10

Click here to load reader

An expert display system and nuclear power plant control rooms

  • Upload
    l

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Page 1: An expert display system and nuclear power plant control rooms

IEEE Transactions on Nuclear Science, Vol. 35, No. 2, April 1988 991

AN EXPERT DISPLAY SYSTEM AND NUCLEAR POWER PLANT CONTROL ROOMS

Leo Be l t r a c c h i U.S. Nuc lear R e g u l a t o r y Commission

Washington DC, 20555

ABSTRACT

.An e x p e r t d i s p l a y system c o n t r o l s a u t o m a t i c a l l y t h e d i s p l a y o f segments on a cathode r a y t u b e ' s sc reen t o fo rm an image o f p l a n t o p e r a t i o n s . The image c o n s i s t s o f an i c o n o f : 1) t h e process ( h e a t eng ine c y c l e ) , 2) p l a n t c o n t r o l systems, and 3) s a f e t y systems. A s e t o f d a t a - d r i v e n , f o r w a r d - c h a i n i n g computer s t o r e d r u l e s c o n t r o l t h e d i s p l a y o f segments. As p l a n t o p e r a t i o n changes, measured p l a n t d a t a a r e p rocessed t h r o u g h t h e r u l e s , and t h e r e s u l t s c o n t r o l t h e d e l e t i o n and a d d i - t i o n o f segments t o t h e d i s p l a y fo rmat . The i c o n con- t a i n s i n f o r m a t i o n needed by c o n t r o l rooms o p e r a t o r s t o m o n i t o r p l a n t o p e r a t i o n s .

One example o f an e x p e r t d i s p l a y i s i l l u s t r a t e d f o r t h e o p e r a t o r ' s t a s k o f m o n i t o r i n g leakage f rom a s a f e t y v a l v e i n a steam l i n e o f a b o i l i n g w a t e r r e a c t o r (BWR). p l a y t o m o n i t o r p l a n t o p e r a t i o n s d u r i n g p r e - t r i p , t r i p , and p o s t - t r i p o p e r a t i o n s i s d iscussed as a u n i v e r s a l d i s p l a y .

The v i e w p o i n t s and o p i n i o n s expressed h e r e i n a r e t h e a u t h o r ' s persona l ones, and t h e y a r e n o t t o be i n t e r - p r e t e d as Nuc lear R e g u l a t o r y Commission c r i t e r i a , r e - qu i rements , o r g u i d e l i n e s .

INTRODUCTION

Graph ics speak f a s t e r t h a n words and numbers. I n t e r - a c t i v e computer g r a p h i c techn iques f a c i l i t a t e t h e pro- cess ing , d i s p l a y , and communicat ion o f da ta . P r o p e r l y des igned g r a p h i c s , such as i c o n s , may be used t o convey l a r g e q u a n t i t i e s o f i n f o r m a t i o n t h a t i s easy t o read, easy t o unders tand, and f r e e o f c l u t t e r .

For example, a t r e n d p l o t o f a p rocess v a r i a b l e on t h e screen o f a ca thode- ray t u b e (CRT) i s much e a s i e r t o unders tand t h a n two columns o f numbers, one r e p r e s e n t - i n g t ime, and t h e o t h e r t h e magnitude o f t h e process v a r i a b l e .

F o l e y (Ref. 1) s t a t e s t h a t t h e system d e s i g n e r must f i r s t develop i n t e r a c t i o n techn iques t h a t min imize t h e work r e q u i r e d by t h r e e b a s i c human processes: percep- t i o n , c o g n i t i o n , and motor a c t i v i t y . To ach ieve t h i s g o a l , t h e d e s i g n e r must have a thorough unders tand ing o f t h e performance and c h a r a c t e r i s t i c s o f i n t e r a c t i v e dev ices . The d e s i g n e r must a l s o p e r f o r m f u n c t i o n and t a s k ana lyses t o i d e n t i f y t h e d a t a needed by humans t o p e r f o r m t h e i r ass igned work. One c r i t i c a l p rob lem f o r t h e d e s i g n e r i s how t o f o r m a t and p r e s e n t t h e d a t a and i n f o r m a t i o n needed w i t h a minimum number o f d i s p l a y pages. maximize communicat ion f rom a l a r g e d a t a base.

The E l e c t r i c Power Research I n s t i t u t e (EPRI) p u b l i s h e d d i s p l a y des ign g u i d e l i n e s (Ref. 2) f o r t h e development o f computer-generated d i s p l a y systems. The g u i d e l i n e s s u p p o r t a t h r e e - s t e p d e s i g n process: 1) a n a l y s i s , 2 ) s y n t h e s i s , and 3 ) e v a l u a t i o n . i n c l u d e s f u n c t i o n and t a s k a n a l y s i s w i t h a goa l o f i d e n t i f y i n g i n f o r m a t i o n requ i rements . s t e p d i s p l a y formats a r e developed u s i n g t h e p r o d u c t s from t h e a n a l y s i s s tep . The e v a l u a t i o n s t e p i n c l u d e s t h e assessment o f computer-based o p e r a t o r a i d s , such as t h e c o m p a t i b i l i t y o f t h e d i s p l a y w i t h a u s e r ' s sensory and p e r c e p t u a l c a p a b i l i t i e s .

I n another example, t h e use o f an e x p e r t d i s -

The goal i s t o min imize human search t i m e and

The a n a l y s i s s t e p

I n t h e s y n t h e s i s

W i t h CRTs as d i s p l a y dev ices , a d e s i g n e r may use c o l o r t o code i n f o r m a t i o n . Murch (Ref. 3) s t a t e s t h a t most o f t e n c o l o r is used i n a q u a l i t a t i v e r a t h e r t h a n a q u a n t i t a t i v e f a s h i o n t o show t h a t one i t e m i s d i f f e r e n t f rom another . However, t h e use o f c o l o r becomes more complex as t h e number o f b i t p l a n e s i n d i s p l a y systems i n c r e a s e a l l o w i n g f o r thousands o f c o l o r s . As Murch c o r r e c t l y no tes , t o maximize t h e p o t e n t i a l o f g r a p h i c s systems, a d e s i g n e r must draw upon s c i e n c e ' s under- s t a n d i n g o f how t h e human eye c r e a t e s c o l o r sensat ions . Because o f sensor l i m i t a t i o n s i n t h e human eye, o n l y a few c o l o r s may be used t o e f f e c t i v e l y code da ta . Murch 's g u i d e l i n e s on t h e use o f c o l o r a r e e x c e l l e n t .

