfherojectile,issilerircraftncoordinateshatmovelongwithtnomeway.heobvioushoicesody-fixedoordinates.Theseoordinatesrettachedoheprojectileorircraftndroll,itchndyawwitht.heeaderamiliarwithimbalsoryroscopeswillrecognizehatheseEulernglesofoll,pitchndyawrequivalentoimbalangles.nheasefuidedrojectile,heeeker,ateensor,accelerometers,ndontrolmechanismswhetheraerodynamicorreactionontrolalloperateinndareeasiesttodescribenody-fixedcoordinates.Sometimesnonollingcoordinatesredesirable.tisdifficulttonterpretesultsof imulationwhenheointfiewsolling,sheyrewithody-fixedcoordinates.nddition,pin-stabilizeduniredprojectilesotatethundredsofevolutionsperecond.Computerunimesoruchrojectilesusingody-fixedoordinatesecomentolerablyong.hisifficultyrisesecauseheintegrationimetepmustecomextremelymallnordertoeephengleofrollmallduringtheintegrationimetep.fthissnotdone,gravitysmearedoverhengularmotionhatoccursuringhentegrationimetepecauseofthehighollate,givingincorrectresults.Someypefon-rollingoordinateystemssedoealwithhisroblem.Oneolutionsoethe omponentofheoordinateramengularelocitytoero.AnothersoettheEulerollngleoero.Thesewopproachesrenotdentical,swehalleenubsequenthapters.ehalleehathedifferencerisesromheacthatheomponentsofhengularvelocityormanrthogonaletwhereashehreeulernglesootaveutuallyorthogonaletofrotationxes.ChoosingheollEulerngleoeeroliminateshehorizontalomponentof-gravitynlatarthoderentirelyinceehalleehathe-axissconstrainedomoven horizontalplane.hismakesheumericalntegrationinsensitiveoheollate.owever,tstillensitiveoheitchndaw rates.hispproachsypicallyelectedwhenmodelingnunguidedtagefspintabilizedprojectile.Thisypeofframeiscalledplane-fixed.Choosinghe omponentfheoordinateramengularelocityoeeroyieldseroballisticoordinates.Thishoiceoesotompletelyliminatehecomponentofgravityutensitivityoheffectsofollsreatlyeduced.tschief value is the simplification of the equationsfmotion. Coupling terms

  • 8/2/2019 Am or Us Op a Per 1

    7/75

    involvinghe omponentfheramengularelocityisappearromheequationsofmotion.furtherimplificationsremadeasednymmetryndlinearityoftheerodynamics,tspossibleoobtainlosedormolutionstoheequationsofmotion^.Withnyoftheseframes,tsnecessaryoegeneratetheramesheprojectilemoves.Thusherametselfasquationsfmotion.Wehalleehatherotationmatrixhatransformshevectorsromhemovingrameohenertia!(earth)rameanexpressednermsfitherhreeEulernglesrourquaternions.hequationsfotionorheulernglesndorhequaternionsreerivedohatheymayentegratedobtainheewrameandpdateheprojectilequationsofmotion.nlywonglesreequiredodescribeheotationfigidodyootllheulernglesrhequaternionsreinearlyndependent.onstraintsuchsormalizationconditionshereforexistandwillederived.ThedvantageofEulernglesoverquaternionsistheirintuitiveness.oll,pitchandawre aturalwayor pilotodescribeorvisualizetheangularmotionofnircraft.TheEulernglesreheaturalariableorescribing eekerorpinningyroscopeimbal.oweverheEulernglelgebrasomewhatmessyndnsymmetrical,orrorsreotlwaysvident.urthermore,hesinendosineofthethreeEuleranglesmustberepeatedomputed,providingcomputationalurdenhatoesotxistithuaternions.hus,lthoughquaternionsreotntuitivenheensehatEulernglesre,heirimplicityandymmetricormmakeerivationsmuchimpler,reessroneomaskerrorsndreomputationallymorefficient.origonometricunctionsrtranscendentalunctionseedoevaluated.Themostomplicateduaternionarithmeticequiresthequareofaquaternionortheproductoftwoquaternions.Forhiseasonuaternionlgebrasesirablenigitalutopilotsoruidedprojectilesecausetlleviatesheomputationalurden.urthermore,Euleranglesreusceptibletoingularitieshatanevoidedyusinghequaternionforrnalism.ThedetailsofheEulernglendquaternionormalismequiredoevelophe6DOFquationsfmotionor igidodynhehreeoordinateramesdiscussedbovewilledevelopednubsequentchapters.

    Vaughn, Harold R., "Aetailed Development ofhe Tricyclicheory," Sandia Laboratories, SC-M-67-2933, Albuquerque,NM ,968.

  • 8/2/2019 Am or Us Op a Per 1

    8/75

    2 REVIEWOFMATRIXALGEBRAFORORTHOGONALTRANSFORMATIONSThishapterontainsriefeviewfhematrixlgebraequirednhisdocument^ ' ^ ^An ymmatrixAsnrrayofelementsa..,= o, = om,f owsnd olumns,whichbeysheollowingawsfdditionndmultiplication.

    C= + ..=.. ..2.1)tj ij ijC= .=Ya.,^.2.2)

    Forheseoperationsoemeaningful,ertainmatchingestrictionsxistnhenumberofowsndolumns.orddition.A, nd mustllhaveheamenumberfowsndheameumberfolumns.orultiplication,henumberfolumnsf mustmatchheumberofowsof .TheproductC hasheamenumberofowssAndheamenumberofcolumnssB.uch matricesreaidoeonformableIfheumberfowsndolumnsreequal,hematrixsquare.ectoraneepresentedyn y olumnmatrix.Thesuallgebraicawsoldxcepthatultiplicationsotenerallycommutativendhemultiplicativenverseoesotlwaysxistseeelow).Wheneeferohenversef quarematrix,eenerallyeanhemultiplicativenverse.henverseofaquarematrixAsdenotedyA ^ndsdefinedy

    AA~^=A" A1 2.3)where sheunitmatrixi.e., longheiagonalnderolsewhere).hiscanlsoewrittennermsofthelementsofthematrix

    \a..a~ =ya.7 a., .^ 2.4)

    Wylie, .R.,r,AdvancedngineeringMathematics,"McGraw-Hil l ,NewYork,956.2Margenau,HenryandGeorgeMoseleyMurphy,TheMathematicsofPhysicsndChemistry,"VanNostrand,New

    York,956.

  • 8/2/2019 Am or Us Op a Per 1

    9/75

    where nd ., nd8.,sheKroneckereltaunctionwhichsunitywhenheubscriptsrequal' ^ n derotherwise.neneral,henversematrixoesnotXaysxist.enerally, necessaryndufficientonditionrTmatrixohaven^verseshattmustequarendhedeterminantofheamatrix^f^^^"', matrixsalledoningular. EvenwhenmftrixTnningularfindingLnversesenerallyelious.hiswillotS)nc"rnshereincewewilleealingonlywithorthogonalmatriceswhichreconcerns^^^J*"'^t,inpuiorehalllsoeehathenverseaneound:'u",71ri?Wy 'Fromhs'p.ZXedop.heummationonventionrhichtates'ha. umsimpliedoveranyndexhatisepeatedwee.Thus

    jWedefinenorthogonalmatrixsonethatpreservesthelengthofavectoruponwhichperates.hematrixperatorshanotategid-bodyectorsmustpreserveen'Jhinceotationoesottretchrompress igidody-JI JRotationalransformationmuste ubsetoforthogonalransformations.Whatpropertiesa \"weIrJ^eromhisdefinition?onsiderhematrix peratmgonhecolumnmatrixorvectorv.

    v' =Thismaylsobewrittenntermsofthelements

    V' ...jIftheenothofvspreservedbythistransformationA,hen

    v'.v' =.vwherethedotproductisdefinedby

    22V.V = V^ + V^ + V3Thus,fAsanorthogonal,ength-preservingransformation

    ^'i 'i i "iic\ j k^Thisspossibleonlyifa..a.,=8ij ikk

    (2.6)

    (2.7)

    (2.8)

    (2.9)

    (2.10)

    (2.11)ButthisisthedefinitionofthenverseofA.

    -1 _ 2.12)Thus,ornorthogonalmatrix,al' ^..Thenverseofa northogonalmatrix

  • 8/2/2019 Am or Us Op a Per 1

    10/75

    isbtainedynterchangingheubscriptsrheowsndolumnsfhematrix.hissquivalentoeflectingheatrixboutheiagonal.hisoperationscalledhetransposendwillbedenotedy uperscriptT. ThusA"=A 2.13)definesa northogonalmatrixWeefineheracerpurof matrix.Theracesimplyheumfllheelementsalongthediagonal.Thus

    TrA=TrA*^ =X^ii 2-14)Therace isbviouslynvariantoheransposeoperation sinceheiagonalelementsareunchangedunderransposition.Finally,wehowhatthetransposeofaproductoftwomatricesistheproductofthetransposesofthendividaulmatrices,butneverseorder.

    [A f ""A 2.15)Theproofisa sfollows:

    BA, =. " "A"; =B""A""].2.16)qi kqq qk"^tca nehownthatth eetenninantsnvariantoheransposeoperation.Thereforerom2.3)nd2.13 )wean

    concludeha thequarefheetenninantfnorthogonalmatrixs.hu sheeterminantmuste1.Thenegativeeterminantsssociated itheflections,hichbviouslylsoreservesength. Theositiveeter-minantsassociatedwithrotations.

