94
AN INTRODUCTION TO ANALYSIS ON FRACTALS ALEXANDER TEPLYAEV UNIVERSITY OF CONNECTICUT HTTP://WWW.MATH.UCONN.EDU/~ TEPLYAEV/GREGYNOG/ LMS/EPSRC SHORT COURSE 10 - 15 JANUARY 2007 GREGYNOG HALL IN CONJUNCTION WITH ANALYSIS ON GRAPHS AND ITS APPLICATIONS ISAAC NEWTON INSTITUTE FOR MATHEMATICAL SCIENCES CAMBRIDGE, UK, 8 JANUARY - 29 JUNE 2007

An Introduction to a Nalysison Fractals

Embed Size (px)

DESCRIPTION

An introduction to fractals

Citation preview

Page 1: An Introduction to a Nalysison Fractals

AN INTRODUCTION TO

ANALYSIS ON FRACTALS

ALEXANDER TEPLYAEVUNIVERSITY OF CONNECTICUT

HTTP://WWW.MATH.UCONN.EDU/~ TEPLYAEV/GREGYNOG/

LMS/EPSRC SHORT COURSE10 - 15 JANUARY 2007

GREGYNOG HALL

IN CONJUNCTION WITH

ANALYSIS ON GRAPHS AND ITS APPLICATIONSISAAC NEWTON INSTITUTE FOR MATHEMATICAL SCIENCES

CAMBRIDGE, UK, 8 JANUARY - 29 JUNE 2007

Page 2: An Introduction to a Nalysison Fractals

Major general references (books)

[1] M. T. Barlow, Diffusions on fractals. Lectures on Probability Theory andStatistics (Saint-Flour, 1995), 1–121, Lecture Notes in Math., 1690, Springer,Berlin, 1998.

[2] J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics 143, Cam-bridge University Press, 2001.

[3] M. L. Lapidus and M. van Frankenhuysen, Fractal geometry, complex dimen-sions and zeta functions. Geometry and spectra of fractal strings. SpringerMonographs in Mathematics. Springer, New York, 2006.

[4] R. S. Strichartz, Differential equations on fractals: a tutorial. PrincetonUniversity Press, 2006.

Page 3: An Introduction to a Nalysison Fractals

Contents

Major general references (books) 2

Lecture 1Laplacians on self-similar graphsand relation to self-similar groups 6Abbreviated list of references 30

Lecture 2Laplacians on self-similar fractalsand spectral zeta functions 36Abbreviated list of references 54

Lecture 3Kigami’s resistance forms on fractalsand relation to quantum graphs 64Abbreviated list of references 87

Page 4: An Introduction to a Nalysison Fractals

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

0

Page 5: An Introduction to a Nalysison Fractals

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

·····

TT

TTT·····

TT

TTT

·····

TT

TTT

0

Page 6: An Introduction to a Nalysison Fractals

Lecture 1Laplacians on self-similar graphs

and relation to self-similar groupsR. Rammal and G. Toulouse, Random walks on fractal structures and percolation

clusters. J. Physique Letters 44 (1983), L13–L22.

R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45 (1984).

S. Alexander, Some properties of the spectrum of the Sierpinski gasket in a mag-netic field. Phys. Rev. B 29 (1984).

E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to the Schrodingerequation on some fractal lattices. Phys. Rev. B (3) 28 (1984).

Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals.I. Quasilinear lattices. II. Sierpinski gaskets. III. Infinitely ramified lattices. J. Phys.A 16 (1983–1984).

R. B. Stinchcombe, Fractals, phase transitions and criticality. Fractals in the naturalsciences. Proc. Roy. Soc. London Ser. A 423 (1989), 17–33.

J. Bellissard, Renormalization group analysis and quasicrystals, Ideas and methodsin quantum and statistical physics (Oslo, 1988). Cambridge Univ. Press, 1992.

Page 7: An Introduction to a Nalysison Fractals

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

2

−1

−1

1

z = 32

t

t t

t ····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

12

12

12

12

12

12

2 −1

−1

−1 1

z = 34

t

t t

t

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

2

1

−1

−1

1

−1

−1

z = 32

t t

t t

t t

t ····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

−11

1

−1

−1

1

z = 54

Page 8: An Introduction to a Nalysison Fractals

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

0

Page 9: An Introduction to a Nalysison Fractals

Let ∆ be the probabilistic Laplacian (generator of a simple random walk) on theSierpinski lattice. If z 6= 3

2, 5

4, 1

2, and R(z) = z(4z + 5), then

R(z) ∈ σ(∆) ⇐⇒ z ∈ σ(∆)

σ(∆) = JR

⋃D

where Ddef= 3

2 ⋃ ( ∞⋃

m=0R−m 3

4)

and JR is the Julia set of R(z).

-60

32

54

34

12

32

54

s

sss

s

sssss

Page 10: An Introduction to a Nalysison Fractals

There are uncountably many nonisomorphicSierpinski lattices.Theorem (T). The spectrum of ∆ is pure point.Eigenfunctions with finite support are complete.

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

v v

vv v

v

v v

v

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

0

Page 11: An Introduction to a Nalysison Fractals

©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

·······

·······

·······

································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

································

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

w w w

w w ww w w

ÁÀ

¿

ÁÀ

¿

ÁÀ

¿

ÁÀ

¿

ÁÀ

¿

ÁÀ

¿

Page 12: An Introduction to a Nalysison Fractals

Let ∆(0) be the Laplacian with zero (Dirichlet) boundary condition at ∂L. Then

the compactly supported eigenfunctions of ∆(0) are not complete (eigenvalues inE is not the whole spectrum).

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

····

TT

TT····

TT

TT

····

TT

TT

k0

0

0

1u

1u00 0

0

00

0

00··

. . .

··. . .

Let ∂L(0) be the set of two points adjacent to ∂L and ω(0)∆ be the spectral

measure of ∆(0) associated with 1∂L(0). Then supp(ω

(0)∆ ) = JR has Lebesgue

measure zero and

d(ω(0)∆ R1,2)

dω(0)∆

(z) =(8z + 5)(2z + 3)

(2z + 1)(4z + 5)

Page 13: An Introduction to a Nalysison Fractals

Fix p, q>0, p+q=1, and define probabilistic Laplacians ∆n on the segments[0, 3n] of Z+ inductively as a generator of the random walks:

0 1u u- ¾

1 1

0 1 3u u u u- - -¾ ¾ ¾

1 q p p q 1

0 1 3 6 9u u u u u u u u u u- - - - - - - - -¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾

1 q p p q q p q p p q p q q p p q 1

0 3n 2(3n) 3n+1u q q qq q qq q qu u u

- - -¾ ¾ ¾

1 q p p q 1

and let ∆ = limn→∞

∆n be the corresponding probabilistic Laplacian on Z+.

Page 14: An Introduction to a Nalysison Fractals

If z 6=−1±p and R(z)=z(z2+3z+2+pq)/pq, then R(z) ∈ σ(∆n) ⇐⇒z ∈ σ(∆n+1)

-60−2

−2

−1 ± p

s ss

Theorem(T). σ(∆) = JR, the Julia set of R(z).If p=q, then σ(∆)=[−2, 0], spectrum is a.c.If p 6= q, then σ(∆) is a Cantor set of Lebesgue measure zero, spectrum is

singularly continuous.

Page 15: An Introduction to a Nalysison Fractals

There are uncountably many “random” self-similar Laplacians ∆ on Z:For a sequence K = kj∞

j=1, kj ∈ 0, 1, 2, let

Xn = −n∑

j=1

kj3j

and ∆n is a probabilistic Laplacian on [Xn, Xn+3n]:

Xn Xn+3n−1 Xn+2(3n−1) Xn+3n

u r r rr r rr r ru u u- - -¾ ¾ ¾

1 q p p q 1

In the previous example kj = 0 for all j.Theorem (T).For any sequence K we have σ(∆) = JR. The same is true for the DirichletLaplacian on Z+ (when kj ≡ 0).

