26
UTIAS UTIAS 1/26 An Adaptive Controller for Two Cooperating Flexible Manipulators C. J. Damaren University of Toronto Institute for Aerospace Studies 4925 Dufferin Street Toronto, ON M3H 5T6 Canada Presented at the International Symposium on Adaptive Motion of Animals and Machines (AMAM)

An Adaptive Controller for Two Cooperating Flexible ...adaptivemotion.org › AMAM2000 › papers › E17-damaren-slides.pdfUTIAS UTIAS 1/26 An Adaptive Controller for Two Cooperating

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • UTIAS

    UTIAS

    1/26

    An Adaptive Controller for TwoCooperating Flexible Manipulators

    C. J. Damaren

    University of TorontoInstitute for Aerospace Studies4925 Dufferin StreetToronto, ON M3H 5T6CanadaPresented at the International Symposium on Adaptive Motion of Animals andMachines (AMAM)

  • UTIAS

    UTIAS

    2/26

    Outline of Presentation

    • Cooperating Flexible Manipulators

    • Passivity Ideas

    • Large Payload Dynamics

    • The Adaptive Controller

    • Experimental Apparatus and Results

    • Conclusions

  • UTIAS

    UTIAS

    3/26

    Adaptive Control ofRigid Manipulators

    • Motivation: Mass property uncertainty

    • Typical Controller Structure:adaptive feedforward + PD feedback

    • Stability established using:⇒ passivity property due to collocation⇒ [problem is “square”]⇒ dynamics are linear in mass properties

  • UTIAS

    UTIAS

    4/26

  • UTIAS

    UTIAS

    5/26

    Cooperating Flexible Manipulators

    v -6

    ���

    F0'

    &

    $

    %������������������������������

    B0

    v�����

    �����B1 v vr r r

    BMBM+1

    '

    &

    $

    %v v

    @@@@@

    @@@@@r r r v

    B1'

    &

    $

    %BN

    Closed-Loop Multibody System

  • UTIAS

    UTIAS

    6/26

    Cooperating Flexible Manipulator Systems:Characteristics

    • Nonlinear system⇒ rigid body nonlinearities “plus vibration modes”

    • Input actuation and controlled outputare noncollocated

    ⇒ Nonminimum phase system⇒ Nonpassive system

    • System is “rigidly” overactuated

    • Vibration frequencies and/or mass propertiesmay be uncertain

    ⇒ robust and/or adaptive control

  • UTIAS

    UTIAS

    7/26

    Passivity Definitions-

    inputu(t) G - y(t)

    output

    G is a general input/output mapG is passive if∫ τ

    0

    yT (t)u(t) dt ≥ 0 , ∀τ > 0

    G is strictly passive if∫ τ0

    yT (t)u(t) dt ≥ ε∫ τ

    0

    uT (t)u(t) dt,

    ε > 0 , ∀ τ > 0

  • UTIAS

    UTIAS

    8/26

    Passivity Theorem

    - j -ud(t) G+− y(t)

    ?j� yd(t)+ −Hu(t)6

    disturbance/feedforward plant

    reference signalcontroller

    If G is passive and H is strictly passive with finitegain, then the closed-loop system is L2-stable:

    {ud,yd} ∈ L2⇒ {y,u} ∈ L2

  • UTIAS

    UTIAS

    9/26

    Kinematics

    payload position:

    ρ = F1(θ1,qe1) = F2(θ2,qe2)

    payload velocity:

    ρ̇ = J1θ(θ1,q1e)θ̇1 + J1e(θ1,q1e)q̇1e

    = J2θ(θ2,q2e)θ̇2 + J2e(θ2,q2e)q̇2e

  • UTIAS

    UTIAS

    10/26

    Modified Input

    The joint torques are determined from τ̂ :

    τ =

    [τ 1τ 2

    ]=

    [C1J

    T1θ

    C2JT2θ

    ]τ̂

    C1 and C2 with 0 < Ci < 1 and C1 + C2 = 1 areload-sharing parameters.

  • UTIAS

    UTIAS

    11/26

    Modified Output

    µ-tip rate:

    ρ̇µ = µρ̇ + (1− µ)[C1J1θθ̇1 + C2J2θθ̇2]

    µ-tip position:

    ρµ(t).= µρ(t) + (1− µ)[C1F1(θ1,0) + C2F2(θ2,0)]

    For µ = 1, ρµ = ρFor µ = 0, ρµ

    .= C1F1(θ1,0) + C2F2(θ2,0)

  • UTIAS

    UTIAS

    12/26

    Passivity Results

    -

    inputτ̂ (t) G - ρ̇µ(t)

    output

    This system is passive for µ < 1when the payload is large, i.e.,∫ τ

    0

    ρ̇Tµ (t)τ̂ (t) dt ≥ 0 , ∀τ > 0

  • UTIAS

    UTIAS

    13/26

    Large Payload Motion Equations I

    Rigid task-space equations:

    M ρρρ̈ +Cρ(ρ, ρ̇)ρ̇ = τ̂

    PLUS

    Elastic equations consistent with acantilevered payload.