  • 8/2/2019 Am or Us Op a Per 1

    11/75

    3ULERANGLES3.1 ROTATINGCOORDINATEFRAMES

    Weusearighthandcoordinate system withxpositive forward, ypositiveto the rightandzpositive down,asindicatedin Figure1. Each Euleranglealsoobeys arighthand rulewith respect toit s axis. TheroU>ccursaboutthexaxis,thepitch occurs aboutthey axisndtheya w \|/ occursaboutthezaxis.hus therollis positive clockwise lookingforwanifromtherear,pitch is positiveupward(eventhoughzis positivedown),andtheya w ispositivelooking forward.y convention, therotational transformationftommer-t ialtorotatingaxes consists ofaya w throughangle\|;,followedby apitchthrough angle8ndfinally aroU through angle < p .Theorderoftheserotationsis importantsincero-tiionsonotcommute.hecomponent rotations a re shown in Figure1.Theonginalinertialaxesrendicatedy x,, and.herimes mdicateintermediate axes ofsubsequent rotations.he finalrotating axes a re indicated by".y"Vndz'".Thesecomponentrotationsmay beexpressed a s

    cos(i|>) sin(i|f)

    0

    siii(4f)cos()cos(4>)

    (3.3)

    *Biakelock,John H.,-AutomaticContrrfofAircraftandMkates,"JohnWileyandSons,NewYork,1965.2 Etkin,Bernard,"Dynamics< r f Flight-StabilityandQmtioL" JohnWileyandSons,New York,1965.^ Etkin,Bernard,"DynamicsofAtmosphericFli^t,"JohnWil^and Sons,NewYork,1912.

  • 8/2/2019 Am or Us Op a Per 1

    12/75

  • 8/2/2019 Am or Us Op a Per 1

    13/75

    X3O -3OS2

    co'- > u-H 0 0-H o a, o X)u (Dea > . aA ux:> wo

    o *i(1 > r-tW < aio c'H -1u-I cn o o HM lU hO >!J= o e4J H E"Ho , Hs> . > ^ A pa . OOo ueE

  • 8/2/2019 Am or Us Op a Per 1

    14/75

    TT TT 0

  • 8/2/2019 Am or Us Op a Per 1

    15/75

    O=ft,+t +i^ (3.6)=j< f ey'4-4>f"

    Wewantoesolvehisnmoving-fixedoordinates,wherewecanwriteft=t,x" t,,y'" t, f"3.7)

    Theectoruantitiesnheightf3.6)reotnrthogonaletwhereasthosen3.7)rerthogonal.henitectors",y'"nd"reorthogonal.hesemayeesolvedsollows.heectortesolvednheorthogonaloordinatesnhemovingramesbtainedypplyinghepartialEulerotation:ft =

    ft4 e

    0

    ' I'

    - < j

  • 8/2/2019 Am or Us Op a Per 1

    16/75

    0 +eos('"

    K) = 0 (3.12)2'"

    Weandd vectorially3.8) to3.10) tobtain an explicit representation of(3.6)esolvednhemovingrame. Comparinghiso3.7)ivesheesultweseek,iz.ft,., = -ii2/2(6) i > (3.13)ft,,, = ^sin{ )os{%) osi ) (3.14)ft^,,, = ^cos{ )os{%)- in{

    These can be inverted for the derivatives of the Euler angles by the usualalgebraictechniquesogetdroppingheprimes)[ft sin{^) t^cos{ )\

    4 , (3.16)cos{Q)

    1 1

  • 8/2/2019 Am or Us Op a Per 1

    17/75

    4 )ft^ [ft ?fn( \>

    (3.19)

    Likewise,3.16)hrough3.18)mayewrittenromnspections< t > 1in(d))tan(8)os() -sin(4>)0in(d))/cos(e)os((j))/cos(e) ftftft (3.20)

    Expressions3.19)nd3.20)reotymmetricalrlegant.otehathematricesn3.19)nd3.20)ustenversesfnenother.hisaneverifiedyakingheroductfhesewomatricesnderifyinghathenitidentitymatrixesults.1 2

  • 8/2/2019 Am or Us Op a Per 1

    18/75

    Thechoiceforthecoordinateframeangularvelocityomponentst^,ftandt willependnhepplication.ody-fixedoordinatesreppropriateorsimulatinguidedrojectile,ocketrircraft.nuidedrojectileheseeker,ensorsndontrolmechanismsreixedoheody.Forhiseasontisasiestndimplesttodescribetheseubsystemsn coordinateframefixedotheprojectileody.heoordinateramengularelocityomponentsrehenequalohenalogousomponentsfheodyngularelocity,whichreconventionallydenotedyP, ndR.Thusnquations3.13)hrough3.20),wemaketheubstitutions

    ft = PXft = Q 3.21)yft = R z

    Thisshesualhoicemadeor DOFimulationsfuidedrojectilesndmissiles.Forunguidedprojectiles, non-rollingcoordinateframesoftenpreferred.uch arameitchesndawswithheprojectileutoesotollwitht.on-rollingramemighteefinedyettinghe omponentofheramengularveloci'ty,t anishryettingheimederivativeofheollEulerngle,,vanish.rom3.13)weeehathesewopproachesreotdentical.Thecoordinatesobtainedyheirstapproachrecallederoballisticcoordinatesandtheatterlane-fixedoordinates.hedvantagefheormersesimplificationfhequationsfmotioninceheouplingermsnvolvingtdropout,swehalleenChapter.Thispproachsoftenakenwithnalyticorlosed-formolutionsofhequationsofmotion.quation3.21)wouldemodifiedyettingt =.Theplane-fixedpproachsoftensedor DOFomputerimulationsofpinstabilizedrojectiles.pintabilizedrojectilesaveypicalpinatesfhundredsfevolutionserecond.sing ody-fixedepresentationncomputerimulationfuch projectileequiresnxtremelymallntegrationtimetepnd,onsequently,nordinatelylongcomputerrunimes.Theimetepmustemallohatherojectileollsotppreciableuringheimetep.Otherwiseheffectofgravitysmearedcrosshisngle.Whileeroballisticcoordinateswillhelp, moreusefulolutionstoequired /dt { ) forhecoordinaterame.ehalleenChapter hathe omponentofgravitysrigorouslyliminatednheixedlanepproach.Thisliminatesensitivityofthentegrationoherojectileollate,hough imilarensitivitystillpresentorhemuchlowerpitchndawates.hispproachanpeedpsimulationunimebyordersofmagnitude.AllhreepproacheswilleiscussedurtherwhenevelopinghequationsofmotionnChapter. Thelane-fixedoordinatesreerivednheollowing

    13

  • 8/2/2019 Am or Us Op a Per 1

    19/75

    sectionromhephysicaliewpointofconstrainingoneofthexesomovensingleplane.

    3.2PLANE-FIXEDCOORDINATESPlane-fixedoordinatesitchndawwithheodyutootollwithhebody.enceweefine|) ndd ldt0.orerecisely,nexissconstrainedtoalwaysemainnoneplane,houghtca notateinhatplane.Forexample,he-axisouldeonstrainedoheerticallaneoriginal-zplane).Thisanechievednnnertialomovingi.e.,lane-fixed)rametransformationonsistingin pitchboutheoriginaly-axiswhicheepshe-axisnheriginalitchlane,whichsertical)ollowedy awbouthenew-axis,whicheaveshe-axisunchangedndhereforetillnheerticalplane.Alternatively,hey-axisaneonstrainedohehorizontalplaneoriginal-yplane).Thissoney awbouthe-axisollowedy itchbouthe-axis.eanonstructheotationmatrixsefore,sing3.1)nd3.2).However,unlikeefore,heboveecipeinvolvesnverseransformationsromthenertialohemovingrameatherhanrommovingrameonertial,swasheasenhederivationf3.5)orheody-fixedrame.Thushebovetransformationsomprisedfhenversesfhematrixperatorsreviouslyused.Thus,ecalling2.15)ndhathenversefnrthogonalmatrixststranspose.or

    T ^=RT R -TTR =R R = R. =

    cos8osijisinil cos8in4osi|i-sinesin6osi]/sin8inij;COS0 (3.22)14

  • 8/2/2019 Am or Us Op a Per 1

    20/75

    Thisstheplane-fixednalogof(3.5). Itisoturprisinghathissquivalenttomakinganishn3.5).Likewise3.6)ecomesn n=\ ii^(3.23)Equation3.8)ecomes

    n, =0

    0

    -i|/in(Q)6

    +4 ;os{Q)Likewise,3.9)ecomes

    ^e= > 0

    e 0

    Equations(3.13)hrough3.15)ecome

    (3.24)

    15

  • 8/2/2019 Am or Us Op a Per 1

    21/75

    Q,,, = i|;os(Q)1 (3.26)i (3.27)fi^,, = -in(e) = -a ,,,anO) (3.28)

    Weaveubstituted3.26)nto3.28).TherimesnheubscriptsfHn(3.26)hrough3.28),swellsn3.13)hrough3.15)anedroppedincethexeseferredorerthogonal.nverting,withomelgebraieldsheanalogsof(3.16)hrough3.18),viz..a a

    cos(e) sin(e) (3.29)

    < f ) = 0 (3.30)= a (3.31)

    Thenalogsof(3.19)nd3.20)rennft 0

    0sin(e)0 cos(e)

    (3.32)

    and0 1 0 tan(e)

    0 10 0 i/cos(e) ftftft (3.33)16

  • 8/2/2019 Am or Us Op a Per 1

    22/75

    Inummary,heepresentationftheotationmatrixTsuniqueomatterhowitserived,lthoughomeethodsayotlwaysorkecausefsingularities.heotationmatrixTcaneviewedsanoperatorwhichotatesvectorin ixedoordinateystemor,onversely,saotationofthecoordinatesystemwhileheectoremainsixed.nheormerointfiew,heectorhasheameengthutitscomponentsrechangedecauseitsdirectionnpacehashangedueohevector'sotation.nheatterpointfiew,heectorhasheameengthndirectionnpaceuttsomponentsreifferentbecauseoftherotationofthecoordinateframe.Ifweakeheatterpointofview,wea neehatheotationmatrixsusthematrixofthedirectionosines.eti' denotethehreemutuallyorthogonalunitbasisectorsofheprimedrotated)oordinateystemndenotehehreebasisectorsofheunprimedoordinaterame.willehelementsofhetransformationromheunprimedotheprimedrame.Then

    i'I 3.34)P9 9Takingheotproductndmakinguseofhemutualorthogonalityofheasisvectors,weanwritei''I,II, 3.35)p /q q I = h =pq qliThushelementsfheotationmatrixouldebtainedyakingheotproductsfhenitasisectorsfhenprimedoordinateramewithhebasisvectorsoftheprimedrame.

