10
American Institute of Aeronautics and Astronautics 1 Modeling of Plasma Reforming of Ethanol into Hydrogen in the Electric Discharge in a Gas Channel with Liquid Wall Anatolij I. Shchedrin 1 , Dmitry S. Levko 2 and Vadym V. Naumov 3 Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, 03028 Ukraine and Valeriy Ya. Chernyak 4 , Vitalij V. Yukhymenko 5 and Sergei V. Olszewski 6 Faculty of Radio Physics, Taras Shevchenko Kyiv National University, Kyiv 02033 Ukraine This paper presents the results of the theoretical study of the process of low-temperature plasma-assisted reforming of ethanol into molecular hydrogen in the electric discharge in a gas channel with liquid wall (DGCLW) in the regime where the discharge is ignited by the breakdown with the air injection between tubular electrodes and then it burns in the ethanol-water mixture self-sustainingly without air supply. The numerical modeling clarifies the nature of non-thermal conversion and explains the kinetic mechanism of nonequilibrium plasma-chemical transformations in the gas-liquid system and evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-water ratio in the mixture. Nomenclature G = gas flow rate T = temperature p = pressure N = concentration W = discharge power Id = discharge current E/N = reduced electric field dt = time step = time scale L = length V = volume I. Introduction T the present time, hydrogen (H 2 ) objectively is considered as one of the most prospective energy resources for the future that can be economic, renewable, ecologically clean and environmentally safe. 1 Among possible physical-chemical technologies for bio-origin H 2 production, including steam reforming and partial oxidation of hydrogen-containing bio-fuels, 2,3 a low-temperature plasma-assisted reforming of bio-ethanol (biomass-derived ethyl alcohol, C 2 H 5 OH or EtOH, in mixture with water) is believed to be a good alternative approach. 4-6 There are various methods of plasma reforming of liquid hydrocarbon fuels by using quasi-equilibrium (thermal) and nonequilibrium (non-thermal) plasmas in arc, corona, microwave, dielectric barrier discharges, etc. 7,8 Each plasma system has its merits and demerits, and even difficult to compare. 9 One of the most promising among them is a low-temperature plasma-fuel processing at the plasma-liquid system (PLS) using the dc discharge in a gas channel 1 DSc, Head of Research Group, Department of Gas Electronics, [email protected] 2 PhD Student, Junior Researcher, [email protected] 3 Senior Research Scientist, [email protected], AIAA Associated Member 4 Professor, Department of Physical Electronics, Plasma Research Lab, [email protected], AIAA Member 5 Junior Researcher, [email protected] 6 Senior Research Scientist, [email protected] A 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 25 - 28 July 2010, Nashville, TN AIAA 2010-7062 Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Downloaded by Stanford University on October 13, 2012 | http://arc.aiaa.org | DOI: 10.2514/6.2010-7062

[American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

  • Upload
    sergej

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Page 1: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

1

Modeling of Plasma Reforming of Ethanol into Hydrogen in

the Electric Discharge in a Gas Channel with Liquid Wall

Anatolij I. Shchedrin1, Dmitry S. Levko

2 and Vadym V. Naumov

3

Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, 03028 Ukraine

and

Valeriy Ya. Chernyak4, Vitalij V. Yukhymenko

5 and Sergei V. Olszewski

6

Faculty of Radio Physics, Taras Shevchenko Kyiv National University, Kyiv 02033 Ukraine

This paper presents the results of the theoretical study of the process of low-temperature

plasma-assisted reforming of ethanol into molecular hydrogen in the electric discharge in a

gas channel with liquid wall (DGCLW) in the regime where the discharge is ignited by the

breakdown with the air injection between tubular electrodes and then it burns in the

ethanol-water mixture self-sustainingly without air supply. The numerical modeling clarifies

the nature of non-thermal conversion and explains the kinetic mechanism of nonequilibrium

plasma-chemical transformations in the gas-liquid system and evolution of hydrogen during

the reforming as a function of discharge parameters and ethanol-water ratio in the mixture.

Nomenclature

G = gas flow rate

T = temperature

p = pressure

N = concentration

W = discharge power

Id = discharge current

E/N = reduced electric field

dt = time step

= time scale

L = length

V = volume

I. Introduction

T the present time, hydrogen (H2) objectively is considered as one of the most prospective energy resources for

the future that can be economic, renewable, ecologically clean and environmentally safe.1 Among possible

physical-chemical technologies for bio-origin H2 production, including steam reforming and partial oxidation of

hydrogen-containing bio-fuels,2,3

a low-temperature plasma-assisted reforming of bio-ethanol (biomass-derived

ethyl alcohol, C2H5OH or EtOH, in mixture with water) is believed to be a good alternative approach.4-6

There are various methods of plasma reforming of liquid hydrocarbon fuels by using quasi-equilibrium (thermal)

and nonequilibrium (non-thermal) plasmas in arc, corona, microwave, dielectric barrier discharges, etc.7,8

Each

plasma system has its merits and demerits, and even difficult to compare.9 One of the most promising among them is

a low-temperature plasma-fuel processing at the plasma-liquid system (PLS) using the dc discharge in a gas channel

1 DSc, Head of Research Group, Department of Gas Electronics, [email protected]

2 PhD Student, Junior Researcher, [email protected]

3 Senior Research Scientist, [email protected], AIAA Associated Member

4 Professor, Department of Physical Electronics, Plasma Research Lab, [email protected], AIAA Member

5 Junior Researcher, [email protected]

6 Senior Research Scientist, [email protected]

A

46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit25 - 28 July 2010, Nashville, TN

AIAA 2010-7062

Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 2: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