Hayes-Roth's t u t o r i a l (Ref. 4) on knowledge-based ex- p e r t systems s t a t e s t h a t computer -s to red s k i l l s o f s p e c i a l i s t s may be used t o a i d o p e r a t o r s i n s o l v i n g problems. A m a j o r b e n e f i t f rom such systems i s t h e c o n s i s t e n t a p p l i c a t i o n o f l o g i c and t i m e l y s o l u t i o n s t o problems. n u c l e a r i n d u s t r y i s i n a t e c h n i c a l paper by G i m m y (Ref. 5). I n t h i s example, t h e au tomat ic d i a g n o s i s o f m u l t i - p l e alarms by an e x p e r t system i s d iscussed. From t h e d e s c r i p t i o n p r o v i d e d by G i m m y , t h e knowledge base appears thorough, t h e i n f e r e n c e eng ine i s based upon t a b l e - d r i v e n l o g i c , and t h e u s e r ' s i n t e r f a c e appears t o be v e r y e f f e c t i v e . Gimmy's paper p r o v i d e s e x c e l l e n t g u i d e l i n e s on how t o implement e x p e r t systems i n n u c l e a r f a c i l i t i e s .

Computer-dr iven cathode r a y tubes a r e used as d i s p l a y dev ices i n t h e c o n t r o l rooms o f n u c l e a r power p l a n t s . The fo rmat o f t h e d a t a on t h e screens takes many shapes. For example, v e r t i c a l b a r s , w i t h l a b e l s and process parameter va lues , mimic ana log meters on t h e c o n t r o l board. A l s o , t r e n d p l o t s o f p rocess parameters a r e c o l o r and shape coded t o f a c i l i t a t e t h e o p e r a t o r ' s use o f t h i s da ta .

An example o f an e x p e r t system i n t h e

The d i g i t a l computer may mimic t h e human o p e r a t o r by au tomat ing o p e r a t o r t a s k s and t h e n d i s p l a y i n g processed da ta . The e x p e r t d i s p l a y d iscussed i n t h i s paper i n t e - g r a t e s i n d i v i d u a l p rocess parameters f rom t h e p l a n t t o fo rm and d i s p l a y a model o f t h e process . I n d o i n g these t a s k s , t h e computer mimics an e x p e r t o p e r a t o r by i n t e g r a t i n g and s t r u c t u r i n g t h e d a t a t o s u p p o r t d e c i - s i o n making by t h e human. The s p e c i f i c d i s p l a y s i n t h i s paper a r e p r o t o t y p e s developed by t h e a u t h o r on a g r a p h i c s w o r k s t a t i o n . They serve t o i l l u s t r a t e a d i f - f e r e n t t y p e o f d i s p l a y d e s i g n and au tomat ion , b u t t h e y a r e by no means a complete des ign .

To p r o v i d e a b a s i s f o r a d i s c u s s i o n , t h e f o l l o w i n g terms a r e d e f i n e d :

Graph ic p r i m i t i v e s : 1. The g r a p h i c elements d i s p l a y e d on a t e r m i n a l ;

d i s p l a y . 2. The fundamental u n i t s o f a

Segment: 1. A combined s e r i e s o f g r a p h i c p r i m i t i v e s ; A r e u s a b l e c o l l e c t i o n o f g r a p h i c p r i m i - t i v e s and p r i m i t i v e a t t r i b u t e s s t o r e d i n memory.

2 .

A t t r i b u t e : A c h a r a c t e r i s t i c o f a p r i m i t i v e , such as c o l o r , w i d t h , e t c .

U.S. Government work not protected by US. Copyright

Page 2: An expert display system and nuclear power plant control rooms

992

Dynamic

Panel :

a t t r i b u t e : Those a t t r i b u t e s t h a t can be changed a f t e r t h e segment i s d e f i n e d .

The s e t o f p i x e l s t h a t l i e i n s i d e a c l o s e d boundary on a d i s p l a y s u r f a c e . A "panel d e f i n i t i o n " i s a s e r i e s o f MOVES and DRAWS t h a t fo rm a pane l boundary. A "pane l " may be i d e n t i f i e d as a segment.

I con : An image composed f rom segments. A "process i c o n " models t h e process w i t h i n t h e p l a n t . "system i c o n " mimics p l a n t systems.

A

Ob jec t : A computer-generated g r a p h i c element t h a t can be a c t e d upon by t h e human user .

Background elements: The t i m e i n v a r i a n t segments i n an i c o n .

A c t i v e elements: The t i m e v a r i a n t segments i n an icon .

Graph ic p r i m i t i v e s a r e t h e b a s i c g r a p h i c elements t h a t a t e r m i n a l d i s p l a y s i n response t o a command. One g r a p h i c p r i m i t i v e i s a v e c t o r , a s t r a i g h t l i n e drawn between two p o i n t s on a d i s p l a y s u r f a c e . A s e r i e s o f v e c t o r s i s used t o fo rm a c i r c l e , a r e c t a n g l e , o r a pane l . A t t r i b u t e s o f a g r a p h i c p r i m i t i v e may i n c l u d e c o l o r , l i n e s t y l e ( s o l i d , dashed, e t c . ) , and w i d t h . For example, a tempera ture-en t ropy diagram o f two-phase w a t e r ( l i q u i d and vapor) may be shown on a CRT as a s e r i e s o f v e c t o r s t h a t fo rm a pane l . The c o l o r o f t h e s u r f a c e , such as w h i t e , i s a d e s i g n e r - s p e c i f i e d a t t r i - b u t e o f t h e pane l .