Page 16: An Introduction to a Nalysison Fractals

R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and HanoiTowers groups, preprint.

ss

··sTTs s

··sTTsTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

··TT

b··bTT

b b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

Page 17: An Introduction to a Nalysison Fractals

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

··TT

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

Sierpinski 3-graph Sierpinski 4-graph(Hanoi Towers-3 group) (standard)

Page 18: An Introduction to a Nalysison Fractals

These three polynomials are conjugate:

Sierpinski 3-graph (Hanoi Towers-3 group): f(x) = x2 − x − 3f(3) = 3, f ′(3) = 5

Sierpinski 4-graph, “adjacency matrix” Laplacian: P (λ) = 5λ − λ2

P (0) = 0, P ′(0) = 5

Sierpinski 4-graph, probabilistic Laplacian: R(z) = 4z2 + 5zR(0) = 0, R′(0) = 5

Page 19: An Introduction to a Nalysison Fractals

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

··TT

Page 20: An Introduction to a Nalysison Fractals

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

Page 21: An Introduction to a Nalysison Fractals

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

··TT

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

Page 22: An Introduction to a Nalysison Fractals

ss

s

ss

sss

s

ss

s

ss

sss

s

ss

s

ss

sss

s

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

Page 23: An Introduction to a Nalysison Fractals

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

Page 24: An Introduction to a Nalysison Fractals

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

··TT

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

Page 25: An Introduction to a Nalysison Fractals

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

Page 26: An Introduction to a Nalysison Fractals

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

Page 27: An Introduction to a Nalysison Fractals

Theorem. Eigenvalues and eigenfunctions on theSierpinski 3-graphs and Sierpinski 4-graphs are inone-to-one correspondence, with the exception of theeigenvalue z = −3

2 for the 4-graphs.

b··bTT

b ←−4z2 + 5z

b··bTT

bb

··bTTbb

··bTTb

b··bTT

b ←−43z2 + 8

3z

bs bb

rr ←−2z2 + 4z

c rr

Page 28: An Introduction to a Nalysison Fractals

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

s··sTT

sTT ··

s··sTT

ss··sTT

s

··TT

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb

bs bb b

s bbbs bb b

s bb bs bb

bs bb

bs bb b

s bbbs bb b

··bTTb

b··bTT

bb··bTT

bb

··bTTb

b··bTT

bb··bTT

bb

··bTTb

b··bTT

bb··bTT

bb

··bTTb

b··bTT

bb··bTT

bb

··bTTb

b··bTT

bb··bTT

bb

··bTTb

b··bTT

bb··bTT

b

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

b··bTT

bb

··bTTbb

··bTTb

Sierpinski 3-graph Sierpinski 4-graph(Hanoi Towers-3 group) (standard)R(z) = 2z2 + 4z R(z) = 4

3z2 + 8

3z

Page 29: An Introduction to a Nalysison Fractals

Let H and H0 be Hilbert spaces, and U : H0 → H be an isometry.

Definition. We call an operator H spectrally similar to an operator H0 withfunctions ϕ0 and ϕ1 if

U∗(H − z)−1U = (ϕ0(z)H0 − ϕ1(z))−1

In particular, if ϕ0(z) 6= 0 and R(z) = ϕ1(z)/ϕ0(z), then

U∗(H − z)−1U =1

ϕ0(z)(H − R(z))−1.

If H =

(S XX Q

)then

S − zI0 − X(Q − zI1)−1X = ϕ0(z)H0 − ϕ1(z)I0

Theorem (Malozemov, Teplyaev). If ∆ is the graph Laplacian on a self-similar symmetric infinite graph, then

JR ⊆ σ(∆∞) ⊆ JR ∪ D∞where D∞ is a discrete set and JR is the Julia set of the rational function R.

Page 30: An Introduction to a Nalysison Fractals

Abbreviated list of references

[1] S. Alexander, Some properties of the spectrum of the Sierpinski gasket ina magnetic field. Phys. Rev. B 29 (1984), 5504-5508.

[2] Bartholdi, Laurent ; W. Woess, Spectral computations on lamplighter groupsand Diestel-Leader graphs. J. Fourier Anal. Appl. 11 (2005), 175–202.

[3] J. Bellissard, Renormalization group analysis and quasicrystals, Ideas andmethods in quantum and statistical physics (Oslo, 1988), 118–148. CambridgeUniv. Press, Cambridge, 1992.

[4] S. Brofferio, W. Woess, Green kernel estimates and the full Martin bound-ary for random walks on lamplighter groups and Diestel-Leader graphs.Ann. Inst. H. Poincare’ Probab. Statist. 41 (2005), 1101–1123.

[5] S. Brofferio, W. Woess, Positive harmonic functions for semi-isotropic ran-dom walks on trees, lamplighter groups, and DL-graphs. Potential Anal. 24(2006), 245–265.

Page 31: An Introduction to a Nalysison Fractals

[6] E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to theSchrodinger equation on some fractal lattices. Phys. Rev. B (3) 28 (1984),3110–3123.

[7] Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals. I.Quasilinear lattices. II. Sierpinski gaskets. III. Infinitely ramified lattices.J. Phys. A 16 (1983), 1267–1278; 17 (1984), 435–444 and 1277–1289.

[8] S. Goldstein, Random walks and diffusions on fractals, in “Percolation The-ory and Ergodic Theory of Infinite Particle Systems” (H.Kesten, ed.), 121–129,IMA Math. Appl., Vol. 8, Springer, New York, 1987.

[9] P. Grabner, Functional iterations and stopping times for Brownian motionon the Sierpinski gasket. Mathematika 44 (1997), 374–400.

[10] R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs andHanoi Towers groups, preprint.

[11] V. A. Kaımanovich and A. M. Vershik, Random walks on discrete groups:boundary and entropy. Ann. Probab., 11 (1983), 457–490.

Page 32: An Introduction to a Nalysison Fractals

[12] B. Kron, Green functions on self-similar graphs and bounds for the spec-trum of the Laplacian. Ann. Inst. Fourier (Grenoble) 52 (2002), 1875–1900.

[13] B. Kron, Growth of self-similar graphs. J. Graph Theory 45 (2004), 224–239.

[14] B. Kron and E. Teufl, Asymptotics of the transition probabilities of thesimple random walk on self-similar graph, Trans. Amer. Math. Soc., 356(2003) 393–414.

[15] T. Lindstrøm, Brownian motion on nested fractals. Mem. Amer. Math. Soc.420, 1989.

[16] L. Malozemov and A. Teplyaev, Pure point spectrum of the Laplacians onfractal graphs. J. Funct. Anal. 129 (1995), 390–405.

[17] L. Malozemov and A. Teplyaev, Self-similarity, operators and dynamics.Math. Phys. Anal. Geom. 6 (2003), 201–218.

[18] B. B. Mandelbrot, Hasards et tourbillons: quatre contes a clef. Annales desMines, November 1975, 61–66.

Page 33: An Introduction to a Nalysison Fractals

[19] B. B. Mandelbrot, Les Objets Fractals. Forme, Hasard et Dimension. Nou-velle Bibliotheque Scientifique. Flammarion, Editeur, Paris, 1975.

[20] B. B. Mandelbrot, Fractals: form, chance, and dimension. Translated fromthe French. Revised edition. W. H. Freeman and Co., San Francisco, Calif.,1977.

[21] B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman andCo., San Francisco, Calif., 1982.

[22] G. Musser, Wireless communications, Scientific American, July 1999.

[23] C. Puente-Baliarda, J. Romeu., Ra. Pous and A. Cardama, On the behaviorof the Sierpinski multiband fractal antenna. IEEE Trans. Antennas andPropagation 46 (1998), 517–524.

[24] R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45(1984), 191–206.

[25] R. Rammal and G. Toulouse, Random walks on fractal structures and per-colation clusters. J. Physique Letters 44 (1983), L13–L22.

Page 34: An Introduction to a Nalysison Fractals

[26] C. Sabot, Pure point spectrum for the Laplacian on unbounded nestedfractals. J. Funct. Anal. 173 (2000), 497–524.

[27] C. Sabot, Integrated density of states of self-similar Sturm-Liouville opera-tors and holomorphic dynamics in higher dimension. Ann. Inst. H. PoincareProbab. Statist. 37 (2001), 275–311.

[28] L. Rogers, R. Strichartz and A. Teplyaev, Smooth bumps, a Borel theoremand partitions of unity on p.c.f. fractals preprint.