2

with liquid wall (DGCLW).10

Advantages of this approach are high chemical plasma activity and selectivity of

plasma-chemical transformations, providing high productivity and efficiency of conversion in the continuous mode

at a relatively small electric power consumption (in comparison, for example, with electrolysis) at a high-voltage /

low-current discharging in a flow of atmospheric pressure. Non-equilibrium plasma assists as an energetic catalyst

containing electrons and electronically excited atoms and radicals, which easily break chemical bonds (C-H, O-H)

and initiate a chain-branching conversion of hydrocarbons that does not occur in usual conditions at ambient

temperature. The highly developed plasma-liquid interface with a large surface-to-volume ratio and deep injection of

plasma particles into the liquid is also favored to intensification of fuel conversion in the system. At that, due to

intensive turbulent heat and mass transfer, the PLS is thermally 'cold'. The main idea of the DGCLW is that it can

burn directly in liquid fuels without preliminary gasification. It has already demonstrated its capability in the

plasma-supported conversion of ethanol into hydrogen-rich synthesis gas (syngas), followed by plasma-enhanced

combustion in experiments with EtOH-air mixtures,11

where the estimated plasma power budget does not exceed a

few percent of the heat of combustion.

In this paper we report new results of our numerical modeling of the process of nonthermal plasma-assisted

reforming of ethanol in the DGCLW-PLS, focusing on kinetic effects of plasma-chemical conversion and

production of H2 in the specific case of electric discharging without air supply.

II. Methodology

The numerical modeling of the process of plasma-chemical reforming of EtOH was done for a scheme of the

PLS with the DGCLW used in experiments12

(Fig. 1). The initial plasma-forming gas (air) was injected into the

work liquid (ethanol/water mixture) through the tubular electrodes: cooper rods (3) inserted in dielectric quartz tubes

(1) installed one opposite other in the reactor (quartz vessel). The electric discharge was ignited in the gas channel

(2) in the gap between the electrodes (3), where a high-voltage breakdown occurred. Such discharge initiation was

used because electric breakdown in gas phase is much easy than in liquid phase.13,14

After the ignition the air supply

was stopped and dc electric discharge was burning in the appearing gas cavity in the mixture of ethanol-water

vapors self-sustainingly.

Due to heat confinement, the cavity provides good environment for fast ethanol-water vaporization and mixing

in the discharge flow. A high degree of ionization in the field between electrodes makes the cavity conductive and

stable in discharging. The discharge plasma contains a lot of active atoms and radicals associated with electron-

impact dissociation of ethanol and water molecules and dissolved air that actually sustains a chain process of

plasma-chemical conversion of hydrocarbons. The gas-discharge products in the form of microbubbles moved

through the liquid volume in the reactor, where were collected in the measuring chamber, cooled and analyzed as

syngas (at room temperature). The initial gas flow rate, EtOH/H2O ratio and processing time were varied in order to

optimize the process. In nominal regimes, the discharge power did not exceed 200 W (currents 50-300 mA).

According to measurements11,12

the temperature of the work liquid in the reactor did not exceed the boiling point of

aqueous ethanol solution at atmospheric pressure.15

In plasma-chemical kinetic modeling of the PLS-DGCLW, we used the theoretical model16

according to which

the process is divided into two stages: I) process in the discharge cavity, and II) process in the reactor volume. The

physical model statement uses the next assumptions17

: i) electric power during the discharge is averaged over the

discharge volume; ii) electric field in the discharge is uniform and does not vary in time and space; iii) discharge

plasma in the cavity is homogeneous. It is supposed also that initial air flow does not affect the discharge products

Figure 1. Schematic of the DGCLW cavity for the EtOH/H2O processing:

1 are dielectric tubes, 2 is a plasma column, 3 are metallic rod electrodes.

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 3: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

3

after the air supply was stopped and that after the passage of the discharge products from the discharge to the reactor

the gas composition in the cavity is fully refreshed. The geometry of the discharge cavity is assumed cylindrical with

radius R equal to the radius of the electrode tube and with length L equal to the interelectrode distance. The gas flow

rate in the reactor is considered the same as in the discharge and it is kept constant for each simulation run.

The computational modeling includes: 1) calculation of the electron energy distribution function by solving the

Boltzmann kinetic equation; 2) hydrodynamic modeling in quasi-1D approximation; and 3) chemical kinetic

modeling by solving a system of kinetic equations for all kinetically valuable components in the plasma-chemical

system. The kinetic mechanism involves 65 species (C2H5OH, N2, O2, H2O, H2, CO, etc.) and includes 92 electron-

molecular processes and 446 chemical reactions with a set of corresponding cross-sections and rate constants

compiled according to update recommendations of the IUPAC, NASA and NIST databases18

(details are available at

A.I. Shchedrin's group Web-site19

).

For description of plasma-chemical kinetics and calculation of the composition of the plasma-chemical medium

under consideration, a following system of kinetic balance equations was used

...,

iij lm

lmimljijeii kNPNNkNkS

dt

dN , (1)

where Ni, Nj, Nm, Nl are concentrations of neutral and charged molecules, atoms and radicals, kij, kiml are rate

constants of chemical reactions between different components, Sei is the source of formation of species in electron-

molecular reactions, Pi is the input of primary molecular components in the discharge cavity, kNi is the escape of the

discharge products from the discharge cavity caused by the heat expansion.

The values Pi in eq. (1) for H2O and C2H5OH (fuel components) are derived by their evaporation, for N2 and O2

(air components) it is derived by their aqueous solubility,15

for H2 it is derived by its cathodic evolution due to

electrolysis. Since the electrodes are located in the liquid, beside the electric discharge, the electrolysis also occurs

in the system: hydrogen is liberated on the cathode, and oxygen is liberated on the anode. This effect was taken into

account according to the first Faraday's law of electrolysis described by the equation

dAech I

MV

Nk

t

N

, (2)

where N is the number of gas species liberated on the electrodes per unit of time per unit of volume, kech is the

electrochemical equivalent for H2 and O2, NA is the Avogadro number, Id is the electric current, and V is the volume.

In fact, the radius of electrodes covered by liquid varies with gas flow rate G, but in calculations it is kept constant.