A segment i s a c o l l e c t i o n o f g r a p h i c p r i m i t i v e s and t h e i r a t t r i b u t e s t h a t t h e d i s p l a y t e r m i n a l t r e a t s as a s i n g l e o b j e c t . s i n g l e g r a p h i c p r i m i t i v e , o r as much as an e n t i r e d i s p l a y . An example o f a segment i s a symbol f o r a v a l v e , wh ich i s composed o f s e v e r a l s t r a i g h t l i n e s ( p r i m i t i v e s ) .

A segment may c o n t a i n as l i t t l e as a

I n t h e f o l l o w i n g d i s c u s s i o n , segments a r e used t o code d a t a and i n f o r m a t i o n f o r p rocess f u n c t i o n s and f o r p l a n t systems. Severa l segments a r e t h e n used t o com- pose an i c o n t h a t models p l a n t o p e r a t i o n s . Some seg- ments a r e used t o compose t h e background elements i n t h e d i s p l a y fo rmat . The use o f a c t i v e segments i n t h e d i s p l a y fo rmat i s c o n t r o l l e d by pre-de termined r u l e s s t o r e d i n t h e memory o f a computer. d r i v e n , w i t h t h e d a t a o b t a i n e d f rom sampl ing p l a n t sensors. For example, when a measured process v a r i - a b l e , such as pressure , exceeds a s e t p o i n t f o r a v a l v e t o open, a new segment f o r t h e v a l v e ( i n d i c a t i n g an open v a l v e ) i s added t o t h e d i s p l a y . T h i s overv iew p r o v i d e s an i n t r o d u c t i o n t o an e x p e r t d i s p l a y .

EXPERT SAFETY VALVE MONITOR

An i m p o r t a n t t a s k ass igned o p e r a t o r s i s m o n i t o r i n g s a f e t y v a l v e s f o r leakage a f t e r a s a f e t y v a l v e has l i f t e d and t h e n c losed. Many t i m e s these v a l v e s do n o t f u l l y c l o s e and leakage occurs . G e n e r a l l y , a s a f e t y v a l v e serves as a s i n g l e component and i s n o t backed up by a b l o c k va lve . Thus, leakage o f c o o l a n t f rom a s a f e t y v a l v e i s a f a u l t i n t h e p r e s s u r e boundary and a concern i n m a i n t a i n i n g s a f e p l a n t o p e r a t i o n .

D u r i n g normal o p e r a t i o n o f a BWR, t h e s a f e t y v a l v e i n t h e steam l i n e i s c losed. Should a l a r g e i n c r e a s e i n p r e s s u r e occur d u r i n g a t r a n s i e n t and t h e p r e s s u r e i n t h e steam l i n e exceed t h e s e t p o i n t f o r t h e s a f e t y v a l v e , t h e v a l v e opens. The s e t p o i n t f o r t h e s a f e t y v a l v e i s t y p i c a l l y 1230 p s i g . When t h e v a l v e i s open, steam escapes t o t h e d i s c h a r g e p i p e , t h e n t o t h e d r y - w e l l , and u l t i m a t e l y t o t h e suppress ion p o o l .

The r u l e s a r e d a t a

O b e r t (Ref. 6) d e f i n e s a t h r o t t l i n g process as one t h a t occurs when a f l u i d expands f rom a r e g i o n o f h i g h p r e s s u r e t o a r e g i o n o f lower p ressure . t h e f l u i d d i s s i p a t e s energy t h a t c o u l d have been t r a n s - formed i n t o work. s a f e t y v a l v e ach ieves a h i g h v e l o c i t y , wh ich i s d i s - s i p a t e d i n a imless t u r b u l e n c e i n t h e d i s c h a r g e p i p e . Thermodynamical ly, t h e e n t h a l p y o f t h e d i s s i p a t e d steam i n t h e d i s c h a r g e p i p e i s t h e same as t h e e n t h a l p y o f t h e steam i n t h e steam l i n e . However, t h e e n t r o p y o f t h e d i s s i p a t e d steam i s much g r e a t e r t h a n t h e e n t r o p y o f t h e steam i n t h e steam l i n e . The amount o f e n t r o p y i n c r e a s e d u r i n g t h e t h r o t t l i n g process i s a measure o f t h e d i s s i p a t e d energy.

For t h e purpose o f t h i s d i s c u s s i o n , t h e d i s c h a r g e p i p e f o r t h e s a f e t y v a l v e i s i n s t r u m e n t e d w i t h a thermo- c o u p l e and w i t h an a c o u s t i c m o n i t o r i n g dev ice . The thermocouple measures t h e tempera ture o f t h e f l u i d i n t h e d i s c h a r g e p i p e . A c o u s t i c m o n i t o r s , such as p i e - z o e l e c t r i c sensors (acce le rometers and a c o u s t i c emis- s i o n sensors), a r e e x c e l l e n t dev ices t o m o n i t o r t h e s t a t u s o f v a l v e s (Ref. 8). These sensors measure t h e a c o u s t i c response t h a t r e s u l t s f r o m t h e f l o w o f f l u i d t h r o u g h t h e s a f e t y va lve .