    17

  • 8/2/2019 Am or Us Op a Per 1

    23/75

    4 QUATERNIONSWewillevelopustnoughfhelgebrafuaternionssseededorunderstandingndritingixegree-of-freedom6OF)imulations.Quaternionsre uadrupletofumbersstrictlypeakingperators)hatanbeonsideredoeeneralizationfomplexumbers.ecallhathequantity

    i = V~l 4.1)mayeesthoughtfsotationperator.huss0egreecounterclockwiserotationfromhe"real"othe"imaginary"xis.eeFigure.Thesquare"f swouccessive0degreeotations.hissquivalento180egreeotation.hisakesusoheegativeealxis.heubeof s270egreeounterclockwiseotationromheositiveealoheegativeimaginaryxis.tsnhisensehat=1nd=i - .he4thpowerof sjusta360degreeotationwhichgetssackoherealxis.Forquaternionswedefinethreeuchquantities,orrespondingtootationsboutthe,,nd xesespectively.Asnheasefheonventionalmaginarynumber,heperators,,nd -canenterpreteds0egreeotationsabouthe,,nd xes;ndhequaresorrespondo 80egreeotationaboutheppropriateirection,ndoorth.heseperatorsreometimescallhyperimaginaryumbers.ustsheonventionalomplexumbersaneusedoprovide'machineryorreatingotationsn plane,wemightxpecthatthreeimaginary"perators,,nd mightesedoreatotationsboutthreexes,.e.,nhreeimensionalpace.nothersefulropertyfquaternionssthattpermitsusomultiplynddividevectors.hiswilleeentoprovide muchimplermathematicalreatmentthanmatrices.Recallthatotationsrenotnumbersbutoperatorsndonotcommute.husjdoesotquali,ndoorth. ittleitofhoughtndomexperimentationwithotationsil lonvinceheeaderhatheollowinglementaryrelationshipshold.

    22/ = = =1 4.2)i = i c = -ji 4.3)j = i = -k 4.4)k = ; = -i 4.5)

    18

  • 8/2/2019 Am or Us Op a Per 1

    24/75

    + ix

    REALAXIS+x

    -IX

    Figure. ImaginaryNumber InterpretedsaRotationOperator

    19

  • 8/2/2019 Am or Us Op a Per 1

    25/75

    Wetake quaternionoe quadrupleQ= Q Q, Q- Q.ometediouslgebrail lerifyhatultiplyingutwouaternions,akingllpossibleproductsndimplifyingusing4.2)hrough4.5),ivesheollowingresult.W =W^+iW^+ jW^+kW^ Q^+iQ^+jQ^+kQ^]4.6)

    =W ^Q^-W^Q.-W^Q.-W.Q.;\+^[iQ^ +jQ,+kQ^]+^[iW ^ +jW ,+ kW,]+i{W^Q.-W^Q,+j[W3G1-WjG3] +k[W^Q.-^Q^]

    Uponnspectionf4.6),weeehattheirstinefterheastqualitycontainsexpressionshatesemble otproductnd rossproduct.hisuggestsnalternativeormulation.eanreat, nd otsotationperatorsrhyperimaginaryumbersutsnorthogonaletofunitvectorsndonsiderquaternionormallyoonsistf calarpartnd ectorart.hisetsswritethequaternionproductxpressedn4.6)morecompactly.Thequaternionproductisequivalentlydefineds

    yfQ=W^Q -W.QW Q Q^WWxQY4.7)where

    WWjjW and Q=GoG 4.8)Furthermore,weanbtaintillnotherlternateormince4.6)a nlsoerearrangednto

    +[WjQ^ W^Q^-W^Q^+W^Qj 4.9)+[w,G-M,w,e, W2,]

    Thismayeorganizedntohematrixforms

    20

  • 8/2/2019 Am or Us Op a Per 1

    26/75

    WQ="1A.

    +W(j -Wj -w., -w.+Wj + Wg -w. +w.+W-, +W, +WQ -W +w, -w, +w, +w.

    Go Gi

    G3

    (4.10)

    + GoQiQ-G3+ ^160G3G2+ G;G3GoGi+ 63G2GiGo W o

    Compare4.7)nd4.10)o4.6).Theyrequivalent.4.7)nd4.10)remoreompacthan4.6)utrerbitraryfuseds definitionoruaternionmultiplication,someauthorsdo.nheotherhand,4.6)lowsogicallyndautomaticallyromheroperties4.1)o4.5),ndivesnsightntoheconnectionwithotations.ewillusehepproachhatshemostonvenientinachase.Someusefulxpressionsollow.Definetheonjugate

    Q*-[Q,-Q] (4.11)Definehenormorabsolutevaluequared

    IQ -QQ* Go -G0 *Q Letusdefinennvesendverifytworks.

    Q'-^-Go,-G]/(Go +Q'Q)=* Q\

    (4.12)

    (4.13).

    Itollowsthat

    2 1

  • 8/2/2019 Am or Us Op a Per 1

    27/75

    QQ' 0] 4.14)Ifheormanishes,hequaternionsaidoeingularndhenversedoesnotxist.tsasyohowhathenormof productqualsheproductofthenorms.henverseof productsheproductofhenversesneverseorder.Theonjugatef roductsheroductfheonjugatesneverserder.Thus

    IQ1Q2I = IQ1IIQ2I 4.15)

    [QjQj]* = Q2* Qi* 4.17)Ineneral,uaternionrithmeticwilleamiliarxceptoron-commutativityofmultiplication.Commutationreaksownormultiplicationecausefhecrossroductermn4.7).therwisellhethersualawsrebeyed.Quaternionrithmeticsistributivendssociative,utommutativenlyoraddition.dentitylementsxistorothdditionndmultiplication,iz.0,0)and1,0).nverseslsoxistordditionorllquaternions.multiplicativeinversexistsornyon-zerouaternion.ee4.13).heulesordifferentiationreheamiliarnes,xceptareusteakenecausequaternionsootommute.snxample,onsiderheerivativefheproductoftwoquaternions.

    [QjQ2'=Q{Q2 QiQ2' i'22'1^^^)Sinceheormf roductqualsheroductfheorms,twouldeemplausiblehat uaternionfunitormouldeusefuloreatotationsincerotationsustreserveheengthfectors.ehalleeaterhathisconjecturesssentiallyorrect.nnticipationf uaternionormalismorrotation,omeelationsforunitquaternionswillnoweprovided.Considerheunitquaternionsometimesalled versororEulerquaternion)e=e^e] e^ ^^e^] 4.19)

    wheree2 = ee4.12).Thus2222e + +. +, = \ 4.20)22

  • 8/2/2019 Am or Us Op a Per 1

    28/75

    From4.15),he"length"orormof quaternionspreservedwhenmultipliedby unitquaternion.

    |eQ=Q 4.21)Sincehenormofaunitquaternionsunity,4.13)ellsushathenverseofunitquaternionsequaltotsconjugate,.e.

    e ^ [e,-I]=[e,,-e-e-e] =*4.22)Also

    i \i e e e ] 4.23)I 0 1 2 3 JBydifferentiating = 1,weobtain

    . -1-1e = eApplying4.16)o4.24)ives

    r.if'e = e J (4.24)

    -1r 11[e J 4.25)Sincehenverseof nituaternionsqualotsonjugate,henversesn (4.25)aneeplacedyconjugation.

    r.* e = e J * r= [e J 4.26)

    Vectorsca nereatedsquaternionswith erocalarpart.Notehat

    23

  • 8/2/2019 Am or Us Op a Per 1

    29/75

    V = = ? V 4.27)Someuthorseferouaternionhataserocalarartsurequaternion.Generally,hequaternionproductofwopurequaternionsvectors)isot purequaternionvector)incehecalarpartfheroductsusuallynotero.ometimesheroductfwouaternionswithon-zerocalarartyields purequaternion.Forxample,from4.26)

    r.e =- J (4.28)Thissnlyossiblefheboveroductsyperimaginary,.e.,urequaternionorvector.Weowryoormulate otationperatornermsfquaternionsperatingon vectori.e., quaternionwith erocalarpart).heimplesthingtoryismultiplicationf ectorromheightrefty nituaternion. nitquaternionshoseninceotationspreservetheengthorormofavector,ndweaneerom4.21)hatmultiplicationy unituaternionwillothangelength.irsteillryultiplicationromheeft.ehalleehatmultiplicationromheeft'only(orromherightonly)sunsatisfactory.Wechoosefortheotationoperatortheunitquaternion

    X [x^ - [cos( p) inO) J 4.29)wherethe"hat"denotes unitvectorand

    X '+X=.,'+x'+x'+3 4.30)Forthevectorwechoose quaternionepresentationwitherocalarpart

    q= [0, ] 4-31)Thenwetryepresenting otationy

    q'= q= [XQ [0q] = 4.32)