The values Sei in eq. (1) are determined as

ii

iei

ei

ei

eiWW

W

V

WS

1 , (3)

dfQNnm

qW eieiieei )()(

2

0

, (4)

0

2 )()(22

dfQNnm

q

M

mW iie

i

i, (5)

where W is the discharge power; V is the plasma volume; Wei is the specific power consumed in the electron-

molecular process of inelastic scattering with the threshold electron energy ei; Qei() is the cross-section of the

inelastic process; Wi is the specific power spent for the plasma heating; Qi() is the transport cross-section of

electron scattering; m, ne are the mass and concentration of electrons; Mi is the mass of species; q = 1.602x10-12

erg/eV; and f() is the electron energy distribution function (EEDF) normalized as 1/2f()d = 1.

The EEDF was calculated by solving the Boltzmann kinetic equation in the standard two-term approximation

taking into account the electron-impact excitation, dissociation and ionization processes with primary molecular

components including N2, O2, H2O and C2H5OH listed in Table 1. In fact, the ionization processes could be

neglected, since the degree of ionization in plasma is small (< 10-5

), but they have been included for completeness. It

was assumed that the electric field in the discharge is constant, E= 20 kV/cm (reduced electric field E/N 100 Td).

Results of the EEDF calculations are shown in Fig. 2. According to these calculations, in the low energy range (with

a mean energy of electrons 0.05-2 eV) the EEDF is related to rotational and vibrational excitation of molecules,

mainly H2O and C2H5OH; in the high energy range (> 10 eV) the EEDF is related to dissociation and ionization of

molecules and characterized by a Maxwellian function, dropping with increasing energy of electrons. In the studied

discharge mode of the DGCLW without input air flow, the EEDF has practically no effects of O2 and N2 because

their content in the plasma-liquid vapors is relatively small if compared with H2O and C2H5OH.

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 4: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

4

Table 1. Basic electron-molecular processes used in the EEDF calculations (E/N = 100 Td)

N

o Process (Threshold energy th, eV) Rate constant ke, cm

3s

-1 Reference

1 O2 + e- O(

3P) + O + e

- (6.0 eV) 1.4x10

-9 [20]

2 N2 + e- N(

4S) + N + e

- (9.8 eV) 1.0x10

-10 [20]

3a O2 + e- O2(a

1g) + e

-(0.98 eV) 1.8x10

-9 [21]

3b O2 + e- O2(b

1g

+) + e

-(1.63 eV) 1.1x10

-9 [21]

4a N2 + e- N2(A

3u

+) + e

- (6.17 eV) 3.6x10

-10 [22]

4b N2 + e- N2(B

3g) + e

- (7.35 eV) 3.1x10

-10 [22]

5 N2 + e- N2(a

1g) + e

- (8.4 eV) 2.1x10

-10 [23]

6 O2 + e- O2(v) + e

- (0.19 eV) 5.4x10

-9 [24]

7 N2 + e- N2(v) + e

- (0.29 eV) 1.7x10

-7 [25]

8 O2 + e- O2

+ + 2e

- (12.1 eV) 6.2x10

-12 [26]

9 N2 + e- N2

+ + 2e

- (15.6 eV) 5.3x10

-13 [26]

10 H2 + e- H + H + e

- (8.9 eV) 3.0x10

-10 [26]

11 H2 + e- H2(v) + e

- (0.52 eV) 1.0x10

-9 [26]

11 H2 + e- H2

+ + 2e

- (15.4 eV) 5.0x10

-13 [26]

12 O3 + e- O2 + O + e

- (6.2 eV) 5.9x10

-9 [27]

13 H2O + e- OH + H + e

- (9.51 eV) 3.6x10

-10 [27]

14 H2O + e- H2O(v) + e

- (0.46 eV) 1.7x10

-9 [27]

15 H2O + e- H2O

+ + 2e

- (12.6 eV) 1.0x10

-12 [27]

16 C2H5OH + e- CH3 + CH2OH + e

- (7.5 eV)

1.0x10

-9 [28]

17 C2H5OH + e- C2H5 + OH + e

- (7.5 eV) 1.0x10

-9 [28]

18 C2H5OH + e- CH3CHOH + H + e

- (7.5 eV) 1.0x10

-9 [28]

19 C2H5OH + e- C2H5OH

+ + 2e

- (10.48 eV) 1.0x10

-12 [28]

The nonisothermality of discharge plasma is characterized by two character temperatures: 1) average electronic

temperature Te that is determined by the EEDF, i.e., by the applied electric field E/N, and 2) gas kinetic temperature

Figure 2. Typical EEDF in the DGCLW in the EtOH/H2O mixture

at the breakdown electric field E = 20kV/cm; p = 1 atm and T = 350 K.

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 5: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

5

T that is determined by conditions of convective cooling in the gas channel with liquid wall, i.e., by temperature of

surrounding liquid (T 350K). In fact, the ratio ΣWi/ΣWei in eq. (3) is very small, so the effect of gas-plasma heating

is practically negligible. The static pressure in the system is taken equal to 1 atm.

According to our methodology, at the first stage of calculations in the DGCLW cavity, the complete time of the

DC discharge burning was divided into the equal time intervals which duration is determined by the cavity residence

time, i.e. by the time equal to the ratio of the cavity volume V to the gas flow rate G, τ1 = V/G 10-3

s. During this

time the concentrations of all components came to the stationary state due to the balance between the supply and

generation of the products in the cavity, on the one side, and the destruction and escape of the products from the

cavity, on the other side. Actually, this time is equal to or greater than the character gas diffusion time in the cavity.