F i g u r e 1 d e p i c t s t h e steam l i n e , t h e s a f e t y v a l v e , t h e d i s c h a r g e p i p e , t h e d r y w e l l , t h e suppress ion p o o l , and t h e sensors i n t h e d i s c h a r g e p i p e . The symbol P 1 r e - p r e s e n t s t h e o p e r a t i n g p r e s s u r e i n t h e steam l i n e , and h l r e p r e s e n t s t h e e n t h a l p y o f t h e steam i n t h e steam l i n e . For a BWR o p e r a t i n g a t 1000 p s i a steam l i n e pressure , t h e steam i s g e n e r a l l y s a t u r a t e d steam ( o r a t most, a few degrees superheated). The e n t h a l p y o f s a t u r a t e d steam a t 1000 p s i a i s 1192.9 BTU/#m. case o f a l e a k i n g s a f e t y va lve , t h e e n t h a l p y o f t h e t h r o t t l e d , d i s s i p a t e d steam i s a l s o 1192.9 BTU/#m. For t h e purpose o f t h i s d i s c u s s i o n , i t i s assumed t h a t t h e p r e s s u r e o f t h e d i s s i p a t e d steam, P2, i s a tmospher ic p ressure , 14.7 p s i a . Thus, based on t h e p r o p e r t i e s o f steam and t h e t h r o t t l i n g process , T2, t h e tempera ture o f t h e d i s s i p a t e d steam i s 300 degrees F a h r e n h e i t (300 F). t h e steam shou ld r e a d about 300 F , wh ich i s reached a f t e r t h e i n i t i a l response l a g o f t h e sensor. A t 300 F and a tmospher ic p r e s s u r e , t h e steam i s superheated because t h e s a t u r a t i o n tempera ture i s 212 F a t a tmospher ic p ressure . I n a d d i t i o n t o tempera ture , t h e s i g n a l f rom t h e a c o u s t i c m o n i t o r wou ld be used t o con- f i r m v a l v e leakage.

Thus, steam l i n e pressure , steam l i n e e n t h a l p y , p res- s u r e o f t h e d i s s i p a t e d steam i n t h e d i s c h a r g e p i p e , t h e d i s c h a r g e p i p e ' s thermocouple read ing , and t h e a n a l y t i - c a l l y de termined tempera ture ( f r o m t h e steam t a b l e s ) o f t h e d i s s i p a t e d steam a r e used t o d e t e c t leakage f rom t h e s a f e t y va lve . Readings f rom t h e a c o u s t i c m o n i t o r a l s o c o n f i r m t h e presence o f leakage.

The thermodynamic p r o p e r t i e s o f steam f o r a t h r o t t l i n g process may be harnessed t o d e t e c t an open s a f e t y va lve . O f course, t h e p r e s s u r e i n t h e steam l i n e must be g r e a t e r t h a n o r equal t o t h e s e t p o i n t p r e s s u r e f o r t h e v a l v e t o open. Tab le 1 c o n t a i n s examples t h a t i l l u s t r a t e n u m e r i c a l l y t h e t h r o t t l i n g process f o r an open v a l v e w i t h s e t p o i n t steam l i n e p r e s s u r e , and f o r a c l o s e d , l e a k i n g v a l v e w i t h normal steam l i n e pressure .

The process o f d e t e c t i n g an open s a f e t y v a l v e , o r leakage f rom a c l o s e d s a f e t y v a l v e , may be automated. A d i g i t a l computer implements r u l e s t h a t a r e d r i v e n by measured p l a n t d a t a t o c o n t r o l t h e d i s p l a y o f messages and segments on t h e screen o f a CRT.

I n d o i n g so,

The steam expanding t h r o u g h t h e

I n t h e

The thermocoup le 's measured tempera ture o f

T h i s d i s c u s s i o n assumes t h a t t h e r u l e s used a r e those s t a t e d i n Tab le 2 , wh ich a r e s e l f - e x p l a n a t o r y . The s t a t u s o f each r u l e i s de termined by comparing measured

Page 3: An expert display system and nuclear power plant control rooms

993

t o d e s i g n and a c c u r a t e l y implement t h e s o f t w a r e , be- cause g r e a t c a r e must be t a k e n t o a v o i d m i s l e a d i n g t h e o p e r a t o r .

A UNIVERSAL DISPLAY

Much more p o w e r f u l uses o f an e x p e r t d i s p l a y a r e p o s s i b l e o t h e r t h a n t h e case d iscussed above. example, on a r e a c t o r t r i p , c o n t r o l room o p e r a t o r s must m o n i t o r l a r g e q u a n t i t i e s o f d a t a t o de termine t h e s t a t u s o f t h e p l a n t ' s p rocess , o f t h e p l a n t ' s o p e r a t i n g systems, and t h e n t o respond t o component f a i l u r e s , shou ld t h e y occur . Furthermore, t h e r e a c t o r t r i p may demand t h e o p e r a t i o n o f s a f e t y systems t o s u s t a i n s a f e p l a n t o p e r a t i o n s . When t h e s a f e t y systems a r e opera t - i n g , t h e p r i n c i p a l h e a t removal p a t h f rom t h e r e a c t o r c o r e ( h e a t source) t o t h e environment ( h e a t s i n k ) may be o t h e r t h a n t h e p l a n t ' s condenser. p o s s i b l e h e a t removal pa ths may e x i s t a f t e r a t r i p , o p e r a t o r s must q u i c k l y i d e n t i f y t h e p a t h i n use and m o n i t o r performance o f t h e a s s o c i a t e d p l a n t systems t o ensure t h a t adequate l i q u i d - p h a s e water i s a v a i l a b l e t o remove t h e heat . An e x p e r t d i s p l a y system c o u l d be a p o w e r f u l t o o l f o r o p e r a t o r s i n p e r f o r m i n g these f u n c t i o n s and t a s k s .

For

Because many

p l a n t d a t a w i t h t h e a p p r o p r i a t e , p r e - d e f i n e d s e t - p o i n t ( s ) and t o l e r a n c e ( s ) . The r e s u l t s f rom a p p l y i n g each r u l e a r e t h e n used t o de termine t h e messages and segments d i s p l a y e d t o c o n t r o l room personne l .

F i g u r e 2 c o n t a i n s an i c o n o f t h e b o i l i n g process i n a BWR, w i t h a steam l i n e p r e s s u r e o f 1000 p s i a and s a t u r a t i o n tempera ture o f 544.6 F . For t h e purpose o f t h i s and subsequent d i s c u s s i o n , t h i s i c o n i s a p rocess i c o n . T h i s f i g u r e and subsequent f i g u r e s a r e drawings o f c o l o r e d p r i n t s made f rom a CRT screen ( t h e y l a c k d e t a i l , b u t a r e much more economical t o use t h a n t h e c o l o r e d v e r s i o n ) . Severa l segments a r e used t o compose t h e i c o n . The c e n t r a l , b e l l - s h a p e d pane l i s t h e seg- ment t h a t r e p r e s e n t s t h e tempera ture ( v e r t i c a l ) - e n t r o p y ( h o r i z o n t a l ) p r o p e r t i e s o f two-phase w a t e r ( l i q u i d and vapor) . segment. The t h i n band t h a t serves as a b o r d e r i s another segment, wh ich r e p r e s e n t s conta inment . t i t l e , da te , and t i m e comprise another segment. p rocess o f b o i l i n g s a t u r a t e d water t o s a t u r a t e d steam i n t h e r e a c t o r c o r e and t h e w a t e r l e v e l i n t h e c o r e fo rm a segment t h a t i s l o c a t e d i n t h e two-phase r e g i o n o f water .