    24

  • 8/2/2019 Am or Us Op a Per 1

    30/75

    -\.q XQ9 +X^ j Forquaternionq'oe vector",hecalarpartmustvanish.Butmultiplyingaureectory uaternionroducesnotheruaternionwith_non-vectorcomponent.Thus,unlesswemakenrthogonalityssumptionhat.q othecalarpartanishes,heuaternionmultiplicationoesoomuch.utuc hanssumptionsooestrictive.Alternatively,eouldrymultiplyingyfromheright.Thisgives

    q '= qX .= [0,q\ [\ ^ J= [-^-^> ^ o ^ ^ ^ J (4.33)Notethat,rom4.22)weca nwrite

    q '=qX '^= [+?.X V+ " ^ ^ J (4.34)Thecalarpartsof(4.32)nd4.34)haveoppositeign.Thisuggestswemighttryombining4.32)nd4.33)nto imilarityransformationnhehopehatwemightbebleogetthecalarpartoropout.histrategyturnsouttoeaoodne.ehalleehathispproachoesotequirenyestrictiveassumptionsuchsherthogonalityfheuaternionndheector.naddition,tillurnutoequivalentoheatrixotationperatordescribedn3.5).

    q'Expanding

    q'= [XQX] 6, ]Xp -X](4.35)

    (4.36)

    [-X,jX. +Xjj^.X XX .X+XJ'^ +\kxq+.qk-^^X X-XX^xXjUsinghedentities - 4 xBJ.I= 0ndAxBxC [A.C\-C[A.B^,ithhenormalizationonditionortheunitquaternion ,viz.,4.29),hisbecomes

    q'= ( ^ -V r-0, (2X^^-1)9 +2{\.q)k 2XJXX ;I (4.37)25

  • 8/2/2019 Am or Us Op a Per 1

    31/75

    Thusq'efinedy4.35)still ectororureuaternionndtsengthspreserved,sequiredor otation.eeedomanipulatehesetermsohatqppearsnheightwithomeoperatorxpressionotseft.hisvectorpartcanewrittennmatrixomponentformyusingtheollowingdentities

    k - 1 XX j ....X.q,ijk j k (4.38)0 -X.

    0 -X,0

    ^1

    ^2^3

    Also,- ^

    \(--^(--rij{[\.q)k\ =^^^.X. =KA^g^ = LUX )q\^S S^I

    XjX^ XjXjX^Xj X^X^ X^Xj

    x,x,3 2 ss^1^2^3

    (4.39)

    where the superscriptenotes the transpose (interchange of rows andcolumns). Thusweanwrite._q'.= y[2\ -ljl XX . +X^Xjg (4.40)

    = 2K, , H L

    1 zoA.,A -\ XjXj0^3XQ j % X.X. QX, X,X- + XyX,A,A~,-.A.2 j1\(j j

    26

  • 8/2/2019 Am or Us Op a Per 1

    32/75

    =X j X j XQX J

    XjX --QX ,%[XQ-XJ+X,-X3]A

  • 8/2/2019 Am or Us Op a Per 1

    33/75

    X= [cosO) inO)nj 4.29)where

    X jj=osO)1/2

    sinO) [-j,^II. II 1.1.1.1.1.n

    sinO)Wewillstablishheconnectionbetween4.35),4.40)nd3.5)ymeansofanexampleatherhanomprehensivendigorousroof,yealingwithrotationbout ingleoneofthecoordinatexes.Ofcourse, completegeneralrotationaneuiltupyeveraluchomponentotations.akehepecialcasewhere ieslonghey-axis.Then^=osO),^=inO)nd^ ^ =.Theeaderaneadilyerifyyubstitutionnto4.40)hat3.3)illegeneratedxceptorheuriousacthathenglej >squalo^!hisprovidesnsightntohenterpretationfheotationssociatedithquaternion.nEulerquaternionenerates otationboutnxisdeterminedbythevectorpart.Thehalfangleofrotationsdeterminedyhercangentoftheatiooftheengthofthevectorparttothecalarpart.Thematrix sheotationmatrixrommovingxesonertialxes.tsnumericallydenticaloheuchessymmetricndomputationallyorecomplexxpressionn3.5).utsimpleshisuaternionormfherotationmatrixppearsoe,ecalltsusthematrixndectorartsf(4.37)ndermatrixlgebra.ut4.37)sdenticalo4.35),hichsheexpressionf otationf ectorepresenteds quaternionwitherocalarpart.tsothingorehannituaternion ultipliedyheectormultipliedyhenversefhenituaternion,wheremultiplicationmeansquaternionultiplication.xamine3.5)ndoteowumbersome,ndcomputationallywkwardts.Thenxamine4.40)ndinally4.35).owdeceptivelyimple,legantndomputationallyfficient4.40)nd4.35)re!Byowheeaderhouldeginoavenppreciationorheowerfhequaternionormalism.heresrawack,owever.neanasilyintuitivelyraspheEulerngles.Theouruaternionomponentsreotoeasilyubjecttontuition.Because of this, it is more convenient to define the initial conditions of a

    28

  • 8/2/2019 Am or Us Op a Per 1

    34/75

    simulationnermsofEulernglesatherhanhequaternionshemselves.ecanuseheEulernglesogenerate otationmatrixT.thenemainsoindthequaternionshatwouldgenerateheameotationmatrix.WealreadynowhowogenerateTromhequaternions ..Howoweohenversion,btainthe .romT?Thexpression4.35)anenvertedoiveheuaternionsnermsfherotationmatrix n4.40).hisnversionaneccomplishedsollows.Fromheiagonallementsf4.40)ndhenituaternionormalizationcondition4.29),weobtainhefollowingourimultaneousquations,wherewewillesingherace,Tr ,whichsefinedsheumfheiagonalelementsofthematrixT,viz.,Tr =n"*"^22' ' ' ' ^33"

    22^22=\-1 +2 ~3" (4.42)^3 3\ -S -2 +S2

    1 = >-o +1 +2 * "3Theseca neolvedimultaneouslyogivethefollowing.

    1/ 2 \Q= % [ r(T)]1/ 2 X , % [ T-Tr{T)] (4.43)

    X^= % [ 7^2-'(T)]1/2X 3= % [ 73 3-7r(T)]

    Theres ignmbiguityoesolve.Thehiefonstraintonhelgebraicignsofhe sthattheotationmatrix romwhichthe weregeneratedhoulderegeneratedwhenheseXreubstitutedn4.40).Notethatoegativematrixelementsanrisefllhe haveheameign,whetherpositiveoregative.Thushehoicefignsotrivial.heiagonallementsfToseoconstraintincehe ccurnlysquaresnheiagonal.Theff-diagonalelementsappearscrossermsndrethekeyoourask.From4.40),wean takellpossiblecombinationsofT : ii^j.29

  • 8/2/2019 Am or Us Op a Per 1

    35/75

    (4.44)V2= f l3- 31 SS= ^f^23 ^32^S= ^f^32-^23^

    Ineneratinghesexpressionsonvestgateheignmbiguity,weeehat(4.44)rovidesnlternateormoretermininghe ,rovidinghatneofthe .snown.Forxample,upposeweobtain rom4.43).Thenand anebtainedrom4.44)yividingheppropriatexpressionsn(4.44)yX Thusweobtain

    k^=%[1 Tr[T]\1

    A. =1

    1 A =24

    1 A .

    4

    [ 7 - 3 2--23] 4.45)

    [^13 ^3lJ

    IT TI 2 1 ^12jThishybridolutionombining4.43)nd4.44)asnnexpecteddvantage.Theignmbiguityemainsnlyor hisig nmbiguitysotignificantsincehangingheig nf^illhangeheig nfllhe..uthequaternionslwaysppearsproductsofpairsofquaternionsorheSquareofa quaternion.husheotationmatrix-isnvariantnder ignhangeorSee4.40).lthoughhe.signonventionoesn'tmatter,tsonventionallychosenoepositive.Thebovenversionanaveumericalroblemsnomputation,owever.The or=1,2,3,ecomell-definedwhenheXnhedenominatorvanishes.Thiswilloccurfheraceofheotationmatrixquals1 ,whichwouldhappen

    30

  • 8/2/2019 Am or Us Op a Per 1

    36/75

    whenji= ndj )=-iradiansor80egrees.Furthermore,umericaloundoffrrorsoccurnhemmediateneighborhoodofthisegionwhensing4.45)foromputation.Itsnotdifficultovoidhisprobleminceweidothaveotartwith n (4.43).notherhoiceouldaveeenmadeeforenvoking4.44)orheother ...hisouldeoneyvaluatingllour .n4.43),ickinghelargestndhensinghisdominant.oindheother'xn4.44).ewouldagainobtainesultsthatwouldensensitivetoignmbiguitybutwouldoweinsensitivetoomputationaloundoffrrorsswellyputtingsfarawayfromanyingularity.ThislgorithmsescribednTablewithwomodifications.oronsistency,theignsrexaminedtthendofthealgorithm.fX ^ jsnegative,heignsofall.reeversedoeep ositive,ccordingouronvention.Weavealrea'dyeenhathangingheverallignfllourquaternionshasoffectonheotationmatrix.econdly,valuatingllfourquaternionsusing4.43)scomputationallywasteful.tsufficientoompareheracendhehreediagonallementsfoelectheominantuaternion.heompletealgorithmsshownnTable.Inorderousehequaternionswemusthave chemeordeterminingheimerateofhangeofhequaternionsohatheseatescanentegratedoprovideupdatedquaternionssheystemvolvesnime.hesewouldexpressionsthatlay oleompletelynalogouso3.16)hrough3.18)orheEulerangles.hiserivationouldaveeenccomplishedytandardatrixalgebraictechniques.owever,hederivationwouldhavebeenxceedinglyongandedious.Usingquaternions,tisratherimplendtraightforward.Since ndq'reectorsrureuaternions,heybeyheransformationla wgivenn4.35),

    q=XqX =XqXq' XqX =XqX

    (4.46)

    Nowwewishoaketheimederivativeof inhemovingcoordinaterame.Asiswell-known,ermusteddedueohengularelocity,fherotatingcoordinateframe. Takinghederivative

    3 1

  • 8/2/2019 Am or Us Op a Per 1

    37/75

    Table.btainingheQuaternionsromheRotationMatrixTDefineTjjp=Tr[Tl.CompareT..here =0,1,2,3.Findthedominantquaternionmostpositiveorleastnegative.)TheindexofthedominantT eterminesthedominantX tobeosedn4.43).