As was assumed, the every time interval 1 the primary component content in the cavity is refreshed, so the previous

period did not influence on the subsequent periods. This allowed us doing the plasma kinetic calculations in the

discharge by using the system eq. (1) only one time as all components during the every time interval come to the

same values. At the second stage of calculations in the PLS reactor, during the time τ2 = Vw/G 1 s, when the

discharge products in the form of gas bubbles (size ~1 mm) entered the liquid volume and floated to the surface,

then passed to the chamber where were collected as syngas, the chemical kinetics was also calculated by using the

same system eq. (1) but without terms Sei, Pi and kNi. Here, outside the discharge, the charged plasma particles

disappear, free atoms and radicals are reduced rapidly, stable molecules and hydrocarbons react poorly, and

concentration of EtOH and H2O take values corresponding to the saturated vapor pressure at a given temperature.

With the aim of verification of the used model, as a case study, the comparative calculations by the method of

simulation of plasma kinetics in the discharge of the DGCLW type16

based on the assumption of averaging of the

energy deposited in the discharge over the plasma volume without microdetails of its temporal-spatial structure and

by the method of simulation of plasma kinetics in microdischarges17

based on the assumption of multi-channeling of

the discharge current in the plasma volume were conducted for the air-water vapor system. It was shown that both

approaches give similar results in calculations of the component content and concentrations of major species (N2,

O2, NO, H2O, H2) and minor intermediates (O3, NO3, HNO2, etc). In experiments, due to efficient turbulent motion

and mixing in the narrow discharge gap, the plasma composition can be nearly uniform across the flow; therefore,

in calculations it is reasonable to average energy and assume power density constant in the discharge volume.

As for validation of the used model of chemical kinetics of EtOH conversion, it is based on a sub-mechanism of

EtOH oxidation taken from the model of Marinov et al.29

that is widely tested in conditions of jet-stirred and flow

reactors. Our test calculations have shown quite correct results in predictions for major species (H2, CO, CO2, H2O)

and radicals (H, O, OH, HO2, CH3) but less satisfactory for some derivative hydrocarbons (C2H4, C2H6, etc.). In the

whole, it was concluded that the main features of EtOH conversion by the used model are captured well.

III. Results and discussion

The numerical modeling and parametric simulations allowed us to provide some insight into peculiarities and

regularities of the complex reaction mechanism of non-thermal plasma-chemical conversion of liquid ethanol into

hydrogen in the PLS with the DGCLW in different conditions in details.

Fig. 3 demonstrates the effect of EtOH reforming as a function of the processing time, i.e. ethanol decomposition

and syngas production during the fuel conversion in the DGCLW cavity and in the PLS reactor. The major stable

components from the EtOH conversion are molecular H2 and CO/CO2 with minor amounts of CH4, C2H4, C2H6 and

H2O. The fractional amount of H2 in the syngas (H2+CO) reaches ~89% and the ratio H2/CO is of ~6 (total syngas

amount in output gas-phase products is ~30% by volume).

Fig. 4 shows that EtOH conversion increases with discharge current and with EtOH/H2O ratio in the mixture. It

indicates that discharge power always promotes the EtOH reforming and enhanced the H2 production. At the fixed

discharge current, reducing the input air in the DGCLW causes more dissociation and ionization of fuel fragments,

thereby increasing the H2 production but reducing the total conversion efficiency compared to the mode with the

constant input air flow. According to calculations, the H2 production initially increases with the input air flow rate to

some extent, but it saturates after that because of short residence time of the products in plasma.

Actually, it is difficult to set a common tendency since different species have ambiguous behavior. However,

with increasing discharge current and with EtOH/H2O dilution, the H2 and CO increase whereas the O2 slightly

decreases, and the N2 changes non-monotonically. At that, atoms and radicals: O, H, OH, and CH3 in the discharge

grow with current linearly. The output syngas components with the discharge processing in ethanol and water are

also different. In the case of excess of ethanol, the H2 and oxides CO/CO2 reach its maximum values; in the case of

excess of water – H2, ozone O3 and acids HNO3/HNO2, especially at high discharge currents. In the case of pure

water at low currents (Id < 100 mA) it is found that the H2 yield due to the cathodic electrolysis is almost the same as

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 6: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

6

due to the gas discharge if the gas cavity is contacted directly with the metal anode. At that, the summary H2 yield in

the system due to the cathodic evolution and discharge production is practically equal to the H2 yield in the mode

with the liquid anode. In the case of pure ethanol it is found that the polarity of electrodes does not influence on the

H2 yield. It is caused by the fact that the amount of H2 produced due to the electrolysis is many times smaller than

H2 produced in the discharge, and, therefore, it can be neglected.

Fig. 3 (left side) gives results of modeling of dynamics of formation of basic syngas components during the

processing of EtOH in the DGCLW-PLS. The data are given for a case of mixture EtOH : H2O = 1:1 at Id = 100 mA.

It is seen that during the time period ~10-3

s (the residence time in the discharge volume), the concentrations of H2

and other molecular species rapidly grow with the time up to the steady-state level, and the highest value is for H2.

Outside the discharge, during the next time period from 10-3

s to ~10 s (the residence time in the reactor volume) the

concentration curves of molecular components did not reveal dramatic changes. The only noticeable transformation

of CO2 and CO at the end of the process is related to the water-gas shift (WGS) reaction: H2O + CO CO2 + H2

(H = - 41 kJ/mol). It is an exothermic reaction that is thermodynamically favored at low temperatures but its rate

depends on the residence time of the mixture in the reactor with some excess of water. At concentration [H2O] ~1018

cm-3

, a character time of the WGS reaction is ~1 s.

Kinetically, the behavior of H2 concentration curves can be explained by concurrent processes of formation and

reduction of H2 in the system. At the first stage of the fuel reforming in the discharge, it relates to the reagent

activation by initial electron collisions and by reactions with participation of atoms and radicals generated in plasma.

The primary process of formation of H2 during the discharge in ethanol vapors is reaction of H-abstraction

producing isomeric ethoxy radicals i-C2H5O, predominantly α-hydroxyethyl CH3CHOH:

Figure 3. Time evolution of H2 and other components of syngas products during the reforming of

EtOH/H2O mixture in the DGCLW-PLS.

