4
An anemometer is a device for measuring the wind speed, and is one instrument used in a weather station . The term is derived from the Greek word anemos, meaning wind. The first known description of an anemometer was given by Leon Battista Alberti in around 1450 [1] . Anemometers can be divided into two classes: those that measure the wind's velocity , and those that measure the wind's pressure; but as there is a close connection between the pressure and the velocity, an anemometer designed for one will give information about both. 1 Velocity anemometers o 1.1 Cup anemometers o 1.2 Windmill anemometers o 1.3 Hot-wire anemometers o 1.4 Laser Doppler anemometers o 1.5 Sonic anemometers o 1.6 Ping-pong ball anemometers 2 Pressure anemometers o 2.1 Plate anemometers o 2.2 Tube anemometers Hot wire anemometer: Introduction Consider a wire that's immersed in a fluid flow. Assume that the wire, heated by an electrical current input, is in thermal equilibrium with its environment. The electrical power input is equal to the power lost to convective heat transfer,

An Anemometer is a Device for Measuring the Wind Speed

Embed Size (px)

DESCRIPTION

ano

Citation preview

An anemometer is a device for measuring the wind speed, and is one instrument used in a weather station. The term is derived from the Greek word anemos, meaning wind. The first known description of an anemometer was given by Leon Battista Alberti in around 1450[1].Anemometers can be divided into two classes: those that measure the wind's velocity, and those that measure the wind's pressure; but as there is a close connection between the pressure and the velocity, an anemometer designed for one will give information about both. 1 Velocity anemometers 1.1 Cup anemometers 1.2 Windmill anemometers 1.3 Hot-wire anemometers 1.4 Laser Doppler anemometers 1.5 Sonic anemometers 1.6 Ping-pong ball anemometers 2 Pressure anemometers 2.1 Plate anemometers 2.2 Tube anemometers

Hot wire anemometer:Introduction

Consider a wire that's immersed in a fluid flow. Assume that the wire, heated by an electrical current input, is in thermal equilibrium with its environment. The electrical power input is equal to the power lost to convective heat transfer,

where I is the input current, Rw is the resistance of the wire, Tw and Tf are the temperatures of the wire and fluid respectively, Aw is the projected wire surface area, and h is the heat transfer coefficient of the wire. The wire resistance Rw is also a function of temperature according to,

where is the thermal coefficient of resistance and RRef is the resistance at the reference temperature TRef. The heat transfer coefficient h is a function of fluid velocity vf according to King's law,

where a, b, and c are coefficients obtained from calibration (c ~ 0.5). Combining the above three equations allows us to eliminate the heat transfer coefficient h,

Continuing, we can solve for the fluid velocity,

Two types of thermal (hot-wire) anemometers are commonly used: constant-temperature and constant-current. The constant-temperature anemometers are more widely used than constant-current anemometers due to their reduced sensitivity to flow variations. Noting that the wire must be heated up high enough (above the fluid temperature) to be effective, if the flow were to suddenly slow down, the wire might burn out in a constant-current anemometer. Conversely, if the flow were to suddenly speed up, the wire may be cooled completely resulting in a constant-current unit being unable to register quality data.

Top of Page

Constant-Temperature Hot-Wire Anemometers

For a hot-wire anemometer powered by an adjustable current to maintain a constant temperature, Tw and Rw are constants. The fluid velocity is a function of input current and flow temperature,

Furthermore, the temperature of the flow Tf can be measured. The fluid velocity is then reduced to a function of input current only.

Top of Page

Constant-Current Hot-Wire Anemometers

For a hot-wire anemometer powered by a constant current I, the velocity of flow is a function of the temperatures of the wire and the fluid,

If the flow temperature is measured independently, the fluid velocity can be reduced to a function of wire temperature Tw alone. In turn, the wire temperature is related to the measured wire resistance Rw. Therefore, the fluid velocity can be related to the wire resistance.