39
ids/subunit 153 113 628

Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Embed Size (px)

Citation preview

Page 1: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Amino acids/subunit 153 113 628

Page 2: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Sipuncula Priapulida

Brachiopoda

Annelida: Magelona papillicornis

marine worms

Page 3: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Active site Iron porphyrin Dinuclear copperDinuclear

iron

Monomeric Multimeric

N. Terwilliger, J. Exp. Biol.201, 1085–1098 (1998)

Page 4: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

http://notes.chem.usyd.edu.au/course/codd/CHEM3105/Metalloproteins3.pdf

Page 5: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Crystal structure of hemerytrhin in unloaded state (pdb-code 1HMD)

Dinuclear iron active site fixed by a four-helix bundle

Hexacoordinate Fe(II)

Pentacoordinate Fe(II)

can bind O2

Page 6: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

http://notes.chem.usyd.edu.au/course/codd/CHEM3105/Metalloproteins3.pdf

Page 7: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms
Page 8: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Active sites of the reduced forms of Hemerythrin, Ribonucleotide Reductase R2 protein, and the hydroxylase component of Methane Monooxygenase

Extra carboxylates stabilize higher oxidation states

Bridging carboxylates

Page 9: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Catalytic Cycle of soluble Methane Monooxygenase (sMMO)

Kopp & Lippard, Current Op. Chem. Biol. 2002, 568

Page 10: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Remember:

Hr and sMMO share the main features:a four-helix-bundle surrounding a Fe-(carboxylato)2-Fe core

but differ in the particular environment of the Fe centers:

-Hr coordination sphere is more histidine rich-Hr permits only terminal O2-coordination to a single iron, while sMMO diiron center presents open or labile coordination sites on both Fe-sMMO shows much greater coordinative flexibility upon oxidation-The larger number of anionic ligands allows sMMO to achieve the FeIV oxidation state needed for oxidation methane.

Page 11: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Intermezzo: Bioligands

Histidin

pKa (His+) = 6.0 neutral at pH 7, but can be easily protonated, can serve as „proton shuttle“Both tautomers are found as ligands

pKa (His) = 14.4 rarely exists in deprotonated form as bridging ligand (in Cu-Zn superoxide-dismutase)

Page 12: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Aspartate & Glutamate

pKa (COOH) = 3.9 pKa (COOH) = 4.1 at pH 7 anionic even without coordination to a metal atom

Page 13: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Cysteinate

pKa (SH) = 8.3 neutral at pH 7. Coordination to a metal atom stabilizes anionic form.

Cys

Page 14: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Tyrosinate

pKa (TyrH) = 10.1 neutral at pH 7. Coordination to a metal atom stabilizes anionic form.Can be oxidized to a radical Tyr· (see RNR-R2)!

Tyr

Page 15: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Intermezzo: Bioligands

Methionine

neutral, „soft“ ligand

prefers FeII to FeIII

occurs in cytochromes (electron transfer proteins) where it stabilizes the lower oxidation state

Page 16: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

General rules governing the Redox-potential in a transition-metal complex

Larger number of ligands

Anionic ligands stabilize higher oxidation states

Soft ligands (methionine) stabilize the lower oxidation state

Page 17: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Porphyrins

Heme a

vinyl farnesyl (isoprenoid chain)

methyl

formyl

Page 18: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Amino acids/subunit 153 113 628

Page 19: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Megathura crenulata

Octopus dofleiniPanulirus interruptus

Linulus polyphemus

Page 20: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms
Page 21: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Chemistry enabling O2 transport by hemocyanin

2Cu+ + O2 2Cu2+ + O22-

Red. Ox. Ox. Red.

Loading O2:

Unoading O2:

2Cu2+ + O22- 2Cu+ + O2

Ox. Red. Red. Ox.

Page 22: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Vybrané standardní redukční potenciály při 25°C:F2 (g) + 2 e– = 2 F– (aq) + 2.87

MnO4 – + 8H+ + 5e– = Mn 2+ + 4H2O + 1.51

Cl2 (g) + 2 e– = 2 Cl– (aq) + 1.36

Pt2+ (aq) + 2 e– = Pt (s) + 1.18Br2 (g) + 2 e– = 2 Br– (aq) + 1.07

Fe3+ (aq) + e– = Fe2+ (aq) + 0.77I2 (g) + 2 e– = 2 I– (aq) + 0.54

2 H2O + O2 (g) + 4 e– = 4 OH– (aq) + 0.41

O2 + 2H+ + 2e- = H2O2 + 0.35 (at pH 7)

Cu2+ (aq) + 2 e– = Cu+ (aq) + 0.15 2 H+(aq) + 2 e– = H2 (g) 0.00

Fe2+ (aq) + 2 e– = Fe (s) - 0.45Zn2+ (aq) + 2 e– = Zn (s) - 0.76Al3+ (aq) + 3 e– = Al (s) - 1.67Mg2+ (aq) + 2 e– = Mg (s) - 2.37Na+ (aq) + e– = Na (s) - 2.71Li+ (aq) + e– = Li (s) - 3.04

strong oxidants

strong reductants

stronger oxidant stronger oxidant

Page 23: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Chemistry enabling O2 transport by hemocyanin

2Cu+ + O2 2Cu2+ + O22-

Red. Ox. Ox. Red.