    Determinetheotherthreek.,j=in(4.44).Thefoorcases,withthedominantXirstare

    X =%[l--rr(T)]\=

    K'4X.

    4\.

    \j=% [1+2rjj-Tr(J)]1

    4X.

    4X .

    S=

    Xj=% [1+2Tj,-Tr(T)f1

    =

    \=

    4X.

    4X ,

    X j=% [1+aTjj+Tr(J)]1

    \= 4X .X^=.. 4X .

    ^= 4X . [ ^ : 3 * ^ ^ 3 . 1ExaminethealgebraicsignofXIfnegative,hangethesignofallfour ..

    32

  • 8/2/2019 Am or Us Op a Per 1

    38/75

    dq_^_= ~~[X. q'] axq]dtt= X~'X x'^q'X "^q'X 0 x^"]4.47)

    Allhesetermsarepurequaternionsorvectors. SinceX"%' ~^ ~^ = 4.48)

    weconcludethatX q'X x'^q'X -[ ixq= +[0 qxft

    or 4.49)X XqX~\+x"\qX~ X= +[0 qxO]

    .-11-= X q X X Differentiating X=1,0]ives X - X .Thusfrom4.7)

    [0qxH = "^ -"^X = qx[X" X ] 4.50)Recallfrom4.28)hatX Xsapurequaternionorvector.Thus

    ^1-ft= X 4.51)Weusehe,, otationescribedn4.1)hrough4.6),incethisormalismmakesitasiertogrouptermsndind matrixoperatorquivalent.Weobtain

    2X~^X=t=[ t =0 ft^+ft^ ftj = 4.52)2[k -iX -jX -kk ]k^ k^ k^ k^]

    33

  • 8/2/2019 Am or Us Op a Per 1

    39/75

    2[Vo+Vl+SS+SS] / [ -X^XQ+XXJ +X3X2-X2X3J^^-^^-S^^^Ws]+ ^-s^+VrMs+Vs]

    Thismayexpressedintothematrixormrecallquation4.10)0ftXftyft

    =+ X ^+s +S +S-\ +\ +S -^2 -^2 -S +^ +S

    X3 +X^ s +\

    (4.53)

    Theoplementnheolumnmatrixorhengularelocityaneeenovanishyakingheimeerivativefheormalizationonditionn,iz.,(4.29).imilarly,heirstinef4.52)aneuaternion-multipliedromherightby oyieldX .=%Xft =%[XQ+x^+\ +K^MQ+ft^ ft^ :ftj (4.54)

    %XjjO-Xjft^-x^ft^-Xjftj+y.i[\ Q+\ ti -\ a + \ a +%j[X20+X3ft +XQft^-XjftJ M[X30-X2ft +Xjft^,+XQft^

    Thismayeorganizedntohematrixormusing4.10)

    =X, -X3X 3 +X^

    +^2 +S +^0 -\+X 3 -x +x ^ +x

    0ftXft> ft

    (4.55)

    34

  • 8/2/2019 Am or Us Op a Per 1

    40/75

    Seequation4.10)Notehatoth4.53)nd4.55)rereefingularities,unlikeheirnalogs3.19)nd3.20).Bothmatrices(4.53)nd4.55)requalto unitmatriximes ddedonntisymmetricmatrix.hesematricesreinversesfnenotherswellsransposesfnenother.Henceheyreorthogonalndpreserveheengthfheectorsheyperaten.hushevectors ndOH,ireelatedy otationn-spacewithheatternavingonly hree-vec^tor^part.omparetheselegantpropertiesandheimplicityndowomputationalburdenssociatedwithheuseoftheseequationsversus3.19)nd3.20).fthebovederivationsnotimplenoughforyou,hematrixn4.55)mayeobtainedyealizingitsthenverseofthematrixn4.53),ndaneobtainedyubstitutingintohematrixn4.53)heinverseoftheunitquaternion .Butfrom4.22) eealizehatthenverseofa unituaternionsbtainedmerelyyhangingheignfheasthree"vector-like")omponentsofheuaternion.Thusllhateedsoeoneoinverthismatrixsohangeheig nfheff-diagonallements.heressomethinghereorveryone:hemathematician,hephysicist,hengineerndtheprogrammer.Sincequaternionsarenota sintuitivea sEulerngles,tisometimesdesirabletomoveackndorthetweenheEulernglenduaternionepresentations.GoingromEulerngleoquaternionsepresentationanechievedyusingtheEulernglesovaluatetheransformationmatrixusingquation3.5).Thetransformationmatrix anheneutnto4.41)obtainheuaternions.Notehatfter4.41),twasotedhatheignor^sotmportant.Whythissobecomesapparenthortly.romhefirstowndastcolumnof3.5),and4.40)

    sine-7^3^=Hk^k^-X^k^]Tr/2

  • 8/2/2019 Am or Us Op a Per 1

    41/75

    Table2. EvaluationofARCTAN(A,B)verAllFourQuadrants

    IFB>0 tan'^A/B)IFB=0,A>0 IT/2IFB=0,A

  • 8/2/2019 Am or Us Op a Per 1

    42/75

    5 EQUATIONSOFMOTIONInhisection,heigidodyquationsofmotionwilleevelopedorhreetypesfoordinateystems:ody-fixed,eroballisticndlane-fixed.ody-fixedoordinatesotateroll,itch,aw)withheodyf rojectile.encethengularvelocityftofthecoordinateaxessequalothengularvelocityooftheprojectilebody.ee(3.13)hrough3.15).Forbody-fixedcoordinates

    i =o = ijrin j > 5.1)XXft =0) =Q |isin4>os8-1-6os |) yft =i ) = osd )os inf ) z

    RecallhatnerodynamicsheomponentsfhengularelocityfheprojectileodyareonventionallyenotedyP, ndR.Theseoordinatesarehenaturalhoiceorguidedprojectilesinceheeekerndensoroutputs,actuatorarameters,nd,soorthremostimplyndaturallyxpressedn bodyoordinates.owever,orpintabilizedrojectiles,erymallintegrationimetepsequired.therwiseheoordinateystemillollthroughtoogreatnngleduringthetimetepndmearhedirectionoforcessuchsgravity.oealwithhis,lane-fixedoordinatesreutilized.hesecoordinatesitchndawithherojectileutootollitht.nparticular,onexissconstrainedoemainingn ingleplane.nourcase,hey-axiswilleonstrainedoheorizontallane.eequations3.22)ndfollowing.hismpliesthatheollEulerangleoftheplane-fixedfi^ameatisfiestherelationsdanishesorheixedlanexes. However,hecomponentofhengularvelocityoftherame,iz.t doesotanishndtof the frame does not equal P (the x component of the projectile angularvelocity). Theseelationsmaybefoundinquations(3.26)hrough3.28).ft =i} /ine RaneXO^2-= -e 5.3)yi = os8 Z

    Comparingthisxpressionorftith5.1),weeethatj)sheollateoftheprojectileithespectofane-fjxedoordinaterame.5.1)a lTereconstructedrom5.3)yddingj )o5.3)ndotatingwith3.3).hisexpressionnsefulfheulerngleepresentationssed.ithhequaternionepresentationorlane-fixedoordinates,emakesef3.5),(4.40)nd{ > oobtain37

  • 8/2/2019 Am or Us Op a Per 1

    43/75

    Thus

    - 3: I' 0 2Jtanw= =r p 22"^33 \-\-2 2X, 3 2/?[x^X 3-^ X ^ .

    ii = * 22222[x,X,-XX^1

    (5.4)

    (5.5)

    Thedenominatorsn5.4)nd5.5)anvanish,orrespondingo ='ir/2.n definingplane-fixedoordinates,weadomposeEulerngleypelgebran theuaternionsndaveorruptedhemwithEulerngleypeingularities.Thus,uaternionsnlane-fixedoordinateshouldotesednerticaltrajectories.seody-fixedoordinatesnstead.hissoturdensomecomputationallyinceheirectionfgravityslonghexisofoll.inally,weouldhoosetn.5 .1)oreroballisticoordinates.hishoicewillsimplifyquationsofmotionInheollowingevelopment,esultswilleerivedsingheerm Thiswillllowllthreeoordinateformalismstoedevelopedimultaneously.Attheend,heesultsanepecializedooneorheotheryettingtqual ortheody-fixedaserqualeroorheeroballistic"zeroP")aserqual Ran8ortsquaternionquivalent ee5.3)nd5.5)).i nd2Rorllhreeases.rom3.13)weeehatheefinitionsoreroballisticandody-fixedramesreotquiva:lentutecomeheamenheimitfsmall ormalld /dt.hedvantageofchoosingplane-fixedcoordinatesfora non-rollingystemshatthaso componentofgravityn latarthmodel,thusliminatinghepossibilityofgravitymearingduetoollduringntegrationofthequationsofmotion.Thiswillbehownnquation5.10)elow.)Inummary,heody-fixedoordinatesoll,itchndawwithherojectileandctsfhysicallyttachedoherojectile.lane-fixedoordinatesitchandyawwithheprojectileutootollwitht.hey-axissonstrainedomovenhehorizontalplane.eeheiscussionorquations3.22)o3.33).TheEulerngleotationmatrixorhelane-fixedaseanebtainedromtheody-fixedmatrix3.5)yetting|) .Equivalently,3.3)seplacedytheunitidentitymatrix.^ Vaughn,HaroldR., "Aetailed Development of the Tricyclicheory," Sandia Laboratories, SC-M-67-2933,

    Albuquerque,NM,968.