[29] C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-

similar fractals. Ann. Sci. Ecole Norm. Sup. (4) 30 (1997), 605–673.

[30] C. Sabot, Electrical networks, symplectic reductions, and application tothe renormalization map of self-similar lattices. J. Physique Letters 44(1983), L13–L22. Fractal Geometry and Applications: A Jubilee of BenoitMandelbrot, Part 1. Proceedings of Symposia in Pure Mathematics 72, Amer.Math. Soc., (2004), 155–205.

[31] T. Shima, On eigenvalue problems for Laplacians on p.c.f. self-similarsets, Japan J. Indust. Appl. Math. 13 (1996), 1–23.

Page 35: An Introduction to a Nalysison Fractals

[32] R. B. Stinchcombe, Fractals, phase transitions and criticality. Fractals inthe natural sciences. Proc. Roy. Soc. London Ser. A 423 (1989), 17–33.

[33] R. S. Strichartz, The Laplacian on the Sierpinski gasket via the method ofaverages. Pacific J. Math. 201 (2001), 241–256.

[34] A. Teplyaev, Spectral Analysis on Infinite Sierpinski Gaskets, J. Funct.Anal., 159 (1998), 537-567.

[35] E. Teufl, The average displacement of the simple random walk on theSierpinski graph. Combin. Probab. Comput. 12 (2003), 203–222.

[36] W. Woess, A note on the norms of transition operators on lamplightergraphs and groups. Internat. J. Algebra Comput. 15 (2005), 1261–1272.

[37] W. Woess, Lamplighters, Diestel-Leader graphs, random walks, and har-monic functions. Combin. Probab. Comput. 14 (2005), 415–433.

[38] W. Woess, Random walks on infinite graphs and groups. Cambridge Tractsin Mathematics, 138. Cambridge University Press, Cambridge, 2000.

Page 36: An Introduction to a Nalysison Fractals

Lecture 2Laplacians on self-similar fractals

and spectral zeta functions

Three contractions F1, F2, F3 : R1 → R1, Fj(x) = 13(x+pj), with fixed

points pj = 0, 12, 1. The interval I=[0, 1] is a unique compact set such that

I =⋃

j=1, 2, 3

Fj(I)

The boundary of I is ∂I = V0 = 0, 1 and the discrete approxima-

tions to I are Vn =⋃

j=1, 2, 3

Fj(Vn−1) =

k3n

3n

k=0

V0=∂I : x x

?

³³³³³³³³)

PPPPPPPPqV1 : x x x x

?

³³³³³³³³)

PPPPPPPPqV2 : x x x x x x x x x x

Page 37: An Introduction to a Nalysison Fractals

Definition. The discrete Dirichlet (energy) form on Vn is

En(f) =∑

x,y∈Vny∼x

(f (y)−f (x))2

and the Dirichlet (energy) form on I is E(f) = limn→∞

3nEn(f) =∫ 1

0 |f ′(x)|2dx

Definition. A function h is harmonic if it minimizes the energy given theboundary values.

Proposition. 3En+1(f) > En(f) and 3En+1(h) = En(h) = 3−nE(h)for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) = 3∑

j = 1, 2, 3

E(fFj)

Page 38: An Introduction to a Nalysison Fractals

Definition. The discrete Laplacians on Vn are

∆nf (x) = 12

∑y∈Vny∼x

f (y)−f (x), x∈Vn\V0

and the Laplacian on I is ∆f (x) = limn→∞

9n∆nf (x) = f ′′(x)

Gauss–Green (integration by parts) formula:

E(f) = −∫ 1

0

f∆fdx + ff ′∣∣∣1

0

Spectral asymptotics: Let ρ(λ) be the eigenvalue counting function ofthe Dirichlet or Neumann Laplacian ∆:

ρ(λ) = #j : λj < λ.

Then

limλ→∞

ρ(λ)

λds/2=

1

πwhere ds = 1 is the spectral dimension.

Page 39: An Introduction to a Nalysison Fractals

Definition. The spectral zeta function is ζ∆(s) =∑

λj 6=0

(−λj

)−s/2

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree N such that its Julia set JR ⊂ (−∞, 0],R(0) = 0 and c = R′(0) > 1.

Definition. The zeta function of R(z) for Re(s) > dR = 2 log Nlog c

is

ζz0R

(s) = limn→∞

z∈R−nz0(−cnz)−s/2 =

∑λ

−s/2j

Theorem. ζz0R

(s) =f1(s)

1−Nc−s/2+ fz0

2 (s), where f1(s) and fz02 (s) are ana-

lytic for Re(s)>0. If JR is totally disconnected, then this meromorphic continuationextends to Re(s)>−ε, where ε>0.

In the case of polynomials this theorem has been improved by Grabner et al.

Page 40: An Introduction to a Nalysison Fractals

dR ∈ the poles of ζz0R

⊆ 2 log N+4inπ

log c: n∈Z

0 -−ε dR

e

e

e

e

e

e

e

e

e

e

e

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

""

"""

Page 41: An Introduction to a Nalysison Fractals

Theorem. ζ∆(s) = ζ0R(s) where R(z) = z(4z2+12z+9).

The Riemann zeta function ζ(s) satisfies ζ(s) = πsζ0R(s) The only complex

spectral dimension is the pole at s = 1.

A sketch of the proof: If z 6= − 12, −3

2, then

R(z) ∈ σ(∆n) ⇐⇒ z ∈ σ(∆n+1)

and so ζ∆(s) = ζ0R(s) since the eigenvalues λj of ∆ are limits of the eigenvalues

of 9n∆n.Also λj=−π2j2 and so

ζ∆(s) =∞∑

j=1

(π2j2

)−s/2= π−sζ(s)

where ζ(s) is the Riemann zeta function. Q.E.D.

ζ(s) = πslimn→∞

z∈R−n0z 6=0

(−9nz)−s/2

Page 42: An Introduction to a Nalysison Fractals

Definition. ∆µ is µ–Laplacian if

E(f) =

∫ 1

0

|f ′(x)|2dx=−∫ 1

0

f∆µfdµ + ff ′∣∣10.

Definition. A probability measure µ is self-similar with weights m1, m2, m3

if µ=∑

j=1, 2, 3

mjµFj.

Proposition. ∆µf (x)=f ′′µ

= limn→∞

(1+

2pq

)n∆nf (x).

∆nf( k3n)=

pf(k−1

3n ) + qf(k+13n ) − f( k

3n)

qf(k−13n ) + pf(k+1

3n ) − f( k3n)

where m1=m3, p= m2m1+m2

, q= m1m1+m2

, and

x x x x- - -¾ ¾ ¾

1

m1 m2 m3

q p p q 1

x x x x x x x x x x- - - - - - - - -¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾

1 q p p q q p q p p q p q q p p q 1

Page 43: An Introduction to a Nalysison Fractals

Spectral asymptotics: If ρ(λ) is the eigenvalue counting function of the Dirichletor Neumann Laplacian ∆µ, then

0 < lim infλ→∞

ρ(λ)

λds/26 lim sup

λ→∞

ρ(λ)

λds/2< ∞

where the spectral dimension is

ds=log 9

log(1+2pq

)6 1.

All the inequalities are strict if and only if p 6= q.

Proposition. R(z) ∈ σ(∆n) ⇐⇒ z ∈ σ(∆n+1)

where z 6=−1±p and R(z)=z(z2+3z+2+pq)/pq.

Note that R′(0)=1 + 2pq

, and ds=dR.

Theorem. ζ∆µ(s)=ζ0R(s)

Page 44: An Introduction to a Nalysison Fractals

Three contractions F1, F2, F3 : R2 → R2,Fj(x) = 1

2(x+pj), with fixed points p1, p2, p3.

p1

p2

p3

........................... ...................................................... ........................... ................................................................................. ...................................................... ........................... ...................................................... ........................... ......................................................

........................... ......................................................

........................... ...................................................... ........................... ................................................................................. ...................................................... ........................... ...................................................... ........................... ......................................................

........................... ...................................................... ........................... ...................................................... ........................... ................................................................................. ......................................................