Loading O2:

Unloading O2:

2Cu2+ + O22- 2Cu+ + O2

Ox. Red. Red. Ox.

O2 stronger oxidant

Cu+ stronger reductant OK

would procede in reverse directionin aqueous solutions at pH 7

But: Tetrahedral Cu- environment in hemocyanin favors Cu+ !

The potential of the Cu 2+/Cu+ couple shifts to 0.3-0.4 V The potentials of both half-reactions become similar The whole reaction becomes reversible

Page 24: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

General rules governing the Redox-potential in a transition-metal complex

Larger number of ligands

Anionic ligands stabilize higher oxidation states

Coordination geometry can stabilize the higher or the lower oxidation stateimposed by the protein

Soft ligands (methionine) stabilize the lower oxidation state

Page 25: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Hemocyanin: History

1878 Leon Federicq: Sur l‘hemocyanine, substance nouvelle de sang de Poulpe (Octopus vulgaris)

(Compt. Rend. Acad. Sci. 87, 996-998)Discovery

1901 M. Henze: Zur Kenntniss des HaemocyaninsZ. Physiol. Chem. 33, 370Hemocyanin contains copper

1940 W. A. Rawlinson, Australian J. Exp. Biol. Med. Sci. 18,131Oxy-hemocyanin is diamagnetic

Page 26: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

http://webdoc.sub.gwdg.de/diss/2003/ackermann/ackermann.pdf

Page 27: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

On the search for functional hemocyanin model compounds

Karlin et al., JACS 1988, 110, 3690’3692

Page 28: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

The first model complex showing reversible O2 binding by a dicopper unit

Karlin et al., J. Am. Chem. Soc. 1988, 110, 3690-3692

However, this complex differs from oxy-Hc:

Cu-Cu[Å] υ(O-O)[cm-1] UV-VIS

1 4.36 834 440(2000) 525(11500)

590(7600) 1035(160)

Oxy-Hc 3.5-3.7 744-752 340(20000) 580(100)

1

Page 29: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Model complex showing reversible O2 binding and similar features to Hc

Cu-Cu[Å] υ(O-O)[cm-1] UV-VIS

3.56 741 349(21000) 551(790)

3.5-3.7 744-752 340(20000) 580(100)

2

2

Oxy-Hc

Kitajima et al., J. Am. Chem. Soc. 1989, 111, 8975-8976

Page 30: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Kitajima et al., JACS 1989, 111, 8975-8976Karlin et al., JACS 1988, 110, 3690’3692

[Cu{HB(3,5-iPr2pz)3}]2(O2)

Functional hemocyanin models

[(tmpa)2Cu2O2]2+

Page 31: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

UV-Vis absorption spectra of the oxy forms of hemocyanin and tyrosinase

d→d

v→d

→d

Page 32: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

5-9 years later (1994, 1998):Active sites in hemocyanins determined by X-ray crystallography

Limulus polyphemus Octopus dofleini

Magnus et al.,Proteins Struct. Funct. Gen.1994 Cuff et al.,J.Mol.Biol.1998

Page 33: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

                                                                                                         

               

         

                                                                 http://pollux.chem.umn.edu/~kinsinge/new_homepage/research/gss_presentation_3/sld019.htm

Page 34: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

L-DOPAquinone

The enzyme tyrosinase catalyzes the synthesis of the pigment melanin from tyrosine

Page 35: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Tyrosinase versus Hemocyanin

The coupled binuclear copper sites in tyrosinase and hemocyanin are very similar.Why is then tyrosinase capable of reacting with substrates while hemocyanin is not?

Solomon (Angew. Chem. Int. Ed. Engl. 2001, 40, 4570-450):Difference in accessibility of the active site

Page 36: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Solomon et al., JACS 1980, 102, 7339-7344, p.7343Angew. Chem. Int. Ed. 2001, 40, 4570-4590

Hypothesis, 1980:

Proof, 1998 (J. Biol. Chem. 273, 25889-25892):

Page 37: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Hemocyanine active site*

Phe49 blocks accessto active site

When the N-terminal fragment including Phe49 is removed,tarantula hemocyanine shows tyrosinase activity

* From X-ray structure of L.polyphemus Hc., Magnus et al., Proteins Struct. Funct.Gen.19, 302-309

Page 38: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

An earlier model for hemocyanin...

…turned out to be a model for the enzyme tyrosinase!

Karlin et al., JACS 1984, 106, 2121-2128

Page 39: Amino acids/subunit 153 113 628. Sipuncula Priapulida Brachiopoda Annelida: Magelona papillicornis marine worms

Conclusions

In many cases, metalloproteins use the same or similar active site for different purposes.

The strategies to confer a particular activity to a given site include

- Allowing/disallowing access of substrates to the active site (including the dynamics of diffusion of substrate/product)-Modifying the electrostatic potential by mutating the amino acids coordinated to the metal or surrounding the binding pocket-Architecture of the binding pocket defines substrate selectivity and affects energy of transition states→governs reaction outcome