The s a f e t y v a l v e i n t h e steam l i n e ( F i g u r e 2) i s f u l l y seated; t h i s c o n d i t i o n i s de termined f rom t h e e x e c u t i o n of t h e s t o r e d r u l e s (Tab le 2) d r i v e n by t h e measured v a r i a b l e s o f steam l i n e pressure , t h e d i s c h a r g e p i p e thermocouple r e a d i n g , and t h e a c o u s t i c m o n i t o r read ing . The a n a l y t i c a l l y c a l c u l a t e d tempera ture o f t h e d i s s i - p a t e d steam f rom t h e t h r o t t l e p rocess i s a l s o needed. T h i s i s de termined f rom t h e d r y w e l l p ressure , and t h e s a t u r a t i o n p r o p e r t i e s o f t h e steam i n t h e steam l i n e . Thus, t h e message: SRV 50201 SEATED i s d i s p l a y e d as a segment.

F i g u r e 3 c o n t a i n s a p rocess i c o n t h a t i l l u s t r a t e s a l e a k i n g s a f e t y v a l v e . cess, f rom 1000 p s i a steam l i n e p r e s s u r e t o a tmospher ic p r e s s u r e i n t h e d r y w e l l , i s a d i s p l a y segment. The use o f t h i s segment and o f t h e message segment i s c o n t r o l - l e d by t h e a p p r o p r i a t e r u l e s i n Tab le 2. The tempera- t u r e o f t h e t h r o t t l e d steam i s 300 F , wh ich i s superheated steam.

F i g u r e 4 c o n t a i n s a p rocess i c o n t h a t i l l u s t r a t e s oper- a t i o n w i t h an open s a f e t y va lve . t i o n s i l l u s t r a t e d a r e those s t a t e d i n Tab le 1. The d i s p l a y s o f t h e t h r o t t l e p a t h and t h e message a r e c o n t r o l l e d by t h e a p p r o p r i a t e r u l e s and measured p l a n t d a t a .

F i g u r e s 2, 3, and 4 a r e c o p i e s o f d i s p l a y screens genera ted on a T e k t r o n i x 41158 D i s p l a y System. r u l e s (Tab le 2) were coded i n FORTRAN 86 by t h e use o f l o g i c a l IF and B L O C K I F program s ta tements . The f i g u r e s i l l u s t r a t e how an e x p e r t d i s p l a y may be used i n m o n i t o r i n g a s a f e t y va lve . t h i s t y p e , t h e need f o r a human t o search t h e compu- t e r ' s d a t a base i s e l i m i n a t e d because t h e d i s p l a y i s updated a u t o m a t i c a l l y .

The r u l e s i n Tab le 2 a r e f o r i l l u s t r a t i o n purposes o n l y . comprehensive s e t . For example, r u l e s t o d e t e c t a s t u c k open v a l v e wou ld be u s e f u l . f a c t o r t o assess t h e c e r t a i n t y o f a s o l u t i o n wou ld be h e l p f u l . I f i n s u f f i c i e n t o r c o n f l i c t i n g d a t a a r e p r e s e n t , a low p r o b a b i l i t y f a c t o r i s ass igned, wh ich e s s e n t i a l l y g i v e s t h e prob lem t o t h e human t o r e s o l v e . W i t h v a l i d a t e d p l a n t d a t a , t h e r u l e s c o u l d be expanded t o r e s o l v e c o n f l i c t s . Furthermore, t h e r u l e s shou ld be expanded t o t e s t f o r and d e t e c t s a t u r a t e d steam a t t h e measured p r e s s u r e w i t h i n t h e d i s c h a r g e p i p e . However, t h i s steam may be p r e s e n t f o r o t h e r reasons. As t h e r u l e s become more complex, a g r e a t e r e f f o r t i s needed

The tempera ture g r i d i s another

The The

The p a t h o f t h e t h r o t t l i n g p r o -

The o p e r a t i n g cond i -

The

W i t h an e x p e r t d i s p l a y o f

New r u l e s must be added t o genera te a r o b u s t and

A lso , a p r o b a b i l i t y

F i g u r e 5 c o n t a i n s an i c o n i c d i s p l a y o f a p r e s s u r i z e d water r e a c t o r (PWR) a t d e s i g n power. The i c o n i c d i s - p l a y i s composed o f p rocess segments and system segments. f u n c t i o n s and v a r i a b l e s f o r t h e p r i m a r y c o o l a n t system and secondary c o o l a n t system ( i n terms o f tempera ture and e n t r o p y p r o p e r t i e s o f water , see Reference 7 f o r f u r t h e r d e t a i l s ) . A l s o , t h e process segments c o n t a i n d a t a on: 1) subcooled water i n t h e p r i m a r y c o o l a n t sys- tem and t h e secondary c o o l a n t system, and 2) w a t e r l e v e l d a t a f o r t h e p r e s s u r i z e r , steam genera tors , and condenser h o t w e l l (see Reference 7 on how these d a t a a r e encoded as process knowledge).