........................... ...................................................... ........................... ................................................................................. ......................................................

........................... ...................................................... ........................... ................................................................................. ...................................................... ........................... ...................................................... ........................... ......................................................

........................... ......................................................

........................... ...................................................... ........................... ................................................................................. ......................................................

The Sierpinski gasket is a unique compact setS such that

S =⋃

j=1, 2, 3

Fj(S)

Page 45: An Introduction to a Nalysison Fractals

Definition. The boundary of S is

∂S = V0 = p1, p2, p3and discrete approximations to S are

Vn =⋃

j=1, 2, 3

Fj(Vn−1)

V0 :

y y

y

··········

TT

TT

TT

TT

TT

V1 :

x x

xx x

x

x x

x

·····

TT

TT

T·····

TT

TT

T

·····

TT

TT

T

V2 :

w w

ww w

w

w w

w

w w

ww w

w

w w

w

w w

ww w

w

w w

w

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

···

TTT···

TTT

···

TTT

Page 46: An Introduction to a Nalysison Fractals

Definition. The discrete Dirichlet (energy) form on Vn is

En(f) =∑

x,y∈Vny∼x

(f (y)−f (x))2

and the Dirichlet (energy) form on S is

E(f) = limn→∞

(53

)nEn(f)

Definition. A function h is harmonic if it minimizes the energy given theboundary values.

Proposition. 53En+1(f) > En(f)

53En+1(h)=En(h)=

(53

)−nE(h) for a harmonic h.

Theorem (Kigami). E is a local regular Dirichlet form on S which is self-similarin the sense that

E(f) = 53

j = 1, 2, 3

E(fFj)

Page 47: An Introduction to a Nalysison Fractals

Definition. The discrete Laplacians on Vn are

∆nf (x) = 14

∑y∈Vny∼x

f (y)−f (x), x∈Vn\V0

and the Laplacian on S is

∆µf (x) = limn→∞

5n∆nf (x)

if this limit exists and ∆µf is continuous.

Gauss–Green (integration by parts) formula:

E(f) = −∫

S

f∆µfdµ +∑

p∈∂S

f(p)∂nf(p)

where µ is the normalized Hausdorff measure, which is self-similar with weights13, 1

3, 1

3:

µ = 13

j = 1, 2, 3

µFj.

Page 48: An Introduction to a Nalysison Fractals

Spectral asymptotics: If ρ(λ) is the eigenvalue counting function of the Dirichletor Neumann Laplacian ∆µ, then

0 < lim infλ→∞

ρ(λ)

λds/2< lim sup

λ→∞

ρ(λ)

λds/2< ∞

where the spectral dimension is

1 < ds = log 9log 5

< 2.

Proposition. R(z) ∈ σ(∆n) ⇐⇒ z ∈ σ(∆n+1) where z 6= − 12, −3

4, −5

4and R(z) = z(5 + 4z).

Theorem (Fukushima, Shima). Every eigenvalue of ∆µ has a form

λ=5mlimn→∞

5nR−n(z0)

where R−n(z0) is a preimage of z0 = −34, −5

4under the n-th iteration power

of the polynomial R(z). The multiplicity of such an eigenvalue is C13m + C2.

Page 49: An Introduction to a Nalysison Fractals

Theorem. Zeta function of the Laplacian on the Sierpinski gasket is

ζ∆µ(s) = 12ζ

34

R(s)

(1

5s/2−3+ 3

5s/2−1

)+ 1

54

R(s)

(3·5−s/2

5s/2−3− 5−s/2

5s/2−1

)

ds

dR

= log 9log 5

= log 4log 5

6

0 dR 1 ds

g

g

g

g

g

g

g

u

u

u

u

u

u

u

g

g

g

g

g

g

g

-−1

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

""

Page 50: An Introduction to a Nalysison Fractals

Definition. If L is a fractal string, that is, a disjoint collection of intervals oflengths lj, then its geometric zeta function is ζL(s) =

∑lsj .

Theorem (Lapidus). If A=− d2

dx2 is a Neumann or Dirichlet Laplacian on L,then ζA(s) = π−sζ(s)ζL(s).

Example: Cantor self-similar fractal string.

If L is the complement of the middle third Cantor set in [0, 1], then the complexspectral dimensions are 1 and log 2+2inπ

log 3: n∈Z,

ζL(s) = 1

1−2·3−s, ζA(s) = ζ(s) π−s1−2·3−s

Page 51: An Introduction to a Nalysison Fractals

-

6

0log 2log 3 1

f

f

f

f

f

f

f

f

Page 52: An Introduction to a Nalysison Fractals

Definition. A post critically finite (p.c.f.) self-similar set F is a compact con-nected metric space with a finite boundary ∂F ⊂ F and contractive injectionsψi : F → F such that

F = Ψ(F ) =k⋃

i=1

ψi(F )

andψv(F )

⋂ψw(F ) ⊆ ψv(∂F )

⋂ψw(∂F ),

for any two different words v and w of the same length. Here for a finite wordw ∈ 1, . . . , km we define ψw = ψw1 . . . ψwm.

We assume that ∂F is a minimal such subset of F . We call ψw(F ) an m-cell.The p.c.f. assumption is that every boundary point is containedin a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian ∆µ isthe unique solution of the equation

k∑

i=1

(riµi)ds/2 = 1

Page 53: An Introduction to a Nalysison Fractals

Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form Ewhich gives positive capacity to the boundary points and is self-similar in the sensethat

E(f) =k∑

i=1

ρiE(fψi)

for a set of positive refinement weights ρ = ρiki=1.

Definition. The group G of acts on a finitely ramified fractal F if each g ∈ G isa homeomorphism of F such that g(Vn) = Vn for all n > 0.

Proposition. Suppose a group G of acts on a self-similar finitely ramified fractalF and G restricted to V0 is the whole permutation group of V0. Then there existsa unique, up to a constant, G-invariant self-similar resistance form E with equalenergy renormalization weights ρi and

E0(f, f) =∑

x,y∈V0

(f(x) − f(y)

)2.

Moreover, for any G-invariant self-similar measure µ the Laplacian ∆µ has thespectral self-similarity property (a.k.a. spectral decimation).

Page 54: An Introduction to a Nalysison Fractals

Abbreviated list of references

[1] B. Adams, S.A. Smith, R. Strichartz and A. Teplyaev, The spectrum ofthe Laplacian on the pentagasket. Fractals in Graz 2001, Trends Math.,Birkhauser (2003).

[2] M. T. Barlow, Diffusions on fractals. Lectures on Probability Theory andStatistics (Saint-Flour, 1995), 1–121, Lecture Notes in Math., 1690, Springer,Berlin, 1998.

[3] M. T. Barlow and R. F. Bass, Brownian motion and harmonic analysis onSierpinski carpets. Canad. J. Math., 51 (1999), 673–744.

[4] M. T. Barlow and R. F. Bass, Random walks on graphical Sierpinski carpets.Random walks and discrete potential theory (Cortona, 1997), 26–55, Sympos.Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999.

[5] M. T. Barlow and R. F. Bass, Stability of parabolic Harnack inequalities.Trans. Amer. Math. Soc., 356 (2004), 1501–1533.

Page 55: An Introduction to a Nalysison Fractals

[6] M. T. Barlow, R. F. Bass and T. Kumagai, Stability of parabolic Harnackinequalities on metric measure spaces. J. Math. Soc. Japan 58 (2006) 485-519.

[7] M. T. Barlow and B. M. Hambly, Transition density estimates for Brownianmotion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincare Probab.Statist., 33 (1997), 531–557.

[8] M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian onp.c.f. self-similar sets. J. London Math. Soc., 56 (1997), 320–332.

[9] M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket.Probab. Theory Related Fields 79 (1988), 543–623.

[10] O. Ben-Bassat, R. S. Strichartz and A. Teplyaev, What is not in the domainof the Laplacian on Sierpinski gasket type fractals. J. Funct. Anal. 166(1999), 197–217.

[11] N. Ben-Gal, A. Shaw-Krauss, R. S. Strichartz, C. Young, Calculus on theSierpinski gasket. II. Point singularities, eigenfunctions, and normalderivatives of the heat kernel. Trans. Amer. Math. Soc. 358 (2006), 3883–3936.