    3 8

  • 8/2/2019 Am or Us Op a Per 1

    44/75

    TheormfNewton'saw mv/dtsalidnlynnertiali.e.,on-accelerating)oordinaterames.fheoordinateystemsotating,Newton'slawwillotevalidecause rotationsancceleration.owever,heawan bemendedorotationalrames.sswell-known,Newton'saworinearaccelerationsndorcesn otatingrameakesheormtheuperscriptM denotesthemovingrame,ody-fixed,plane-fixedoreroballistic)''^'*F + mg = mV+ ExmV mV + mflxV5.6)

    dtFontainsppliedorcesuchshrustnderodynamicorces.incehecoordinateystemson-inertial,tlsoontainsfictitious"ermsuchscentrifugalndCoriolisforces".erivativesofnertialpropertiesuchsmasswilleomittednhisdevelopment^efining^ ,V,nd^ W,thecomponentsoftheabovevectorquationsnow

    MF+mg =U+ m[QW-RV]F +mg^ V+ m[RU-lW] 5.7)y*

    MF+mg =W+m[aV-QU]zRearranging F^

    U g"'-QW+RVXm^ JohnH. lakelock,AutomaticControlofAircraftandMissiles,"JohnWileyan dSons,New York,1965.^ KeithK.Symon,Mechanics ,"Addison-Wesley,Reading,Mass ,960.* Goldstein,Herbert,ClassicalMechanics" ,p136 ,AddisonWesley,Reading,Mass ,959."* Landau,L.D.,ndE.M.Lifshitz,ClassicarMechanics",p128,AddisonWesley,Mass ,960." "Th ethrustofareactionnginethat smeasurednateststandlreadyontainstheeffectsoftherateof changeof th emass .incehisnformationsusuallyvailableornputnto imulationratherthannozzlepressures,derivativesfthemassootppearnhequationsfmotion.owever,fhehrustsoe-reconstructedromressuremeasurementstheozzle,masserivativeermsndheelocityfhexhaustaseswouldaveoeakenntoaccountnth eequationsofmotion. Thiswillbediscussedin detailnafuturereport.

    3 9

  • 8/2/2019 Am or Us Op a Per 1

    45/75

    FV+ g -RU+ a 5.8)

    mF M w=+ g ^-a v+QU m

    Theomponentsor aneobtainedymultiplyingheravityectormheearthrameyheppropriate matrix.Forhepecialaseor latarth,gonlyhas verticalor componentpointingownward.Coriolisndentripetalaccelerationorrectionshouldemadeince latarthsoteallynertialsincehearthotates.fistanceslownndimeflightrehort,hesecorrectionsarenegligible.)Weeedhenertialoodyransformation romhenverseof4.40) ndtherepresentationofthegravityvectorin flatarths(

    g^=[X^X^-K^K^]gg""=nk k +\\ ]g orflatarth (5.9)

    Ifheserwishes,heomponentsor nheeroballistic.lane-fixedrbody-fixedramesor latarthouldeobtainednermsoftheEulerngles-ITinsteadofquaternionsyusinghexpressionorTn3.5)nsteadof(4.40).

    f'^g^ =gineg^ ^sinose

    40

  • 8/2/2019 Am or Us Op a Per 1

    46/75

    Notehatheresolane-fixed-axisomponentfravityinceinj )orplane-fixedoordinates,dvantagefheefinitionfplane-fixedoordinatesadoptednhisevelopment.twouldoteruef^ washosen.ngeneral,f as r omponentsnnertialoordinates,heullotationmatrixTwouldhavetoeused.See3.5)nd4.40).RecallinghatOshengularelocityofheoordinateramewithespectothenertialrame,oshengularelocityofheodytselfwithespecttoheinertialrame,ndhemomentfnertiaensorsymmetric,.e.,.. .;Newton'sawsforangularvelocitiesandmomentsareoftheform

    M lxL7(0-1-jc[/(o] (5.11)M M M

    +1 -Iyx -I

    -I y+J yy

    -I-I

    -I1ZV2 1 ci^ 11: > 1 '1 A

    TimederivativeoftheangularvelocityofthebodyAngularvelocityofcoordinateystem

    Va /

    X -/II-/4 - nn yjcA

    xy +1

    -I-I

    crossproduct

    yyI1zyz (O(0C O

    AAngularvelocityofthebody

    4 1

  • 8/2/2019 Am or Us Op a Per 1

    47/75

  • 8/2/2019 Am or Us Op a Per 1

    48/75

    + 1 PI QI R XXyz-I P1 QI R yxy*"z-I PI Q1 R zxyzQ-1 P-I Q1 R- -I P1 Q-I RzxyzxyzR-\-I P-I Q-I R-a [-I P-I Q1 RXXyzxyza [-1 P1 Q1 R]- +1 P-I Q-I RXxyzxyz

    ThismayewrittenL P XX ( 5 .15 )

    IZ y\ 1/ -/ \QR < -Vanisheswithaxialsymmetryr 2i+/ \R -Q J+/ \-QP-R\-l \RP-Q\

  • 8/2/2019 Am or Us Op a Per 1

    49/75

    IfnseplacedyP,quations5.14)r5.15)reheeneralquationsofmotionorhengularelocityomponentsfigidodynody-fixedcoordinates.oronveniencenrogramming,ermshatanishhenheproductsfnertiaanishaveeenroupedogether.ody-fixedoordmatesareppropriateornsymmetricodiesndoruidedrojectiles,incehesensorsndontrolystemrenaturallydescribednody-fixedcoordinatesthatrollwithheody.Notehatheomponentsofhemomentofnertiaensorwillnotchangedueotheotationofthebody-fixedoordinates.Forxially-symmetricpin-stabilizedrojectiles,lane-fixedoordinatesremoreppropriate.fbody-fixedoordinatesreusedwithapidlypinningpinstabilizedrojectiles,hentegrationimetepn egree-of-freedomsimulationsrivenoeverymall,ncreasingheimulationunime.Thissnecessaryoeepheollngleuringhentegrationimetepmall.hisavoidsmearingravitynhexpressionsorx, nd.ee5.7)r5.8).Withplane-fixedoordinatesndxialymmetry,heproductsofnertiaand anish,nd 2^seplacedsing5.13)n5.14)r3.15).Notetfiatthecomponeiitsof"hemomentofnertiaensor wouldgenerallyvarywithimeftheprojectilewereotatingbutheramewerenot.otonlywouldthise omplicationuttwouldriveownhentegrationimetepndincreasentegrationime.imilarlyorheerodynamics.incehemotivationforlane-fixedoordinatessreateromputationalpeed,tsointlessoeliminategravitationalmearndubstitutenertialorerodynamicmear.Thusaxialymmetrynmasspropertiesnderodynamicsisgenerallyassumed.Afteronemoreesultsobtained,heseormulaewilleollectednTables o8.rom4.55),usingheappropriatexpressionori^,wecanwriteownhetimederivativesofthequaternionsfortheseframes.

    44

  • 8/2/2019 Am or Us Op a Per 1

    50/75

    Forbody-fixed.^0 = % \= % s= % s= %

    -px-G\,-/?X3+pXj,-X 3 ex +PX 3+Q\^-?x^ -PXj+GXj ?X Q

    (5.16)

    Forplane-fixed,using(4.55)nd5.5)Xo= -2J?X, 13 0 2,2,[XQ-X -X.+XJ] -ox.-R\,=-%

    X.? x,(2+

    f 2,1 [Xo-X,-X,+X 3 ] J

    \ =& +2R'Kr XjXj XQX.XQ-X -X.+XJ'] -x. X ^ (5.17)

    X.? =-% X ,Q

    [XQ-X'-XJ+XJ]]

    45

  • 8/2/2019 Am or Us Op a Per 1

    51/75

    X , ii+lRX A. A 3nAjL[Xo-X;-X2+X3]

    + GXQ-X^

    =% >^oC X jR2 2 ; 2,1X(,-X^-X,+X-]J

    X,= -2i?X. ^1^3 ^0^2[Xo-Xj'-x;+x:] +X j ?X j

    =% X i?X iG\ 2,1[Xo-Xi-X,+X,]J

    Aingularitywillccurfheenominatoranishes.rom3.22)nd4.40),thisenominatorsustTos(e),whichanishesor =17/2.Thisshesameingularityiscussedfter5.5).tsotdvisableoselane-fixedcoordinatesorearerticalrajectories.seody-fixedoordinatesnstead.Forerticalrajectories,gravitymearingdueoollatesnotheproblemtsforothertrajectories.AllhequaternionndEulerangleesultsorheinearndngularquationsofmotionreollectednheollowingablesorody-fixedndorlane-fixedcoordinatesespectively.Forompleteness,weotehatheeroballisticramequationsfmotionanbebtainedyettingianishn5.8)nd5.15),ndettingtanishn(4.55)ranishn3.16).sithlane-fixedoordinates,eurthersimplifyyeglectingheproductsofnertia.hisormwilleoundnTable5.urtherimplificationesultsromssumingxialymmetryndonstantmass.eeTables nd.