Several system segments a r e c o n t a i n e d i n t h e PWR HEAT ENGINE i c o n ( F i g u r e 5). The segment f o r t h e condenser c o o l i n g w a t e r system i s near t h e condensat ion process f u n c t i o n p o r t i o n o f t h e process i c o n . The segments f o r t h e condensate s t o r a g e t a n k (CST) and a s s o c i a t e d p i p i n g , v a l v e s , and pump a r e near t h e segment f o r t h e condensat ion process . The system segments f o r t h e makeup and le tdown system c o n t a i n t h e volume c o n t r o l t a n k (VCT), r e g e n e r a t i v e h e a t exchanger ( R H X ) , l e tdown h e a t exchanger (LHX), and a s s o c i a t e d p i p i n g , v a l v e s , and pumps. F i n a l l y , t h e h i g h p r e s s u r e c h a r g i n g system, w i t h t h e r e f u e l i n g w a t e r s t o r a g e tank , boron i n j e c t i o n t a n k (B IT) , v a l v e s , and pump i s a l s o shown i n t h e i c o n .

Mnemonics a r e a l s o encoded i n F i g u r e 5. t u r e g r i d and s c a l e serve a u s e r ' s t a s k t o e v a l u a t e c o o l a n t tempera tures w i t h i n t h e process . A l s o , t h e r e a c t o r power l e v e l (99.6%) i s s t a t e d n u m e r i c a l l y and p o s i t i o n e d near t h e d i s p l a y segment f o r p r i m a r y c o o l a n t . Fur thermore , a d d i t i o n a l d a t a c o u l d be coded i n t o F i g u r e 5 and s t i l l n o t r e s u l t i n c l u t t e r . For example, t h e tempera ture o f t h e w a t e r e n t e r i n g and l e a v i n g t h e LHX and RHX c o u l d be added a l o n g w i t h t h e water f l o w r a t e s . n o t a completed des ign .

A normal r e a c t o r t r i p i s one where: 1) t h e c o n t r o l rods i n s e r t i n t o t h e r e a c t o r and a s a f e t y i n j e c t i o n s i g n a l i s n o t p r e s e n t , 2) t h e t u r b i n e bypass v a l v e opens on demand, 3) t h e a u x i l i a r y feedwater system responds on demand, 4) t h e t u r b i n e v a l v e s c l o s e on demand, 5) t h e feedwater system t r i p s on demand, and 6) t h e condenser serves as a component i n t h e h e a t removal c y c l e . These c o n d i t i o n s may be formed i n t o r u l e s t h a t w i t h t h e appro- p r i a t e measured p l a n t d a t a , would be used t o c o n t r o l t h e d i s p l a y o f segments. F i g u r e 6 i l l u s t r a t e s how t h e i c o n p r e s e n t s o p e r a t i o n o f t h e p l a n t f o l l o w i n g a normal

The process segments p r e s e n t t h e process

The tempera-

F i g u r e 5 i s an i l l u s t r a t i o n o n l y ,

Page 4: An expert display system and nuclear power plant control rooms

994

t r i p . The source o f t h e a u x i l i a r y feedwater f o r t h e steam g e n e r a t o r s i s t h e condensate s t o r a g e t a n k .

F i g u r e 7 i l l u s t r a t e s how t h e i c o n would l o o k when t h e a u x i 1 i a r y feedwater system f a i 1 s t o respond upon a r e a c t o r t r i p . The word i s used because t h e a u t h o r d i d n o t have d a t a f rom a computer s i m u l a t i o n o f t h e e v e n t t o genera te t h e d i s p l a y . Severa l i m p o r t a n t events a r e coded i n t o t h i s i con : 1) t h e blowdown o f t h e steam g e n e r a t o r s t o t h e condenser by a t h r o t t l e p rocess th rough t h e t u r b i n e bypass v a l v e , 2) a p r e s s u r i z e r t h a t i s n e a r l y f u l l o f w a t e r , and 3) a blowdown o f t h e p r e s s u r i z e r t o t h e p r e s s u r i z e r r e l i e f t a n k (PRT) by a t h r o t t l e p rocess t h r o u g h t h e p r e s s u r e r e l i e f va lves . The s a f e t y systems c o n s i s t o f 1) t h e accumula tors (ACUM), 2) t h e upper head i n j e c t i o n system (UHI), 3) t h e s a f e t y i n j e c t i o n system ( S I ) , and 4) t h e c h a r g i n g system (CHG). The p r i m i t i v e s o f t h e d i s p l a y segments wou ld be updated on a r e a l - t i m e b a s i s t o r e f l e c t t h e c u r r e n t s t a t u s o f t h e p l a n t . p a t h f rom t h e r e a c t o r t o t h e environment c o n s i s t s o f t h e t h r o t t l e p rocess t h r o u g h t h e r e l i e f v a l v e s i n t h e p r e s s u r i z e r , con ta inment sump, and t h e h e a t exchangers i n t h e r e s i d u a l h e a t removal system.

F i g u r e 8 i l l u s t r a t e s how t h e i c o n wou ld d i s p l a y p l a n t o p e r a t i o n s a f t e r a r e a c t o r t r i p i n wh ich a l l t u r b i n e bypass v a l v e s f a i l t o open on demand. The a u x i l i a r y feedwater system responds and p r o v i d e s w a t e r t o t h e steam genera tors . The a f t e r h e a t f rom t h e r e a c t o r i s removed i n t h e process o f b o i l i n g t h e a u x i l i a r y feed- w a t e r i n t h e steam genera tors . r e l e a s e d t o t h e atmosphere by a t h r o t t l i n g process t h r o u g h t h e g e n e r a t o r ' s r e l i e f va lves .

F i n a l l y , F i g u r e 9 i l l u s t r a t e s a p r i m a r y c o o l a n t system t h a t i s thermodynamica l l y uncoupled f rom t h e secondary c o o l a n t system. The v e r t i c a l b a r between t h e p r e s s u r e b a r o f t h e p r i m a r y system and t h e steam g e n e r a t o r ' s s a t u r a t i o n tempera ture would be c o l o r e d r e d ; i t serves as a p e r c e p t u a l cue t o a t t r a c t t h e u s e r ' s a t t e n t i o n . The t r i a n g u l a r symbol l o c a t e d on t h e p r e s s u r e b a r i n d i c a t e s t h e w a t e r l e v e l i n t h e r e a c t o r core . The p o s i t i o n o f t h e square symbol on t h e p r e s s u r e b a r , l o c a t e d near t h e s a t u r a t e d steam l i n e , i n d i c a t e s a p r e s s u r i z e r empty o f water .