Page 56: An Introduction to a Nalysison Fractals

[12] E.J. Bird, S.-M. Ngai and A. Teplyaev, Fractal Laplacians on the Unit In-terval, Ann. Sci. Math. Quebec 27 (2003), 135–168.

[13] K. Coletta, K. Dias, R. S. Strichartz, Numerical analysis on the Sierpinskigasket, with applications to Schrodinger equations, wave equation, andGibbs’ phenomenon. Fractals 12 (2004), 413–449.

[14] K. Dalrymple, R. S. Strichartz and J. P. Vinson, Fractal differential equationson the Sierpinski gasket. J. Fourier Anal. Appl., 5 (1999), 203–284.

[15] M. Denker and S. Koch, Hausdorff dimension for Martin metrics. Algebraicand topological dynamics, 163–170, Contemp. Math., 385, Amer. Math. Soc.,2005.

[16] M. Denker and H. Sato, Reflections on harmonic analysis of the Sierpinskigasket. Math. Nachr., 241 (2002), 32–55.

[17] G. Derfel, P. Grabner and F. Vogl, The zeta function of the Laplacian oncertain fractals, preprint (2005).

Page 57: An Introduction to a Nalysison Fractals

[18] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimen-sions for nested fractals. Ideas and methods in Mathematical Analysis,Stochastics, and applications (Oslo, 1988), 151–161, Cambridge Univ. Press,Cambridge, 1992.

[19] M. Fukushima and T. Shima, On a spectral analysis for the Sierpinskigasket. Potential Analysis 1 (1992), 1-35.

[20] M. Gibbons, A. Raj and R. S. Strichartz, The finite element method on theSierpinski gasket. Constr. Approx. 17 (2001), 561–588.

[21] P. Grabner and W. Woess (editors) Fractals in Graz 2001. Analysis—dynamics—geometry—stochastics. Proceedings of the conference held atGraz University of Technology, Graz, June 2001. Edited by . Trends in Math-ematics. Birkha”user Verlag, Basel, 2003.

[22] B. M. Hambly, Heat kernels and spectral asymptotics for some randomSierpinski gaskets. Fractal geometry and stochastics, II (Greifswald/Koserow,1998), 239–267, Progr. Probab., 46, Birkhauser, Basel, 2000.

Page 58: An Introduction to a Nalysison Fractals

[23] B. M. Hambly, On the asymptotics of the eigenvalue counting function forrandom recursive Sierpinski gaskets. Probab. Theory Related Fields, 117(2000), 221–247.

[24] W. Hansen and M. Zahle, Restricting isotropic α-stable Levy processesfrom Rn to fractal sets. Forum Math. 18, 171–191.

[25] P. E. Herman, R. Peirone, R. S. Strichartz, p-energy and p-harmonic func-tions on Sierpinski gasket type fractals. Potential Anal. 20 (2004), 125–148.

[26] R. G. Hohlfeld and N. Cohen, Self–Similarity and the Geometric Require-ments for Frequency Independence in Antennae. Fractals 7 (1999), 79–84.

[27] J. Kigami, A harmonic calculus on the Sierpinski spaces. Japan J. Appl.Math. 6 (1989), 259–290.

[28] J. Kigami, Harmonic calculus on p.c.f. self–similar sets. Trans. Amer.Math. Soc. 335 (1993), 721–755.

[29] J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics 143,Cambridge University Press, 2001.

Page 59: An Introduction to a Nalysison Fractals

[30] J. Kigami and M. L. Lapidus, Weyl’s problem for the spectral distribution ofLaplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158 (1993),93–125.

[31] J. Kigami and M. L. Lapidus, Self–similarity of volume measures for Lapla-cians on p.c.f. self–similar fractals. Comm. Math. Phys. 217 (2001), 165–180.

[32] S. Kozlov, Harmonization and homogenization on fractals. Comm. Math.Phys. 153 (1993), 339–357.

[33] S. Kusuoka, Lecture on diffusion process on nested fractals. Lecture Notesin Math. 1567 39–98, Springer-Verlag, Berlin, 1993.

[34] S. Kusuoka and X. Y. Zhou, Dirichlet forms on fractals: Poincare constantand resistance. Probab. Theory Related Fields 93 (1992), 169–196.

[35] M. L. Lapidus, Spectral and fractal geometry: from the Weyl-Berry conjec-ture for the vibrations of fractal drums to the Riemann zeta-function. Dif-ferential equations and mathematical physics (Birmingham, AL, 1990), 151–181, Math. Sci. Engrg., 186, Academic Press, Boston, MA, 1992.

Page 60: An Introduction to a Nalysison Fractals

[36] M. L. Lapidus and M. van Frankenhuysen, Fractal Geometry and NumberTheory. Complex Dimensions of Fractal Strings and Zeros of Zeta Func-tions. Birkhauser, Boston, 2000.

[37] M. L. Lapidus and M. van Frankenhuysen, Fractality, self-similarity andcomplex dimensions. Fractal Geometry and Applications: A Jubilee of BenoitMandelbrot, Part 1. Proceedings of Symposia in Pure Mathematics 72, Amer.Math. Soc., (2004), 349–372.

[38] M. L. Lapidus and M. van Frankenhuysen, Fractal geometry, complex dimen-sions and zeta functions. Geometry and spectra of fractal strings. SpringerMonographs in Mathematics. Springer, New York, 2006.

[39] M. L. Lapidus and H. Maier, Hypothese de Riemann, cordes fractales vi-brantes et conjecture de Weyl-Berry modifiee. Acad. Sci. Paris Ser. I Math.313, (1991), 19–24.

[40] M. L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectralproblems for fractal strings. J. London Math. Soc. (2) 52, (1995), 15–34.

Page 61: An Introduction to a Nalysison Fractals

[41] M. L. Lapidus and C. Pomerance, Fonction zeta de Riemann et conjecturede Weyl-Berry pour les tambours fractals. C. R. Acad. Sci. Paris Ser. IMath. 310, (1990), 343–348.

[42] M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. London Math.Soc. (3) 66, (1993), 41–69.

[43] T. Lindstrøm, Brownian motion on nested fractals. Mem. Amer. Math. Soc.420, 1989.

[44] R. S. Strichartz, Piecewise linear wavelets on Sierpinski gasket type frac-tals. J. Four. Anal. Appl., 3 (1997), 387-416.

[45] R. S. Strichartz, Some properties of Laplacians on fractals. J. Funct. Anal.,164 (1999), 181-208.

[46] R. S. Strichartz, Analysis on fractals. Notices AMS, 46 (1999), 1199–1208.

[47] R. S. Strichartz, Isoperimetric estimates on Sierpinski gasket type fractals.Trans. Amer. Math. Soc. 351 (1999), 1705–1752.

Page 62: An Introduction to a Nalysison Fractals

[48] R. S. Strichartz, Taylor approximations on Sierpinski type fractals. J.Funct. Anal. 174 (2000), 76–127.

[49] R. S. Strichartz, Evaluating integrals using self-similarity. Amer. Math.Monthly 107 (2000), 316–326.

[50] R. S. Strichartz, Function spaces on fractals. J. Funct. Anal. 198 (2003),43–83.

[51] R. S. Strichartz, Fractafolds based on the Sierpinski and their spectra.Trams. AMS 355 (2003), 4019–4043.

[52] R. S. Strichartz, Solvability for differential equations on fractals. J. Anal.Math. 96 (2005), 247–267.

[53] R. S. Strichartz, Laplacians on fractals with spectral gaps have nicerFourier series. Math. Res. Lett. 12 (2005), 269–274.

[54] R. S. Strichartz, Analysis on products of fractals. Trans. Amer. Math. Soc.357 (2005), 571–615.

Page 63: An Introduction to a Nalysison Fractals

[55] R. S. Strichartz, Differential equations on fractals: a tutorial. PrincetonUniversity Press, 2006.

[56] R. S. Strichartz and M. Usher, Splines on fractals. Math. Proc. CambridgePhilos. Soc. 129 (2000), 331–360.

[57] R. S. Strichartz, C. Wong, The p-Laplacian on the Sierpinski gasket. Non-linearity 17 (2004), 595–616.