    4 6

  • 8/2/2019 Am or Us Op a Per 1

    52/75

    Table3. Body-FixedEquations

    U g -QW+RVmF

    V= g RU+PW 5.1),(5.8)mF z

    W g"-PV+ QUzm-1ThecomponentsofgravitationalccelerationreobtainedusingT Forheflatarthpproximation,use5.9)nd5.10).

    L P XXL" wJ QR < -Vanishesforaxialsymmetry 5.15)

    \ ^2! , r ^ - 1 , f - 1 +/ \R Q \+I \ -QP-R\+I \RP-Q\

  • 8/2/2019 Am or Us Op a Per 1

    53/75

    Table4. TimeDevelopmentoftheBody-FixedTransformationMatrixParameters

    X=^

    x=X,=

    PX,-Q\,-?X ,+PX-Q, R\\+PX 3 XQ-?xj-PX2+2X j JXpj

    (5.16)

    or

    ^

    t t >

    [Q 5i()J C05 (9)

    8Go^(4>)- ini

  • 8/2/2019 Am or Us Op a Per 1

    54/75

    Table. Plane-FixedEquations(AxialSymmetry, =/ =/,productsfinertiavanish)yy zz I " ^

    u g QW+RVXm ym (5.8)

    M W \-g -D,+ QU m

    ThecomponentsofgravitationalaccelerationrebtainedusingTFortheflatearthpproximation,use(5.9)nd5.10).L P XXM Q + PR-RntX(5.15)N R- QP +a QtX^xwhereft isobtainedromxft =RaneX (5.3)

    or

    ft = 2 ^ KS-V2]2222 (5.5)49

  • 8/2/2019 Am or Us Op a Per 1

    55/75

    Table. TimeDevelopmentofPlane-FixedTransformationMatrixParameters

    k,=% \,KQ [21 [XQ-XJ-XJ+X-JJ-% Xj? x,G [2,1 [Xo-Xj-X.+X-Jj (5.17)

    X. +V 4 ^oC \ R2 2 2 2- 1Xo-X^-X +Xj] ^

    X ,= +% X^ i? \QXo-Xi'-x:+x;]]

    or( } >= 04 ) = 0

    R ^ = co5(e)eQ (3.16)(3.18)

    C T / z eabovexpressions5.17)nd3.16)reingularnearthevertical. Useody-fixedcoordinatesnstead.Seethediscussionnthetext.)

    5 0

  • 8/2/2019 Am or Us Op a Per 1

    56/75

    Table7 . AeroballisticEquationsTheserebtainedyettingI = 0,ndssumingoroductsfnertia.furtherimplificationa nemadebyetting/ = =7 (axialymmetry).

    u F ^ g^-QW+RVm

    V ym F M

    (5.1),5.8)

    W g ^QUm

    1 ThecomponentsofgravitationalccelerationreobtainedusingTFortheflatearthpproximation,use5.9)nd5.10).L P 5.15)M +1Q+I R PtXN +1R-I PQtX ^

    5 1

  • 8/2/2019 Am or Us Op a Per 1

    57/75

    Table8. TimeDevelopmentoftheAeroballisticTransformationMatrixParameters\= % Q R). \= % ."GX3 + Rk s= ^ +Q Rk^ ^3 = ^ [ ^ Q+ Rk

    (5.16B)

    or

    ^

    4 >

    [Qini4>) os(i^))cos(Q)

    [Qin(^) os(

  • 8/2/2019 Am or Us Op a Per 1

    58/75

    6. INTEGRATIONOFEQUATIONSOFMOTION6.1 Plane-FixedEquationsRecallortheplane-fixedase,heorcequationsfromTable re

    FU g^QW+RV

    mF

    V= 1-^ -RU+aW 6) mF MW g^IV+ QVm

    wherel^sgiveny5.13)nd siveny5.9)or latarthrmoregenerallyy hereheubscript efersonnertialrame.Thesexpressionsarereadilyntegratednumerically.Forheplane-fixedase,hemomentquationsromTable a neputntonuncoupledformorntegration,where/ = = .ty2yL p

    IXXe [M-/^^;?7'+/^/?n;J 6.2)

    I

    R \N+IP-IanIX X \I " tThesereeadilyntegratednumerically.53

  • 8/2/2019 Am or Us Op a Per 1

    59/75

    6.2 Body-FixedEquationsForbody-fixedase,t = androm5.8)

    U g^QW+RVm

    V = ym

    M -RU^PW

    w =Fzm

    B -PV+ QU

    whichreeadilyintegratednumerically.Forhebody-fixedcase,quations5.15)mayewritten

    P [L+I^^Q+lJ-fXp,Q,R]]

    Iyy

    whereI

    / // ]QR+I \R^-Q^\-IP+IP ' Iz yy r^ J Xy(6.3)

    Q[M+I ^P+I ^R-f^[p,Q.R]] 6.4)

    54

  • 8/2/2019 Am or Us Op a Per 1

    60/75

    ^2=-^..]^^+^.2^+^l^'-^'j-^.,e/?6 . 5 ) / = f/ -I ]PQ-I PR+I QR+I \Q^-P \3y X X yzxy-^

    Aswritten,hesequationsreoupled.fheroductsfnertiaanish,henumericalntegrationstraightorwardecausehequationsecomeuncouplednhederivatives,sn6.2)bove.venftheyootvanish,heproductsfnertia ^nd reenerallyuitemall.hisuggestssimplepproximation.ThequationsouldeolvedysingheerivativesdP/dt,dQ/dtanddR/dtonheightsideofequation(6.2)romheprevioustimestep.inceheproductsofnertiareypicallymall,hispproximationhouldbedequatenpractice.ormoreprecision,heesultsouldeterated.hatis,heesultsorthederivativesdP/dt,dQ/dtanddR/dtnheeftideouldeputackntoightideobtain etterpproximationeforeperformingnintegration.Ifheroductsfnertiareotmallrfneishesovoidhisapproximation,equations(6.4)nd6.5)aneputntoheform

    L-f. +/ P-I Q-I R 1XyxzA/-/,=-/ P+I Q-1 R 6.6)yyz "-"/N-f^ -IP-I Q+I R 3zzz

    TheyaneolvedimultaneouslyouncoupleheerivativesofP,Qnd yinvertingthematrixofmomentofinertiaomponents. Formallywecanwrite

    55

  • 8/2/2019 Am or Us Op a Per 1

    61/75

    pQ R

    +///XXyz-I1Ixyyz-II[xzzz N-f, (6.7)Evaluatinghisnversesomewhatediousutheroceduresornvertingmatrixrewellknown . Ifwedenotethematrixoeinvertedy

    j" det ^ / / -/yy zz yzI I +1 Ixz yz xy zzr1xyz xz yy

    I I +1 Ixz yz xy zzIi'X Xzz xzr1xyxz XXyz

    I I +1 Ixy yz xz yyI I +1 Ixyz X Xz

    2I I -IXXyy xy(6.8)

    wheredet = 2 2 2III--III --III - -II-// - /X Xyyzz xyzz xz xy yz yy xz zz xy XXyz (6.9)

    ^Gelb,Arthur,tal..AppliedOptimalEstimationTheory",p7,MITPress,Cambridge,Mass,974.

    56

  • 8/2/2019 Am or Us Op a Per 1

    62/75

    6.3 AeroballisticEquationsRecallortheeroballisticcase,heforcequationsfromTable are

    u = FXm

    M -QW+ RV

    V =F ym

    My RU

    w .^ Fz M- + g.QUm

    ThemomentquationsromTable reL P J XX

    X X^N+ 1 QP\IXt

    Thesereeadilyntegratednumerically.

    (6.10)

    ^MIRP\ 6.11)

    5 7

  • 8/2/2019 Am or Us Op a Per 1

    63/75

    APPENDIX

    ALGORITHMSFORMPLEMENTATIONOFTHEEQUATIONSOFMOTIONINSIXDEGREEOFFREEDOMCOMPUTERSIMULATIONS

    5 8

  • 8/2/2019 Am or Us Op a Per 1

    64/75

    TRANSITIONSBETWEENEULERANGLESANDQUATERNIONSTheInitializationProblem

    SincemostpeopleremorentuitivelyomfortablewithEulerngleshanwithquaternions,heEulerngleouaternionransformationaneusedonputinitialonditionsnulerngleormatorheonveniencefheserndconvertoquaternionsornternalusen imulationfodesired.Conversely,quaternionssednternallyy imulationaneonvertedoEulernglespriortogeneratingoutput,ortheconvenienceoftheuser.QUATERNIONSTOEULERANGLES:TheEulernglesanevaluatedirectlyromheuaternionsrndirectlyfromotationatrixhatadeenevelopedromheuaternions.se(4.56).Notehatheenominatorfhexpressionsor|;ndor n4.56)anvanish.ThealgorithmnTable inhisdocumentca nhandlethiscasecorrectly.EULERANGLESTOQUATERNIONS:1 )valuateheransformationatrix romheEulernglessing3.5).(Withlane-fixedoordinates,heollulerngle|)usteetoero:Ahernatively,3.22)aneused.)2)EvaluatethequaternionsusingTable.

    59

  • 8/2/2019 Am or Us Op a Per 1

    65/75

    TRANSITIONSBETWEENBODY-FIXED,PLANE-FIXEDANDAEROBALLISTICCOORDINATESPlane-fixedoordinatesreorefficientorodelingpin-stabilized,unguided,otationallyymmetricprojectiles.heresoomponentfgravityoutsidefhe-zlanenlatarthodel.husheseoordinatesreinsensitiveoravitymearingecausefoll.owever,lane-fixedcoordinateshave ingularityorverticaltrajectoriesandody-fixedoordinatesarereferredoruchrajectories.ody-fixedoordinatesrelsooreappropriateoruidedtagesrthertageshaton'taveheequiredsymmetry.imilarly,eroballisticcoordinatesrelsomorefficientorxially-symmetric,pin-stabilizedprojectileshanody-fixedoordinates.Furthermore,thequationsofmotionreimplerorhishoicehanheotherwoandidatecoordinateframes.Thisdocumentpermitsheevelopmentof degreeofreedomimulationn whichheoordinaterameanehangedromnetageonotherousehecoordinateframehatsmostappropriateorfficientnachparticulartageofa trajectoryimulation.enerally,therhanhanginghequationsfmotion,nothingpecialneedsoeonewhenransitioningetweenneypeoframeandnother.heresnxceptionorransitioningoplane-fixedoordinatesfromotherframes.