Figure 4. Concentration of H2 in syngas products after the EtOH reforming in the DGCLW-PLS

vs. discharge current at the fixed EtOH/H2O ratio (left) and vs. EtOH/H2O ratio at the fixed current (right).

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 7: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

7

C2H5OH + H CH3CHOH + H2 (k = 1x10-14

cm3/s at T = 350 K), (R1)

Since the concentration of EtOH during the discharge varies weakly with current and temperature T is nearly

constant, the rate of H2 production in reaction R1 is proportional to the concentration [H]. The main channel of

generation of H atoms in the discharge in ethanol vapors is e-impact dissociation of C2H5OH molecules:

C2H5OH + e- CH3CH2O + H + e

- (3.2 eV) , (R2a)

which has the same probability as other channels producing hydroxyl OH and methyl CH3 radicals:

C2H5OH + e- CH3CH2 + OH + e

- , (R2b)

C2H5OH + e- CH3O + CH3 + e

- , (R2c)

The rate of e-impact dissociation according to eq. (3) is proportional to the specific discharge power W/V, i.e.

discharge current Id. Therefore, the rate of H2 production in reaction R1 is proportional to the current. At the same

time, the loss of H2 in the discharge also takes place, especially at higher currents, and the main channel is also e-

impact dissociation of H2 molecules:

H2 + e- H + H + e

- (8.9 eV), (R3)

which rate linearly depends on the discharge current. Contra versa three-body recombination of H atoms and other

reactions occur, giving a channel of reduction of H. Therefore, the concentration of H rapidly (within a time ~10-7

s)

reaches a level of [H] ~4x1013

cm-3

; then its formation/reduction goes steady. As a result, the H2 production in the

discharge increases with increasing current nonlinearly, having a tendency to saturation: at Id > 100 mA the

concentration [H2] is ~3x1018

cm-3

.

During the discharge in water vapors in the mode of liquid anode, the content of H2 produced by the plasma

electrolysis, first decreases with the time due to direct e-impact dissociation, then, this decrease gradually ceases as

the H2 production go along. The cathode and anode reactions in liquid phase (charge carrier is H+) are H2O => ½O2

+2H+ + 2e

- and 2H

+ + 2e

- => H2. The main channel of generation of H atoms in gas phase in water vapors is again e-

impact dissociation of H2O molecules:

Н2О + е- → OH + Н + е

- (9.7 eV), (R4)

which rate is proportional to the discharge current. In this case, the H2 production increases linearly with increasing

current in the entire range.

In addition to e-impact dissociation of injected/formed molecules, a number of atoms and radicals are produced

in the chain reactions: H + OH = H2 + O (R5 k = 4x10-16

cm3/s), O + OH = O2 + H (R6 k = 3x10

-11cm

3/s), OH + H2 =

H2O + H (R7 k = 2x10-14

cm3/s) and others. The chain process is limited only by reactions of propagation O + OH +

M = HO2 + M (R8 k = 1.5x10-32

cm6/s), OH + OH + M = H2O2 + M (R9 k = 6x10

-31cm

6/s) and termination H + OH +

M = H2O + M (R10 k = 1.5x10-31

cm6/s) in which active atoms and radicals recombine to form less active molecules.

In the presence of O2 there is reaction of association H + O2 + M = HO2 + M (R11 k = 4x10-32

cm6/s) producing

HO2. When hydroperoxy radical HO2 is present in a high enough concentration, it reacts with H as HO2 + H = 2 OH

(R12a k = 7x10-11

cm3/s) and HO2 + H = H2O + O (R12b k = 2x10

-12cm

3/s), consumes O and OH as HO2 + O = O2 +

OH (R13 k = 5x10-11

cm3/s) and HO2 + OH = H2O +O2 (R14 k = 1.1x10

-10cm

3/s) and self-recombines HO2 + HO2 =

H2O2 + O2 (R15 k = 1.2x10-12

cm3/s). Then, hydrogen peroxide H2O2 can react as H2O2 + OH = H2O + HO2 (R16 k =

1.8x10-12

cm3/s) and H2O2 + H = H2O + OH (R17 k = 1.0x10

-13cm

3/s).

The production of O atoms results in production of O2 and O3 molecules due to three-body recombination O + O

+ M = O2 + M (R18 k = 1x10-33

cm6/s), O + O2 + M = O3 + M (R19 k = 3x10

-34cm

6/s) and two-body association O3 +

O = 2 O2 (R20 k = 2x10-14

cm3/s). Ozone O3 also contributes to the chain process by reactions O3 + H = O2 + OH

(R21 k = 3x10-11

cm3/s), O3 + OH = HO2 + O2 (R22 k = 1.1x10

-13cm

3/s). At that, e-impact dissociation of O3 and O2

in the discharge also occurs. In the result, the O formation/reduction goes steady within the limit of [O] ~1014

cm-3

.

As long as EtOH is in excess in the fuel mixture, O atoms are consumed in reactions with hydrocarbons. It is

well known in plasma chemistry that oxidation of hydrocarbons in the presence of O atoms generated by plasma

goes via the chain of free-radical reactions producing stable molecular species H2, CO2 and H2O in the end. Indeed,

each O atom consumes C2H5OH molecule via H abstraction producing ethoxy radicals i-C2H5O:

C2H5OH + O CH3CHOH + OH (k = 1.3x10-13

cm3/s at T = 350 K) (R23)

C2H5OH + OH CH3CHOH + H2O (k = 3x10-12

cm3/s at T = 350 K) (R24)

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 8: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

8

Radicals i-C2H5O readily oxidize to form acetaldehyde (ethanal) CH3CHO, which subsequently decomposes via

O2-addition and H-abstraction to form derivatives: acetyl radical CH3CO, methoxy radical CH3O, formaldehyde

(methanal) CH2O, formyl HCO, etc. producing finally stable species through reactions: CH2O + OH = HCO + H2O

(R25 k = 1.4x10-11

cm3/s), CH2O + H = HCO + H2 (R26 k = 1x10

-13cm

3/s), CH2O + O = HCO + OH (R27 k = 4x10

-13

cm3/s), HCO + O2 = HO2 + CO (R28 k = 6x10

-12cm

3/s), HCO + O = OH + CO (R29 k = 5x10

-11cm

3/s) and HCO + H

= CO + H2 (R30 k = 2x10-10

cm3/s). All these reactions are thermodynamically favored.