An e x p e r t d i s p l a y t o a s s i s t o p e r a t o r s i n m o n i t o r i n g p l a n t o p e r a t i o n s d u r i n g normal o p e r a t i o n s , a n t i c i p a t e d t r a n s i e n t s , and emergency c o n d i t i o n s i s a u n i v e r s a l d i s p l a y and t e c h n i c a l l y f e a s i b l e . from t h e c o r e f o l l o w i n g a r e a c t o r t r i p must be ach ieved s u c c e s s f u l l y t o m a i n t a i n safe o p e r a t i o n o f t h e p l a n t . An e x p e r t d i s p l a y t h a t a u t o m a t i c a l l y i d e n t i f i e s and p r e s e n t s t h e c u r r e n t h e a t t r a n s f e r p a t h f rom t h e h e a t source ( r e a c t o r ) t o h e a t s i n k (env i ronment ) wou ld s i m p l i f y t h e f u n c t i o n s and t a s k s ass igned o p e r a t o r s .

The main h e a t removal

The steam i s t h e n

A f t e r h e a t removal

ACKNOWLEDGEMENTS

The a u t h o r thanks John G a b r i e l and R ichard L indsay o f Argonne N a t i o n a l Labora tory f o r t h e i r r e v i e w and com- ments on d r a f t s o f t h i s paper. The a u t h o r a l s o thanks Thomas R o t e l l a , a s t a f f c o l l e a g u e , f o r h i s c o n s t r u c t i v e r e v i e w comments.

CONCLUSIONS

Knowledge o f t h e p l a n t ' s h e a t eng ine c y c l e / h e a t removal c y c l e i s encoded as c o m p u t e r - c o n t r o l l e d d i s p l a y seg- ments on a ca thode- ray t u b e ' s screen. T h i s knowledge i s based on t h e thermodynamic p r i n c i p l e s and models used by mechanical eng ineers t o des ign a n u c l e a r power p l a n t . The g r a p h i c a l segments on t h e screen fo rm an i c o n o f t h e p l a n t ' s o p e r a t i o n , wh ich f a c i l i t a t e s t h e communicat ion o f t h e encoded knowledge t o t h e user .

The d a t a w i t h i n t h e i c o n a l l o w a u s e r t o e v a l u a t e t h e i n t e r a c t i o n between p l a n t systems and t h e process .

The r u l e s ( c o l l e c t i o n o f e x p e r t i s e ) needed t o c o n t r o l t h e d i s p l a y o f segments, as d e s c r i b e d h e r e i n , a r e few i n number. However, t h e r u l e s a r e e x t r e m e l y i m p o r t a n t because t h e i r imp lementa t ion automates t h e t a s k s o f a c q u i s i t i o n and communicat ion o f knowledge, i n r e a l t i m e , as a f u n c t i o n o f p l a n t s t a t u s . T h i s techn ique a l l o w s t h e d e s i g n e r t o d i s p l a y t h e most r e l e v a n t da ta ; t h a t i s , t h e d a t a an e x p e r t would use t o m o n i t o r and e v a l u a t e t h e c u r r e n t s t a t e o f t h e p l a n t .

These f e a t u r e s reduce a u s e r ' s work load by e l i m i n a t i n g t h e search f o r d a t a and t h e y enhance a s k i l l - b a s e d response from t h e o p e r a t o r t h r o u g h t h e l o g i c a l s t r u c - t u r e o f t h e d i s p l a y e d da ta .

The i l l u s t r a t i o n s i n t h i s paper - an e x p e r t s a f e t y v a l v e m o n i t o r and a u n i v e r s a l d i s p l a y - a r e i l l u s t r a - t i o n s o n l y . A c o n s i d e r a b l e amount o f work remains t o be done t o d e s i g n and v a l i d a t e t h e system descr ibed. However, f rom t h e i l l u s t r a t i o n s , i t may be seen t h a t a d d i t i o n a l f u n c t i o n s , such as process c o n t r o l and a n n u n c i a t i o n s , c o u l d be added t o expand t h e u t i l i t y o f t h e u n i v e r s a l d i s p l a y . f u r t h e r m o r e , t h e use o f a v i d e o r e c o r d e r , w i t h a f a s t r e p l a y f e a t u r e , p r o v i d e s a u s e f u l means o f m o n i t o r i n g and d i a g n o s i n g p l a n t t r a n s i e n t s and t r i p s . W i t h a f a s t r e p l a y , f u n c t i o n t r e n d s c o u l d be mon i to red as a near r e a l t i m e a i d i n t h e d i a g n o s i s o f an event . A new l e v e l o f human f a c t o r s f o r t h e o p e r a t o r - p l a n t i n t e r f a c e i s ach ieveab le w i t h techno logy t h a t c u r r e n t l y e x i s t s !

T h e u s e o f t h e e x p e r t d i s p l a y s presented i n t h i s paper w i l l :

e l i m i n a t e t h e need t o g a t h e r and process r e l a t e d d a t a f rom d i v e r s e p o i n t s w i t h i n t h e c o n t r o l room;

e l i m i n a t e t h e peephole e f f e c t o f a CRT screen as a v i e w p o r t t o a l a r g e d a t a base o f i n f o r m a t i o n ;

e l i m i n a t e t h e search e f f o r t needed i n i n t e r a c t - i n g w i t h a keyboard t o f i n d t h e d i s p l a y f o r m a t s p e r t i n e n t t o c u r r e n t p l a n t o p e r a t i o n s .

e l i m i n a t e d i s p l a y c l u t t e r because o n l y segments p e r t i n e n t t o c u r r e n t p l a n t o p e r a t i o n s a r e p r e - sented r a t h e r t h a n a l l d i s p l a y segments a t t h e same t i m e ; and

g i v e c o n t r o l room o p e r a t o r s i n f o r m a t i o n an e x p e r t wou ld use i n e v a l u a t i n g t h e c u r r e n t s t a t u s o f t h e p l a n t .