[58] A. Teplyaev, Spectral Analysis on Infinite Sierpinski Gaskets, J. Funct.Anal., 159 (1998), 537-567.

[59] A. Teplyaev, Spectral zeta functions of fractals and the complex dynamicsof polynomials, to appear in the Transactions of the American MathematicalSociety.

[60] M. Zahle, Harmonic calculus on fractals—a measure geometric approach.II. Trans. Amer. Math. Soc. 357 (2005), 3407–3423.

Page 64: An Introduction to a Nalysison Fractals

Lecture 3Kigami’s resistance forms on fractals

and relation to quantum graphs

Definition. A compact connected metric space F is called a finitely ramifiedself-similar set if there are injective contraction maps ψ1, ..., ψm : F → Fand a finite set V0 ⊂ F such that

F =m⋃

i=1

ψi(F ) = Ψ(F )

andFw ∩ Fw′ = Vw ∩ Vw′

for any two distinct words w, w′ ∈ Wn = 1, ..., mn, where Fw = ψw(F ),Vw = ψw(V0) and ψw = ψw1 ... ψwn.

The vertices of generation n are defined by Vn = Ψ(Vn−1) = Ψn(V0).

The fractal F can be uniquely reconstructed from its “combinatorial skeleton” or“ancestor”: ∂F = V0, V1, Ψ|V0 [Kigami, 1993, Appendix A].

Page 65: An Introduction to a Nalysison Fractals

A symmetric vanishing on the diagonal function c0 : V 20 → R+ (set of conduc-

tances) defines a discrete Dirichlet form

E0(f) =∑

x,y∈V0

(f(y) − f(x))2c0(x, y).

Its refinement by Ψ is

E1(f) = Ψρ(E0)(f) =k∑

i=1

ρi · E0(f ψi).

and the trace map is

Tr(E1)(f) = infE1(g)|g : V1 → R, g|V0 = f.

Page 66: An Introduction to a Nalysison Fractals

Theorem (Kigami). For given a set of positive refinement weights ρ = ρiki=1

self-similar local regular Dirichlet forms E which gives positive capacity to theboundary points are in one-to-one correspondence with the fixed points E0 of therenormalization map

Λρ = Tr Ψρ.

Definition. A resistance form E is self-similar if

E(f, f) =m∑

i=1

ρiE(f ψi, f ψi).

Conjecture. Any finitely ramified self-similar set has a self-similar resistance form.Any p.c.f. self-similar set has a regular self-similar resistance form.

Page 67: An Introduction to a Nalysison Fractals

Thus we are looking for nonlinear eigenvectors E0 ∈ D ∩ P

Λρ(E0) = γE0

where D is the cone of Dirichlet forms on V0 with and P is the cone of nonnegativequadratic forms. Its interior P consists of positive forms.

Proposition.

(1) Λρ : D → D, P → P, P → P.(2) Λρ is continuous on D ∪ P

(3) Λρ(αE) = αΛρ(E) for all α ≥ 0(4) Λρ(E + F) ≥ Λρ(E) + Λρ(F)

Hilbert’s projective metric (a pseudo distance on P) is

h(E/F) = lnM(E/F)

m(E/F).

where E,F∈P is the biggest lower bound of E/F,

m(E/F) = supα > 0|αF ≤ E > 0

and M(E/F) = m(F/E)−1.

Page 68: An Introduction to a Nalysison Fractals

Proposition.

(1) h(αE, βF) = h(E, F) for all α, β > 0.(2) Let H=E∈B|trace(E)=1 (an affine hyperplane). Then (H ∩ P, h)

is a complete metric space.(3) The h- and the ‖ · ‖-topology coincide on H ∩ P.(4) h(E, F) = 0 if and only if E = αF.(5) limF→∂P h(E, F) = +∞(6) Λρ is h-nonexpansive on P, that is, lower qρ-level sets are Λρ-invariant.

Let H = H ∩ D ∩ P and qρ : H → R+,

qρ(E) = h(Λρ(E), E).

Proposition.

(1) Λρ has a unique eigenvector F ∈ H if and only if qρ|H vanishes only at F.(2) Λρ has multiple eigenvectors in H if and only if qρ vanishes on a connected

set which accumulates at ∂P.(3) When a Λρ-forward orbit started in H is contained in Br(E) for some r > 0

and E ∈ H, then there exists a Λρ-eigenvector in B3r(E) ∩ H.

Page 69: An Introduction to a Nalysison Fractals

Proposition. Let ρn be such that Λρn converges to Λ in (C(H), ‖ · ‖∞). Ifq = h(Λ(·), ·) : H → R+ vanishes only at a single point, then there exists anm ∈ N such that Λρn has a unique eigenvector in H, for n ≥ m.

Definition. A collection of refinement weights ρ is admissible if and only if

Λρ(E0) = γE0

has a solution E0 ∈ D ∩ P.

Proposition. The set of admissible weights is open.

Theorem. (Hambly, Metz, T.) Let ρn ρ∞ ∈ (0, ∞]k and Λρ∞ has aunique eigenvector in H. Then there exist finite admissible refinement weights.

This result can be summarized as follows: If, by collapsing a subset of cells of F ,one can obtain a structure which has admissible weights, then F also has admissiblefinite weights.

Page 70: An Introduction to a Nalysison Fractals

Proposition. If #V0 = 3 then admissible weights exist.

Definition. The group G of acts on a finitely ramified fractal F if each g ∈ G isa homeomorphism of F such that g(Vn) = Vn for all n > 0.

Proposition. Suppose a group G of acts on a self-similar finitely ramified fractalF and G restricted to V0 is the whole permutation group of V0. Then there existsa unique, up to a constant, G-invariant self-similar resistance form E with equal

energy renormalization weights ρi and E0(f, f) =∑

x,y∈V0

(f(x) − f(y)

)2.

Theorem (Hambly, Metz, T.) Suppose a self-similar finitely ramified fractalF has connected interior and a group G acts on F such that its action on V0 istransitive. Then there exists a G-invariant self-similar resistance form E on F .

Theorem (Hambly, Metz, T.) Suppose a self-similar finitely ramified fractal Fhas connected interior and a symmetric boundary. Then there exists a G-invariantself-similar resistance form E on F .

Page 71: An Introduction to a Nalysison Fractals

Examples.

Generalized non-symmetric Sierpinski gaskets in R2:

ρ−12 + ρ−1

3 > ρ−11

ρ−11 + ρ−1

2 > ρ−13

ρ−11 + ρ−1

3 > ρ−12

“Cut” Sierpinski gasket:ρ1 + ρ2 = 1

ρ3 + ρ2 = 1

Unit interval:

ρ1 + ρ2 = 1

Vicsek set:ρ1 + ρ3 + ρ5 = 1

ρ2 + ρ4 + ρ5 = 1

Page 72: An Introduction to a Nalysison Fractals

A generalized Vicsek set

Page 73: An Introduction to a Nalysison Fractals

A generalized Sierpinski gasket

Page 74: An Introduction to a Nalysison Fractals

GRAPH-DIRECTED FRACTALS

v1

v2

v3 v4

v5 v6

v7 v8

v9v10

v11

v12

The house fractal.

Page 75: An Introduction to a Nalysison Fractals

Definition. A pair (E, Dom E) is a resistance form on a countable set V∗ if

• Dom E is a linear subspace of `(V∗) containing constants, E is a nonnegativesymmetric quadratic form on Dom E, and E(u, u) = 0 if and only if u isconstant.

• Let ∼ be an equivalence relation on Dom E defined by u ∼ v if and only ifu − v is constant on V∗. Then (E/∼, Dom E) is a Hilbert space.

• For any finite subset V ⊂ V∗ and for any v ∈ `(V ) there existsu ∈ Dom E such that u

∣∣V

= v.

• For any p, q ∈ V∗ there exists the effective resistance between metric

R(p, q) = sup(

u(p)−u(q))2

E(u,u): u∈Dom E

< ∞

Hence any u ∈ Dom E has a unique R-Holder continuous extension to Ω,the R-completion of V∗.