The alkyl (ethyl) radicals decompose or oxidize producing ethylene (ethene) C2H4. Another pathway is

recombination of two methyl radicals CH3 giving ethane C2H6, which yields to C2H4 by two successive

dehydrogenation steps. Then, C2H4 is consumed via H-abstractions producing acetylene C2H2. In addition,

methylene radicals CH2 recombine to form C2H2: CH2 + CH2 = H2 + C2H2 (R31 k = 2x10-11

cm3/s) and CH2 + C2H =

CH + C2H2 (R32 k = 3x10-11

cm3/s). In its turn, acetylene is decomposed via reaction C2H2 + O = C2HO + CO (R33 k

= 3 x10-13

cm3/s). Besides, e-impact decomposition of C2H2 as well as other CxHy fragments always takes place.

Methane CH4 is formed by reactions with radicals of the methyl group: CH3O + CH3 = CH2O + CH4 (R34 k =

4x10-11

cm3/s), HCO + CH3 = CO + CH4 (R35 k = 2x10

-10cm

3/s) and CH3 + H + M = CH4 + M (R36 k = 2x10

-28

cm6/s). And it is consumed giving the same methyl radical: CH4 + OH = CH3 + H2O (R37 k = 2x10

-14cm

3/s), CH4 +

C2H = CH3 + C2H2 (R38 k = 3x10-12

cm3/s). Then, CH3 rapidly oxidizes to form hydrogen: CH3 + O = CH2O + H

(R39 k = 1.4x10-10

cm3/s) and CH3 + O = CO + H2 + H (R40). Fast reactions of H-abstraction work as well: CH3 +

OH = CH2O + H2 (R41 k = 1.2x10-12

cm3/s), CH2 + OH = CH2O + H (R42 k = 3x10

-11cm

3/s) and CH2 + H = CH + H2

(R43 k = 3x10-10

cm3/s). However, in the presence of H2O the rates of corresponding radical reactions are reduced

proportionally to reducing concentrations of radicals.

The pathway related to formation of carbon monoxide CO is determined by oxidation of methylene CH2: CH2 +

O2 = H2O + CO (R44 k = 4x10-12

cm3/s) and CH2 + O = H2 + CO (R45 k = 2x10

-10cm

3/s). In its turn, the formation of

CH2 is determined by reaction of CH3 and OH: CH3 + OH = CH2 + H2O (R46 k = 2x10-12

cm3/s). CH3 and OH in the

discharge are formed mainly due to direct e-impact decomposition of C2H5OH in reactions R2b and R2c, which

rates are proportional to the discharge current. Therefore, the total rate of CO production is proportional to the

square discharge current. The main pathway of CO consumption is reaction CO + OH = CO2 + H (R47 k = 1.5x10-13

cm3/s), which rate is also linearly dependent on the current. In addition, recombination of CO and O atoms can

contribute to the CO reduction. However, the increase of CO in the system (Fig. 3a, left side) clear shows that the

CO production during the ethanol reforming is stronger than the CO consumption.

At the second stage of the fuel reforming, outside of discharge, i.e. without electric field, fast reactions proceed

between the species produced due to plasma-chemical reactions at the previous stage. At that, concentrations of

atoms and radicals H, OH, CH3, etc. rapidly drop down (Fig. 3b, right side) whereupon chemical processes become

slower and concentrations of molecular components H2, CO, CO2, CH4, etc take their stationary values (Fig. 3a, left

side). Here, with the time, CO transforms to CO2 and H2 by the above mentioned reaction WGS.

In considered non-thermal conditions in the PLS reactor, unimolecular decomposition of EtOH has no any effect

because it needs substantially higher temperatures (T > 900 K). The effect of the steam reforming (SR) C2H5OH +

H2O 2CO + 4H2, (H 298= 256 kJ/mol) here is negligible because of its very low rate: reaction is highly

endothermic and requires very high temperatures or heat energy input. The effect of partial oxidation (PO) C2H5OH

+1/2O2 2CO + 3H2, (H 298= 14 kJ/mol) is also negligible due to its low rate in the considered conditions.

Concerning the effect of ethanol-water ratio in the mixture (Fig. 4b, right side), we have the argument,

EtOH/H2O = x, which varies from 0 to 1, and it is crucial for plasma-chemistry during breakdown in the DGCLW.

At x 0.3 the kinetics is determined by e-impact dissociation of H2O (reaction R4), at x > 0.3 it is determined by e-

impact dissociation of EtOH (reaction R2). Therefore, at x 0.3 the rate of H2 production in reaction R1 is

proportional to the product [EtOH][H2O]; at x > 0.3 it depends as [EtOH]2. Assuming the low of ideal solutions, i.e.

[EtOH] x, and [H2O] (1–x), we found at x 0.3 the rate of R1 is proportional to x(1–x); at x > 0.3 it depends as

x2. The first function passes through the maximum at x = 0.5, the second function has no maximum and grows until

x = 1. In the result, concentration of H2 increases with x nonlinearly, having a tendency to saturation after x = 0.3.

For other components, some of them (CO, C2H6) increase with x and have a smooth maximum at x = 0.3-0.5; other

(CO2, CH4) exponentially decrease with x, depending on the proportion of dissolved and evaporated ingredients. The

observed increase of H2 (~1019

cm-3

) at the outlet of the PLS reactor compared with H2 in the discharge is related to

condensation of vapors in the accumulation chamber.