However, t h e s e b e n e f i t s can o n l y be ach ieved i f :

- t h e knowledge base i s a c c u r a t e l y and t h o r o u g h l y d e f i n e d ; and

- t h e r u l e s implemented i n t o computer code a r e f r e e o f e r r o r and c o n f l i c t .

A s t r u c t u r e d d e s i g n process , a l o n g w i t h e f f e c t i v e q u a l i t y assurance programs and d e s i g n v e r i f i c a t i o n and v a l i d a t i o n programs, w i l l m in imize t h e d e s i g n e r r o r s i n t h e code.

REFERENCES

1. Foe ly , J. D. , Wal lace, V. L. , and Chan, P . , "The Human F a c t o r s o f Computer Graph ic I n t e r a c t i o n Techniques," IEEE Computer Graph ics and Appl i c a %, Volume 4, Number 11, November 1984, pp 1 3 - 48.

Page 5: An expert display system and nuclear power plant control rooms

995

2. "Computer-Generated D i s p l a y System G u i d e l i n e s , 6. Ober t , E. F . , Elements of Thermodynamics and Heat Volume 1: D i s p l a y Design, Volume 2: Deve lop ing an T r a n s f e r , F i r s t E d i t i o n , 1949, McGraw H i l l Book E v a l u a t i o n P lan , " NP - 3701, E l e c t r i c Power Company, I n c . New York, New York. Research I n s t i t u t e , September 1984.

7. B e l t r a c c h i , L., " A P r o c e s d E n g i n e e r e d Safeguards I c o n i c D i s p l a y , " Proceedings o f t h e Symposium on New Techno log ies i n Nuc lear Power P l a n t Ins t rumen t a t i o n and C o n t r o l , Washington, DC, November 28 -

" A c o u s t i c M o n i t o r i n g o f Nuc lear S a f e t y and R e l i e f Valves," NP-3332, Research P r o j e c t 1246-2, E lec- t r i c Power Research I n s t i t u t e , Pa lo A l t o , C a l i - f o r n i a , F i n a l Report , December, 1983.

3. Murch, G. M. , " P h y s i o l o g i c a l P r i n c i p l e s f o r t h e E f f e c t i v e Use o f C o l o r , " IEEE Computer Graph ics and A p p l i c a t i o n s , Volume 4, Number 11, November 1984, pp 49 - 54. 30, 1984.

4. Hayes - Roth, F . , "The Knowledge-Based E x p e r t System: A T u t o r i a l , " IEEE Computer, September 1984, pp 11 - 28.

8.

5. G immy, K. L . , and Nomm, E . , "Au tomat ic D iagnos is o f M u l t i p l e Alarms f o r Reactor C o n t r o l Rooms," Proceedings o f ANS Annual Meet ing , Los Angeles, CA, June 6 - 11, 1982.

TABLE 1

THE THROTTLE PROCESS

1. S a f e t y v a l v e open

Steam l i n e :

Pressure: 1250 p s i a

Temperature: 572.4 F

( s a t u r a t e d steam)

Entha lpy : 1182.6 BTU/#m

S a f e t y v a l v e s e t p o i n t : 1245 p s i a

D ischarge p i p e :

Pressure: 14.7 p s i a

Temperature: 279 F (superheated steam)

2. S a f e t y v a l v e l e a k i n g

Steam l i n e :

Pressure : 1000 p s i a

Temperature: 544.6 F ( s a t u r a t e d steam)

Entha lpy : 1192.9 BTU/#m

Discharge p i p e :

Pressure : 14 .7 p s i a

Temperature: 300 F (superheated steam)

TABLE 2

EXPERT RULES

Rules

~ ~~

S t a t u s

Steam l i n e p r e s s u r e 2 True F a l s e F s a f e t y v a l v e ' s s e t p o i n t

A c o u s t i c m o n i t o r r e a d i n g 2 T F T

s e t p o i n t v a l u e

Thermocouple r e a d i n g 1 T F T

( c a l c u l a t e d temp- to le rance)

T T

F T

T F

Message on v a l v e s t a t u s Va lve Va lve Va lve I n s u f f i c i e n t

Open Closed Leak ing Data

Page 6: An expert display system and nuclear power plant control rooms

996

P i = PRESSURE

H i = ENTHALPY STEAM LINE

DRYWELL

ACOUSTIC MONITOR

DISCHARGE PIPE

I I

Figure 1 BWR steam l i n e safe ty valve

Page 7: An expert display system and nuclear power plant control rooms

991

BWR - SAFETY VALVE CHECK

11 /OW85 09: 15:OO

T T E E M M P P

700

600

500

400

300

m 100

I-ZZ2F-l Figure 2 Icon: Safety valve f u l l y seated

BWR - SAFETY VALVE CHECK

1 1 109185' 09:15:OO

SRV 50201 LEAKING I

~~

Figure 3 Icon: Safety valve leaking

Page 8: An expert display system and nuclear power plant control rooms

998

BWR - SAFETY VALVE CHECK

11 109185' 09: 15:OO

T T E E M M P P

Figure 4 Icon: S a f e t y v a l v e open

PWR HEAT ENGINE

09121 185 07:OO:OO

T E M P

F igure 5 Icon: PWR heat engine

Page 9: An expert display system and nuclear power plant control rooms

999

PWR HEAT REMOVAL CYCLE

09/21 185' 07: 1O:OO

ALL RODS IN

Figure 6 Icon: PWR heat removal cycle , normal t r i p

PWR HEAT REMOVAL CYCLE

09/21 185' 07: 15:OO

ALL RODS IN

.-.-.-.-.-.-.-.-.-.

1M

50

0

Figure 7 Icon: PWR heat removal cyc le , no aux feedwater

Page 10: An expert display system and nuclear power plant control rooms

PWR HEAT REMOVAL CYCLE /

09/21 I85 07:15:00

ALL RODS IN

Figure 8 Icon: P W R heat removal cycle, bypass valves fail to open

Figure 9 Icon: P W R heat removal cycle, uncoupled primary system