• Markov property: for any u ∈ Dom E we have that E(u, u) 6 E(u, u),where

u(p) =

1 if u(p) > 1,

u(p) if 0 < u(p) < 1,

0 if u(p) 6 1.

Page 76: An Introduction to a Nalysison Fractals

For any finite subset U ⊂ V∗ the finite dimensional Dirichlet form EU on U is

EU(f, f) = infE(g, g) : g ∈ Dom E, g∣∣U

= fand is called the trace of E on U .

If U1 ⊂ U2 then EU1 is the trace of EU2 on U1.

Theorem (Kigami). Suppose that Vn are finite subsets of V∗ and that⋃∞

n=0 Vn

is R-dense in V∗. Then

E(f, f) = limn→∞

EVn(f, f)

for any f ∈ Dom E, where the limit is non-decreasing.

Theorem (Kigami). Suppose that Vn are finite sets, and the finite dimensionalresistance forms EVn on Vn are compatible: each EVn is the trace of EVn+1 on Vn.

Then there exists a resistance form E on V∗ =⋃∞

n=0 Vn such that

E(f, f) = limn→∞

EVn(f, f)

for any f ∈ Dom E, and the limit is non-decreasing.

Page 77: An Introduction to a Nalysison Fractals

Definition. A finitely ramified fractal F is a compact metric space witha cell structure F = Fαα∈A and a boundary (vertex) structureV = Vαα∈A such that the following conditions hold.

• A is a countable index set;• each Fα is a distinct compact connected subsets of F ;• each Vα is a finite subset of Fα with at least two elements;• if Fα =

⋃kj=1 Fαj

then Vα ⊂ ⋃kj=1 Vαj

;• there exists a filtration An∞

n=0 such that(1) An are finite subsets of A, A0 = 0, F0 = F ;(2) An ∩ Am = ∅ if n 6= m;

(3) for any α∈An there are α1, ..., αk∈An+1 such that Fα=⋃k

j=1 Fαj;

• Fα′⋂

Fα = Vα′⋂

Vα for any two distinct α, α′ ∈ An;• for any strictly decreasing infinite sequence of cells there exists x ∈ F such

that⋂

n>1 Fαn = x.

If these conditions are satisfied, then

(F, F, V) = (F, Fαα∈A, Vαα∈A)

is called a finitely ramified cell structure.

Page 78: An Introduction to a Nalysison Fractals

Definition. A function is harmonic if it minimizes the energy for the given set ofboundary values. A function is n-harmonic if it minimizes the energy for the givenset of values on Vn.

Theorem. Suppose that all n-harmonic functions are continuous. Then any con-tinuous function is R-continuous, and any R-Cauchy sequence converges in thetopology of F . Also, there is a continuous injective map θ : Ω → F which is theidentity on V∗.

Then we can (and will) consider Ω as a subset of F . Then Ω is the R-closure ofV∗. In a sense, Ω is the set where the Dirichlet form E “lives”.

Theorem. Suppose that all n-harmonic functions are continuous. Then E is alocal regular Dirichlet form on Ω (with respect to any measure that charges everynonempty open set).

Page 79: An Introduction to a Nalysison Fractals

Definition. We fix a complete, up to constant functions, energy orthonormal setof harmonic functions h1, ..., hk, where k = |V0| − 1, and define the Kusuokaenergy measure by

ν = νh1 + ... + νhk.

If Fα′ ⊂ Fα, thenMα,α′ : `(Vα) → `(Vα′)

is the linear map which is defined as follows. If fα is a function on Vα then let hfα

be the unique harmonic function on Fα that coincides with fα on Vα. Then wedefine

Mα,α′fα = hfα

∣∣Vα′.

Proposition. If Fα =⋃

Fαjthen Dα =

∑M∗

α,αjDαj

Mα,αjand

ν(Fα) = Tr M∗αDαMα

where Mα = M0,α and Dα is the matrix of the Dirichlet form Eα on Vα.

Page 80: An Introduction to a Nalysison Fractals

We denote Zα =M∗

αDαMα

ν(Fα)if ν(Fα) 6= 0. Then we define matrix valued

functions Zn(x) = Zα if ν(Fα) 6= 0, α ∈ An and x ∈ Fα\Vα. Note thatTr Zn(x) = 1 by definition.

Theorem. For ν-almost all x there is a limit Z(x) = limn→∞ Zn(x).

Proof. One can see, following Kusuoka’s idea, that Zn is a bounded ν-martingale.¤

The energy measures νh are the same as the energy measures in the general theoryof Dirichlet forms. The matrix Z is the matrix whose entries are the densities

Zij =dνhi,hj

It has been recently proved by Hino that ν is singular with respect to any productmeasure µ for a large class of fractals.

Page 81: An Introduction to a Nalysison Fractals

Theorem. If the space of piecewise harmonic functions is dense in Dom E thenany f ∈ Dom E has a weak gradient ∇f such that

E(f, f) =

F

〈∇f, Z∇f〉dν

Conjecture. For any finitely ramified fractal

rankZ(x) = 1

for ν-almost all x.This has been recently proved by Hino for a large class of p.c.f. fractals.

Page 82: An Introduction to a Nalysison Fractals

GRADIENT IN HARMONIC COORDINATED

Let V0 = v1, ..., vm and let hj be the unique harmonic function with boundaryvalues hj(vi) = δi,j.

Kigami’s harmonic coordinate map ψ : F → Rm is

ψ(x)=(h1(x), ..., hm(x)).

In what follows we assume that ψ : F → FH = ψ(F ) is a homeomorphism,F = FH , ψ(x) = x and identify `(V0) with Rm in the natural way.

Theorem. If f is the restriction to F of a C1(Rm) function then f ∈ Dom E,and such functions are dense in Dom E. Moreover,

E(f, f) =

F

〈∇f, Z∇f〉dν

for any f ∈ C1(Rm).

Page 83: An Introduction to a Nalysison Fractals

We have the analog of the Gauss-Green formula:

E(f, g) = −∫

F

g∆νfdν,

for any function g ∈ Dom E, vanishing on the boundary V0, and any functionf ∈ Dom∆ν, where ∆ν is the energy Laplacian.

Theorem. If f is the restriction to F of a C2(Rm) function then f ∈ Dom∆ν,and such functions are dense in Dom∆ν. Moreover, ν-almost everywhere

∆νf = Tr (ZD2f)

where D2f is the matrix of the second derivatives of f .

Conjecture. On the Sierpinski gasket, if f ∈ Dom∆ν then f is the restrictionto F of a C1(Rm) function.

Page 84: An Introduction to a Nalysison Fractals

We also can define a different sequence of approximating energy forms. In varioussituations these forms are associated with so called quantum graphs, photoniccrystals and cable systems. If f ∈ C1(Rm) then

EQ

n(f, g) =∑

x,y∈Vn

cn,x,yEQ

x,y(f, f)

where

EQ

x,y(f, f) =

∫ 1

0

(ddt

f(x(1 − t) + ty

))2

dt

is the integral of the square of the derivative

ddt

f(x(1 − t) + ty

)= 〈∇f

(x(1 − t) + ty

), y − x〉

of f along the straight line segment connecting x and y. Thus EQ

x,y(f, f) is theusual one dimensional energy of a function on a straight line segment.

If f is linear then EQ

x,y(f, f) =(f(x) − f(y)

)2. Therefore if f is piecewise

harmonic then EQ

n(f, f) = En(f, f) for all large enough n.Therefore for any C1(Rm)-function we have

limn→∞

EQ

n(f, f) = E(f, f)

Page 85: An Introduction to a Nalysison Fractals

It is easy to see that if g is a C1(Rm)-function vanishing on V0 and f is aC2(Rm)-function then

EQ

n(f, g) =∑

x,y∈Vn

cn,x,y

∫ 1

0

g(x(1 − t) + ty

)(d2

dt2f

(x(1 − t) + ty

))dt

because after integration by parts all the boundary terms are canceled. Then ifα ∈ An then∑

x,y∈Vα

cn,x,yd2

dt2f

(x(1 − t) + ty

)=

x,y∈Vα

cn,x,y

m∑

i,j=1

D2ijf

(x(1 − t) + ty

)(yi − xi)(yj − xj) =

Tr(M∗

αDαMα

(D2f(xα) + Rn(x, y, t, f, α, xα)

))

where xα ∈ Vα and

limn→∞

|Rn(x, y, t, f, α, xα)| = 0

uniformly.