It is worth to note that in experiments11,12

no serious solid carbon deposition was observed in the PLS during the

EtOH reforming in the DGCLW. Our estimations of the carbon balance in the process of the EtOH conversion (by

using the ratio of all carbon-containing product moles to the consumed moles of EtOH accounting for stoichiometry)

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 9: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

9

confirmed that most of carbon in the EtOH was converted into the CO and CO2. Thus, our calculations have clearly

demonstrated the effect of chemical kinetics on the conversion efficiency.

Summary Fig. 5 presents comparison of calculated and measured data for the EtOH reforming in the DGCLW.

One can see that all major syngas components (H2, CO/CO2) and even minor species (CH4, C2H4) in average values

predicted well. This evidences that the kinetic modeling is true and the kinetic mechanism of plasma-chemical

process is correct. The obtained numbers correlate well with our earlier data30,31

and are comparable with results

reported by Fulcheri et al.6

IV. Conclusion

The numerical plasma-chemical kinetic modeling of low-temperature plasma-assisted conversion of ethanol in

the PLS with the DGCLW at different conditions allowed understanding basic peculiarities and regularities of

this very complex process in main details. The calculations confirmed that the discharge of the DGCLW type is

quite efficient in plasma reforming of ethanol-water solution and generating syngas with high concentration of

H2. The promoting plasma catalytic effect is caused by initial e-impact dissociation of EtOH and H2O molecules

into H and OH radicals and CxHy fragments followed by the chain-branching reactions of plasma-chemical

transformations enhancing the deep decomposition/conversion of fuel and production of hydrogen-rich syngas.

The main components of syngas produced from ethanol in the PLS reactor are hydrogen H2 and oxides CO/CO2,

which relative fraction reaches 90%, i.e. many times higher than other hydrocarbons CH4, C2H2, C2H4, and C2H6.

The composition content of syngas products and the electric power inputs on the ethanol conversion depends on

the input gas that forms the plasma in the discharge and on the initial ethanol-water ratio in the mixture.

Electrochemical processes in the DGCLW do not influence the H2 production in the case of ethanol; however, in

the case of water the electrolysis can influence the relative yield of H2 in the mode with a liquid anode.

Depending on whether there is or no input airflow, H2 production has extremum or grows with the percentage of

ethanol up to the saturation. At the fixed ethanol-water ratio, the H2 yield increases with the discharge power.

The net yield of H2 reaches maximum ~15% when ethanol and water in the mixture are taken in equal amounts.

At that, the specific electric energy demand for the syngas/H2 production is twice less than the combustion

energy of the same amount of syngas/H2.

The results of kinetic modeling and calculations are in a fairly good agreement with experimental data, at least,

for the main syngas components, H2 and CO/CO2, thus explaining a nonequilibrium character of the non-thermal

plasma-chemical mechanism of the ethanol conversion in the studied conditions.

Acknowledgments

This work was supported in part by the U.S. European Office of Aerospace Research & Development, by the

Science & Technology Center in Ukraine, by the Ministry of Science & Education of Ukraine and by the National

Academy of Sciences of Ukraine. Authors thank Dr. Julian M. Tishkoff from the U.S. Air Force Office of Scientific

Research for helpful discussions and advices in research.

Figure 5. Composition of output syngas products

after the EtOH reforming in the DGCLW - PLS:

calculations vs. experimental measurements.

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62

Page 10: [American Institute of Aeronautics and Astronautics 40th International Conference on Environmental Systems - Barcelona, Spain ()] 40th International Conference on Environmental Systems

American Institute of Aeronautics and Astronautics

10

References 118th World Hydrogen Energy Conf., 17-19 May 2010, Essen, Germany. http://www.whec2010.com 2Demirbas, A., “Progress and Recent Trends in Biofuels,” Progress in Energy Combust. Sci., Vol. 33, No.1, 2007, pp. 1-18. 3Holladay, J. D., Hu, J., King, D. L., and Wang, Y., “An Overview of Hydrogen Production Technologies,” Catalysis Today,

Vol. 244, No. 4, 2009, pp. 244-260. 4Demіnsky, M., Jіvotov, V., Potapkіn, B., and Rusanov, V., “Plasma-Assisted Production of Hydrogen from Hydrocarbons,”

Pure Appl. Chem., Vol. 74, No. 3, 2002, pp. 413-418. 5Bromberg, L., Cohn, D. R., Rabinovich, A., Surma, J. E., and Virden, J., “Compact Plasmatron-Boost Hydrogen Generation

Technology for Vehicular Applications,” Int. J. Hydrogen Energy, Vol. 24, No. 4, 1999, pp. 341-350. 6Petitpas, G., Rollier, J.-D., Gonzalez-Aguilar, J., Darmon, A., and Fulcheri L., “Ethanol and E85 Reforming Assisted by a

Non-Thermal Arc Discharge,” Energy & Fuels, Vol. 24, No. 4, 2010, pp. 2607-2613. 7Rusanov, V. D., and Fridman, A. A., Physics of Chemically Active Plasma, Nauka, Moscow, 1984. 8Fridman, A., Plasma Chemistry, Cambridge University Press, New York, 2008. 9Petitpas, G., Rollier, J.-D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., and Fulcheri L., “A Comparative Study of

Non-Thermal Plasma Assisted Reforming Technologies,” Int. J. Hydrogen Energy, Vol. 32, No. 14, 2007, pp. 2848-2867. 10Chernyak, V. Ya., Olszewski, S. V., Yukhymenko, V. V., Solomenko, E. V., Prysiazhnevych, I. V., Naumov, V. V., Levko,

D. S., Shchedrin, A. I., Ryabtsev, A. V., Demchina, V. P., Kudryavtsev, V. S., Martysh, E. V., and Verovchuck, M. A., “Plasma-

Assisted Reforming of Ethanol in Dynamic Plasma-Liquid System: Experiments and Modeling,” IEEE Trans. Plasma Sci., Vol.