  • UTIAS

    UTIAS

    14/26

    Large Payload Motion Equations II

    Including only the payload mass properties:

    Mν̇ + ν⊗Mν︸ ︷︷ ︸ = P−T (ρ)τ̂W (ν̇,ν,ν)a

    where

    M =

    [m1 −c×c× J

    ], ν =

    [v

    ω

    ],

    ν⊗ =

    [ω× O

    v× ω×

    ], P =

    [CM0(ρ) O

    O SM0(ρ)

    ]W is the regressor.a is a column of mass properties.Note: ν = P (ρ)ρ̇

  • UTIAS

    UTIAS

    15/26

    Key Definitions

    desired trajectory: {ρd, ρ̇d, ρ̈d}tracking error:

    ρ̃µ = ρµ − ρµd, ρµd.= ρd

    filtered error:

    sµ = ˙̃ρµ + Λρ̃µ, Λ = ΛT > O

    If sµ ∈ L2, then ρ̃µ → 0 as t→ 0.body-frame ‘desired’ trajectory:

    νd = P (ρ)ρ̇d

    body-frame ‘reference’ trajectory:

    νr = νd − P (ρ)Λρ̃µ

  • UTIAS

    UTIAS

    16/26

    The Adaptive Controller I

    control law:

    τ̂ = P TW (ν̇r,νr,ν)â(t)−Kdsµ= P T [M̂ν̇r + ν

    ⊗r M̂ν]−Kd[ ˙̃ρµ + Λρ̃µ]

    adaptation law:˙̂a = −ΓW T (ν̇r,νr,ν)P (ρ)sµ,

    Γ = ΓT > O

  • UTIAS

    UTIAS

    17/26

    The Adaptive Controller II

    -���-��� -

    −P TWâ

    −P TWa Gτ̂ − τ̂ d+

    −+

    −-x

    sµx

    �Kd

    6

    Γ1s ������@@���

    ����@@ �

    6

    6 6

    P TW WTP

  • UTIAS

    UTIAS

    18/26

    Experimental Apparatus

  • UTIAS

    UTIAS

    19/26

    Closed-Loop Configuration

  • UTIAS

    UTIAS

    20/26

    Payload

  • UTIAS

    UTIAS

    21/26

    Mode Shapes

  • UTIAS

    UTIAS

    22/26

    PD Feedback Alone (C1 = C2 = 0.5, µ = 0.8)

    y-position (m) vs. x-position (m)

    PDdes.

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0

    time (sec)

    z-orientation (rad) vs. time

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0 5 10 15 20 25

  • UTIAS

    UTIAS

    23/26

    Nonadaptive Results (C1 = C2 = 0.5)

    time (sec)

    x-position (m) vs. time

    time (sec)

    y-position (m) vs. time y-position (m) vs. x-position (m)

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0 5 10 15 20 250.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 5 10 15 20 25

    des.fixedpars.

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    -0.5 -0.4 -0.3 -0.2 -0.1

  • UTIAS

    UTIAS

    24/26

    Adaptive Results

    time (sec)

    x-pos (m) error vs. time

    time (sec)

    y-pos (m) error vs. time

    time (sec)

    z-orientation (rad) vs. time

    fixed par.

    C1 = 0.75

    -0.04

    -0.03

    -0.02

    -0.01

    0.00

    0.01

    0.02

    0 5 10 15 20 25

    C1 = 0.25

    -0.05

    -0.03

    -0.01

    0.01

    0.03

    0.05

    0 5 10 15 20 25-0.1

    0.0

    0.1

    0 5 10 15 20 25

  • UTIAS

    UTIAS

    25/26

    Parameter Estimates

    time (sec)

    mass (kg) vs. time

    time (sec)

    c_y (kg-m) vs. time

    time (sec)

    J_zz (kg-m ) vs. time2

    estimatepayload value

    0.

    10.

    20.

    30.

    40.

    0 5 10 15 20 25-1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    0 5 10 15 20 250.

    5.

    10.

    15.

    20.

    0 5 10 15 20 25

  • UTIAS

    UTIAS

    26/26

    Summary of Presentation

    • Passivity-based adaptive control:µ-tip rates + load-sharing

    • Adaptive feedforward dependsonly on “payload equations”

    • Robust since passivity dependsonly on a large payload

    • Results exhibit good tracking