    Whenransitioningolane-fixedoordinatesheresiscontinuouschangenherientationftheoordinateystem,ince ustanishn plane-fixedcoordinates. Thisrequirestheollowingadjustments:1)TherojectilengularelocityectorP,Q,R)usteemporarilytransformedoon-movingi.e.,nertial)oordinatesusingheastvalueoftherotationmatrix.2)ewotationatrix usteenerated.Ifheuaternionrepresentationseingsed,hequivalentulernglesusteregeneratedirst,shownn4.56).)etoordinaterameEulerollanglej)oero,etainingheegenerateditchndawngles.RecalculateheotationmatrixwithheseewEulernglesusing3.5)r(3.22).3 )Usehismatrixootateherojectilengularelocityectornhenon-movingrameackohemovingplane-fixed)rameobtainhenewP, ndR.4)fusinghequaternionormalism,egeneratehequaternionsromherotationmatrixusingTable.

    Resumealculationssingheppropriatequationsfmotionorheypefcoordinate frame being used, for either the Euler angle or quaternion60

  • 8/2/2019 Am or Us Op a Per 1

    66/75

    representationsescribedlsewherenhisocument.Theitch ndaw)i Eulernglesorheodyndorplane-fixedxeswilledentical.heplane-fixedrameollEulernglej)s onstantnddenticallyero.heollEulerangleorheeroballisticframesnotonstantutgenerallywillotvarymuchfromtsvaluewhenransitionoccurred.Whensinglane-fixedreroballisticoordinates,heodyngularelocitycomponent usteeconstructedorsewithheerodynamics.hentransitioningackobody-fixedoordinates, ollngleaneestoredyirstconstructinghenversei.e.,ranspose)fheollotationmatrixrom3.3).Theewulloationmatrixsbtainedyakinghematrixroductfheexistinglane-fixedotationmatrixndheollmatrix,nhatrder.hisprocedurewillnotcorrupttheothervariablesnthequationsofmotion.

    6 1

  • 8/2/2019 Am or Us Op a Per 1

    67/75

    BODY-FIXEDCOORDINATESUSINGQUATERNIONSRotationmatrixfrombody-fixedtoinertialcoordinates:Calculate T( ^.^,^, ) from4.40).Thenverseotationmatrix,romnertialoordinatesoody-fixed,sobtainedbyakinghetransposeofthismatrix.

    Timederivativesofthequaternions:Calculate \ ,^,^,^ from5.16).

    OtherEquationsofMotion(SeeTables and4.)

    a )Forcequations:Use(5.8)with l ^ .See5.1).Obtainomponentsfravity.inody-fixedrameromhenertialframebyusingT .Forflatearth,use(5.9).b)Momentquations:Use(6.4)nd6.5)or(6.9)o6.11).

    62

  • 8/2/2019 Am or Us Op a Per 1

    68/75

    PLANE-FIXEDCOORDINATESUSINGQUATERNIONSRotationmatrixfromplane-fixedtoinertialcoordinates:Calculate T( , ^, ,^) using4.40)Thenverseotationmatrix,romnertialoordinatesoody-fixed,sobtainedbytakinghetransposeofthismatrix.

    Timederivativesofth equaternions:Calculate \ , ^, ^,^ from5.17).with

    a 2^[V3-V2]2 2 22from5.5).Thereisaconstraintn4.57).

    OtherEquationsofMotionSeeTables and):a )Forcequations:Use.(5.8)witht from5.5).eeabove.See5.1).Obtainomponentsofgravitynody-fixedrameyusingToi rflatarth,se5.9).ecausefheonstraint4.57),hereso omponentofgravity.b)Momentquations:Use6.2).

    63

  • 8/2/2019 Am or Us Op a Per 1

    69/75

    AEROBALLISTICCOORDINATESUSINGQUATERNIONSRotationmatrixfrombody-fixedtoinertialcoordinates:Calculate T (^, ,^,^) from4.40).Thenverseotationmatrix,romnertialoordinatesoody-fixed,sobtainedbyakinghetransposeofthismatrix.

    Timederivativesofthequaternions:Calculate \ , , ,\, from5.16B),or(5.16)withP=0.

    OtherEquationsofMotion(SeeTables7and8.)a )Forcequations:Use(5.8)withi^-.See5.-1).Obtainomponentsfravitynody-fixedrameromhenertialframebyusingT .Forflatearth,use(5.9).b)Momentquations:Use6.11).

    64

  • 8/2/2019 Am or Us Op a Per 1

    70/75

    BODY-FIXEDCOORDINATESUSINGEULERANGLESRotationmatrixfromplane-fixedtoinertialcoordinates:Calculate T(} ) ,,); from3.5).Thenverseotationmatrix,romnertialoordinatesoody-fixed,sobtainedbyakinghetransposeofthismatrix.

    TimederivativesoftheEulerangles:ft=P=Q=R5 .1)X (iQin(), j ,-^ 3.16)cos(Q)4 >p + (Qin(

  • 8/2/2019 Am or Us Op a Per 1

    71/75

    PLANE-FIXEDCOORDINATESUSINGEULERANGLESRotationmatrixfromplane-fixedtoinertia!coordinates:Calculate T(j)=0,6,);) from3.5).Thenverseoiationmatrix,romnertialoordinatesoody-fixed,sobtainedbyakinghetransposeofthismatrix. Notethatj )szeron3.5).

    TimederivativesoftheEulerangles:Use j >=t )= instead3.17)ndt = Qndft^.=.

    R4 from3.16).eQ from3.18)OtherEquatioBSofMotionSeeTables and6.)a )Forcequations:Use(5.8)witht from5.3).See5.1).Obtainomponentsofgravitynplane-fixedramebyusingT .Forflatarth,use5.10)withj)=0.b)Momentquations:Use6.2).

    6 6

  • 8/2/2019 Am or Us Op a Per 1

    72/75

    AEROBALLISTICCOORDINATESUSINGEULERANGLESRotationmatrixfromplane-fixedtoinertialcoordinates:Calculate T(),,j; from3.5).Thenverseotationmatrix,romnertialoordinatesobyakingtheransposeofthismatrix. body-fixed,sobtained

    TimederivativesoftheEulerangles:X y R (5.1)

    (Qin() (3.18)

    OtherEquationsofMotionSeeTables7and8.)a )Forcequations:Use(5.8)withO^ .See5.1).Obtainomponentsofgravitynody-fixed-frameyusingflatarth,use5.10). .Forb)Momentquations:Use(6.11).

    67

  • 8/2/2019 Am or Us Op a Per 1

    73/75

    CONSTRAINTS,LIMITATIONSANDPRACTICALREQUIREMENTSI.Normalizationconstraintnquaternions:

    Weequire k^ ^ ^ ^ from4.29).Atachntegrationtimetep(ortleastatfrequentntervals),normalizeydividingach..by

    -1/2f 2III.Constraintforplane-fixedcoordinates:

    Werequire X^ 3+0 1" ^^^4.57).Checkhisconstraintregularly.fitbeginstoail:

    a )egeneratetheEulernglesromhematrix using4.56),b)et j)=,ndc)egeneratequaternionsfrom4.42).

    III.Euleranglesingularity:Terminateimulationf sooloseo90egreesecauseofheingularityathatngle.ee3.16)nd3.17).N.B.,heEulerngleotationsfoll,pitchndawayehosenooveheingularityoccurlonghehorizontalatherhanheerticalxes. etterolutionsoseuaternionswithody-fixedoordinates.orlane-fixedoordinates,eearagraphVbelow.IV.uaternionsingularityforplane-fixedcoordinates:ThisingularitysimilaroIIxcepttonlyoccursorplane-fixedoordinatesandotorody-fixedreroballisticoordinates.ody-fixedoordinateschouldeusedorverticaltrajectoriesatherthanplane-fixed.

    6 8

  • 8/2/2019 Am or Us Op a Per 1

    74/75

    V. Axialsymmetryrequirementforplane-fixedandaeroballisticcoordinates:

    a ) =b)Productsofinertial^^,I^^,I^^,/^,,/>/,,llvanish.c)Aerodynamiccoefficientsdonotdependnollangle.

    69

  • 8/2/2019 Am or Us Op a Per 1

    75/75

    DISTRIBUTIONLISTCommanderArmaments Research,DevelopmentandEngineeringCenterUSArmyTankAutomotiveandArmamentsCommandATTN: AMSTA-AR-AE,AMSTA-AR-AET,AMSTA-AR-AET-A,

    B.BusheyW.EbiharaM.Amoruso(15)E .F .BrovmS .ChungA.FarinaA.FiorelliniT.ForteJ.GrauS .HanH.HudginsW.KoenigW.KuhnleC .LivecchiaG.MalejkoJ.MurnaneC.NgD .PedersenJ.SnyderW.ToledoR.TrohanowskyJ.ThomasovichE .VazquezJ.WhyteB .WongL .Yee

    AMSTA-AR-FSP-A, T.HaritosR.ColletteK-KendlM.RosenbluthPicatinnyArsenal,NJ07806-5000