36, No. 6, Dec. 2008, pp. 2933-2939. 11Yukhymenko, V. V., Chernyak, V. Ya., Naumov, V. V., Veremii, Yu. P., and Zrazhevskij, V. A., “Combustion of Ethanol

Air + Mixture Supported by Arc Plasma,” Problems Atom. Sci. Technol., Ser. Plasma Physics, Vol. 13, No. 1, 2007, pp. 142-144. 12Yukhymenko, V. V., Chernyak, V. Ya., Olshevskii, S. V., Prisyazhnevich, I. V., Zrazhevskii, V. A., Verovchuk, M. O.,

Solomenko, O. V., Skalny, J. D., Matejcik, S., Demchina, V. P., Kudryavtsev, V. S., and Naumov, V. V., “Plasma Conversion of

Ethanol-Water Mixture to Synthesis Gas,” Ukr. J. Phys., Vol. 53, No. 5, 2008, pp. 409-413. 13Naugol'nykh, K. A., and Roy, N. A., Electric Discharges in Water, Nauka, Moscow, 1971. 14Raizer, Yu. P., Gas Discharge Physics, Nauka, Moscow, 1987. 15Lide, D. R., (ed.), CRC Handbook of Chemistry and Physics, CRC Press/Taylor & Francis Group, Boca Raton, 2009. 16Shchedrin, A. I., Levko, D. S., Chernyak, V. Ya., Yukhymenko, V. V., and Naumov, V. V., “Effect of Air on the

Concentration of Molecular Hydrogen in the Conversion of Ethanol by a Nonequilibrium Gas-Discharge Plasma,” JETP Lett.,

Vol. 88, No. 2, 2008, pp. 99-102. 17Kalyuzhna, H. G., Levko, D. S., and Shchedrin, A. I., “The Influence of the Parameters of an Atmospheric Pressure Barrier

Discharge in Air on the Plasma Kinetics,” Ukr. J. Phys., Vol. 53, No.10, 2008, pp. 957-961. 18NIST Standard References Databases. [Online] URL: http://www.nist.gov/srd/ 19A. I. Shchedrin's Group Web site. [Online] URL: http://www.iop.kiev.ua/~plasmachemgroup/ 20A. V. Phelps Web site. [Online] URL: http://jilawww.colorado.edu/~avp/collision data/ 21Higgins, K., Noble, C. J., and Burke, P. G., “Low-Energy Electron Scattering by Oxygen Molecules,” J. Phys. B: At. Mol.

Opt. Phys., Vol. 27, No. 14, 1994, pp. 3203-3216. 22Gillan, C. J., Tennyson, J., McLaughlin, B. M., and Burke, P. G., “Low-Energy Electron Impact Excitation of the Nitrogen

Molecule: Optically Forbidden Transitions,” J. Phys. B: At. Mol. Opt. Phys., Vol. 29, No. 8, 1996, pp. 3203-3216. 23Ajello, J. M., “Emission Cross Sections of N2 in the Vacuum Ultraviolet by Electron Impact,” J. Chem. Phys., Vol. 53, No.

3, 1970, pp. 1156-1165. 24Hake, R. D., and Phelps, A. V., “Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O2, CO and

CO2 Impact,” Phys. Rev., Vol. 158, No. 1, 1967, pp. 70-84. 25Vicic, M., Poparic, G., and Belic, D. S., “Large Vibrational Excitation of N2 by Low-Energy Electrons,” J. Phys. B: At.

Mol. Opt. Phys., Vol. 29, No. 6, 1996, pp. 1273-1281. 26Straub, H. C., Renault, P., Lindsay, B. G., Smith, K. A., and Stebbings, R. F., “Absolute Partial Cress Sections for Electron-

Impact Ionization of H2, N2, and O2 from Threshold to 1000 eV,” Phys. Rev. A, Vol. 54, No. 3, 1967, pp. 2146-2153. 27Itikawa, Y., and Mason, N., “Cross Sections for Electron Collisions with Water Molecules,” J. Phys. Chem. Ref. Data, Vol.

34, No. 1, 2005, pp. 1-22. 28Rejoub, R., Morton, C. D., Lindsay, B. G., and Stebbings, R. F., “Electron-Impact Ionization of the Simple Alcohols,” J.

Chem. Phys., Vol. 118, No. 4, 2003, pp. 1756-1760. 29Marinov, N. M., “A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation,” Int. J. Chem. Kinet, Vol.

31, No. 3, 1999, pp. 183-220. 30Shchedrin, A. I., Levko, D. S., Ryabtsev, A. V., Chernyak, V. Ya., Yukhymenko, V. V., Ol'shevskiy, S. V., Prisyazhnevich,

I. V., Solomenko, E. V., Naumov, V. V., Demchina, V. P., and Kudryavtsev, V. S., “Plasma's Kinetics in Discharge in Mixture of

Air, Water and Ethanol Steams and the Questions of Alternative Fuel,” Problems Atom. Sci. Technol., Ser. Plasma Electronics,

Vol. 6, No. 4, 2008, pp. 159-162. 31Chernyak, V. Ya., Olzhevskij, S. V., Yukhymenko, V. V., Prisyzhnevich, I. V., Verovchuk, M. A., Solomenko, E. V.,

Zrazhevskij, V. A., Naumov, V. V., Shchedrin, A. I., Levko, D. S., Demchina, V. P., and Kudryavzev, V. S., “Study of Plasma

Conversion of Ethanol into Syngas in Dynamic Plasma-Liquid Systems,” Proc. 4th Int. Workshop & Exhibit. on Plasma Assisted

Combust., 16-19 Sept. 2008, Falls Church, Virginia, ed. by I. Matveev, APT, McLean, 2008, pp. 68-70.

Dow

nloa

ded

by S

tanf

ord

Uni

vers

ity o

n O

ctob

er 1

3, 2

012

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

0-70

62