Page 86: An Introduction to a Nalysison Fractals

Let Hx be the space of harmonic functions on F that vanishes at x.

Definition. If h ∈ Hx then the intrinsic derivative dfdh

(x) ∈ R exists if

f(y) = f(x) + h(y) dfdh

(x) + o∣∣h(y)

∣∣y→x

.

The intrinsic gradient Gradxf ∈ Hx exists if for any non constant h ∈ Hx

f(y) = f(x) + Gradx(y) + o∣∣h(y)

∣∣y→x

.

Theorem (Pelander, T). Let µ be a self-similar measure on a p.c.f. s-s set withweights µj. Let γ+ and γ− be the upper and lower Lyapunov exponents of thematrices Mj with respect to the measure µ and log γ =

∑mj=1 µj log(rjµj).

If γ+ > γ then dfdh

(x) exists for any f ∈ Dom∆µ, any non constant h ∈ Hand µ-almost all x.

If γ− > γ then Gradxf exists for any f ∈ Dom∆µ, any non constant h ∈ Hand µ-almost all x.

Page 87: An Introduction to a Nalysison Fractals

Abbreviated list of references

[1] N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener space.de Gruyter Studies in Math. 14, 1991.

[2] B. Boyle, D. Ferrone, N. Rifkin, K. Savage and A. Teplyaev, Electrical Re-sistance of N -gasket Fractal Networks, to appear in the Pacific Journal ofMathematics.

[3] P. Doyle and J.L. Snell, Random walks and electric networks. Carus Math-ematical Monographs, 22, MAA, 1984.

[4] E.B. Dynkin and A.A. Yushkevich, Markov processes: Theorems and prob-lems. Translated from the Russian. Plenum Press, New York 1969.

[5] D. Fontaine, T. Smith and A. Teplyaev, Random Sierpinski gasket, Quan-tum Graphs and Their Applications, Contemporary Mathematics 415 (2006),AMS, Providence, RI.

[6] D. Fontaine and A. Teplyaev, Green’s function and eigenfunctions on ran-dom Sierpinski gaskets, preprint.

Page 88: An Introduction to a Nalysison Fractals

[7] M. Fukushima, Y. Oshima and M. Takada, Dirichlet forms and symmetricMarkov processes. deGruyter Studies in Math. 19, 1994.

[8] B. M. Hambly, V. Metz and A. Teplyaev, Admissible refinements of energyon finitely ramified fractals, J. London Math. Soc. 74 (2006), 93–112.

[9] M. Hino, On singularity of energy measures on self-similar sets. Probab.Theory Related Fields 132 (2005), 265–290.

[10] M. Hino and T. Kumagai, A trace theorem for Dirichlet forms on fractals.J. Funct. Anal. 238 (2006), 578–611.

[11] M. Hino and K. Nakahara, On singularity of energy measures on self-similar sets II, preprint.

[12] J. Kigami, Harmonic metric and Dirichlet form on the Sierpinski gasket.Asymptotic problems in probability theory: stochastic models and diffusionson fractals (Sanda/Kyoto, 1990), 201–218, Pitman Res. Notes Math. Ser., 283,Longman Sci. Tech., Harlow, 1993.

Page 89: An Introduction to a Nalysison Fractals

[13] J. Kigami, Effective resistances for harmonic structures on p.c.f. self-similar sets. Math. Proc. Cambridge Philos. Soc. 115 (1994), 291–303.

[14] J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics 143,Cambridge University Press, 2001.

[15] J. Kigami, Harmonic analysis for resistance forms. J. Functional Analysis204 (2003), 399–444.

[16] J. Kigami, Local Nash inequality and inhomogeneity of heat kernels. Proc.London Math. Soc. (3) 89 (2004), 525–544.

[17] J. Kigami, D. R. Sheldon and R. S. Strichartz, Green’s functions on fractals.Fractals 8 (2000), 385–402.

[18] J. Kigami, R. S. Strichartz, K. C. Walker, Constructing a Laplacian on thediamond fractal. Experiment. Math. 10 (2001), 437–448.

[19] P. Kuchment, Quantum graphs I. Some basic structures. Waves in randommedia, 14 (2004), S107–S128.

Page 90: An Introduction to a Nalysison Fractals

[20] P. Kuchment, Quantum graphs II. Some spectral properties of quantumand combinatorial graphs. J. Phys. A. 38 (2005), 4887–4900.

[21] S. Kusuoka, Dirichlet forms on fractals and products of random matrices.Publ. Res. Inst. Math. Sci. 25 (1989), 659–680.

[22] R. D. Mauldin and M. Urbanski, Dimension and measures for a curvilinearSierpinski gasket or Apollonian packing. Adv. Math., 136 (1998), 26–38.

[23] V. Metz, How many diffusions exist on the Vicsek snowflake? Acta Appl.Math. 32 (1993), 227–241.

[24] V. Metz, The cone of diffusions on finitely ramified fractals. NonlinearAnal. 55 (2003), 723–738.

[25] V. Metz, Renormalization contracts on nested fractals. J. Reine Angew.Math. 480 (1996), 161–175.

[26] V. Metz, Shorted operators: an application in potential theory. Linear Al-gebra Appl. 264 (1997), 439–455.

Page 91: An Introduction to a Nalysison Fractals

[27] V. Metz and K.-T. Sturm, Gaussian and non-Gaussian estimates for heatkernels on the Sierpinski gasket. Dirichlet forms and stochastic processes(Beijing, 1993), 283–289, de Gruyter, Berlin, 1995.

[28] R. Meyers, R. Strichartz and A. Teplyaev, Dirichlet forms on the Sierpinskigasket. Pacific J. Math. 217 (2004), 149–174.

[29] A. Oberg, R. S. Strichartz and A.Q. Yingst, Level sets of harmonic functionson the Sierpinski gasket. Ark. Mat. 40 (2002), 335–362.

[30] K. A. Okoudjou, R. S. Strichartz, Weak uncertainty principles on fractals.J. Fourier Anal. Appl. 11 (2005), 315–331.

[31] K. Okoudjou, L. Saloff-Coste and A. Teplyaev, Infinite dimensional i.f.s. andsmooth functions on the Sierpinski gasket, to appear in the Transactions ofthe American Mathematical Society.

[32] R. Peirone, Convergence and uniqueness problems for Dirichlet forms onfractals. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 3 (2000), 431–460.

Page 92: An Introduction to a Nalysison Fractals

[33] R. Peirone, Convergence of discrete Dirichlet forms to continuous Dirich-let forms on fractals. Potential Anal. 21 (2004), 289–309.

[34] A. Pelander and A. Teplyaev, Infinite dimensional i.f.s. and smooth func-tions on the Sierpinski gasket, to appear in the Indiana Journal of Mathe-matics (available online).

[35] A. Pelander and A. Teplyaev, Products of random matrices and derivativeson p.c.f. fractals, preprint.

[36] J. Stanley, R. Strichartz and A. Teplyaev, Energy partition on fractals. In-diana Univ. Math. J. 52 (2003), 133–156.

[37] R. S. Strichartz, Harmonic mappings of the Sierpinski gasket to the circle.Proc. Amer. Math. Soc. 130 (2002), 805–817.

[38] A. Teplyaev, Gradients on fractals. J. Funct. Anal. 174 (2000) 128–154.

[39] A. Teplyaev, Energy and Laplacian on the Sierpinski gasket. Fractal Geom-etry and Applications: A Jubilee of Benoit Mandelbrot, Part 1. Proc. Sympos.Pure Math. 72, Amer. Math. Soc., (2004), 131–154.

Page 93: An Introduction to a Nalysison Fractals

[40] A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cellstructure, to appear in the Canadian Journal of Mathematics.

[41] E. Teufl, On the Hausdorff dimension of the Sierpinski gasket with re-spect to the harmonic metric. Fractals in Graz 2001, 263–269, Trends Math.,Birkha”user, Basel, 2003.

Page 94: An Introduction to a Nalysison Fractals

Sierpinski gasket

in harmonic coordinates