An Introduction to Advanced Molecular Dynamics Techniques

Embed Size (px)

Citation preview

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    1/142

    Marco MasiaDipartimento di Chimica - Universit di Sassari

    http://physchem.uniss.it/marco.masia

    [email protected]

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    2/142

    Molecular Dynamics - Bibliography

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    3/142

    Molecular Dynamics - Bibliography

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    4/142

    Molecular Dynamics

    In Molecular Dynamics the Lagrangian and the Hamiltonian have the following form:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    5/142

    Molecular Dynamics

    In Molecular Dynamics the Lagrangian and the Hamiltonian have the following form:

    L(rN,rN) =N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    6/142

    Molecular Dynamics

    In Molecular Dynamics the Lagrangian and the Hamiltonian have the following form:

    L(rN,rN) =N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    7/142

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    8/142

    Molecular Dynamics

    In Molecular Dynamics the Lagrangian and the Hamiltonian have the following form:

    L(rN,rN) =N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    9/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    10/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    11/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    12/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    13/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    14/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    15/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    16/142

    Molecular Dynamics

    Some Questions:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    17/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    18/142

    Molecular Dynamics

    The equations of motion are propagated in time through the classical propagator:

    x(t) = eiLtx(0)

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    19/142

    Molecular Dynamics

    The equations of motion are propagated in time through the classical propagator:

    x(t) = eiLtx(0)

    If the Liouville operator could be written as a sum of two operators, the classical

    propagator could be rewritten making use of the Trotter theorem:

    exp(iLt) = exp[(iL1+ iL2)t] = limP

    exp

    iL2t

    2P

    exp

    iL1t

    P

    exp

    iL2t

    2P

    P

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    20/142

    Molecular Dynamics

    The equations of motion are propagated in time through the classical propagator:

    x(t) = eiLtx(0)

    If the Liouville operator could be written as a sum of two operators, the classical

    propagator could be rewritten making use of the Trotter theorem:

    exp(iLt) = exp[(iL1+ iL2)t] = limP

    exp

    iL2t

    2P

    exp

    iL1t

    P

    exp

    iL2t

    2P

    P

    For finitePwe define and we approximate the classical propagator as:t = t/P

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    21/142

    Molecular Dynamics

    The equations of motion are propagated in time through the classical propagator:

    x(t) = eiLtx(0)

    If the Liouville operator could be written as a sum of two operators, the classical

    propagator could be rewritten making use of the Trotter theorem:

    exp(iLt) = exp[(iL1+ iL2)t] = limP

    exp

    iL2t

    2P

    exp

    iL1t

    P

    exp

    iL2t

    2P

    P

    For finitePwe define and we approximate the classical propagator as:t = t/P

    exp(iLt) exp(iL2t/2) exp(iL1t) exp(iL2t/2) +O(t3)

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    22/142

    Molecular Dynamics

    The equations of motion are propagated in time through the classical propagator:

    x(t) = eiLtx(0)

    If the Liouville operator could be written as a sum of two operators, the classical

    propagator could be rewritten making use of the Trotter theorem:

    exp(iLt) = exp[(iL1+ iL2)t] = limP

    exp

    iL2t

    2P

    exp

    iL1t

    P

    exp

    iL2t

    2P

    P

    For finitePwe define and we approximate the classical propagator as:t = t/P

    exp(iLt) exp(iL2t/2) exp(iL1t) exp(iL2t/2) +O(t3)

    exp(iLPt) P

    k=1

    exp(iL2t/2) exp(iL1t) exp(iL2t/2) +O(tt2)

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    23/142

    Molecular Dynamics

    Given the Liouville operator:

    iL = {. . . ,H} =Ni=1

    H

    pi

    ri

    H

    ri

    pi

    =

    Ni=1

    pi

    mi

    ri+ Fi

    pi

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    24/142

    Molecular Dynamics

    Given the Liouville operator:

    iL = {. . . ,H} =Ni=1

    H

    pi

    ri

    H

    ri

    pi

    =

    Ni=1

    pi

    mi

    ri+ Fi

    pi

    Lets consider the following partition:

    iL2 =

    N

    i=1

    Fi

    piiL1 =

    N

    i=1

    pi

    mi

    ri

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    25/142

    Molecular Dynamics

    Given the Liouville operator:

    iL = {. . . ,H} =Ni=1

    H

    pi

    ri

    H

    ri

    pi

    =

    Ni=1

    pi

    mi

    ri+ Fi

    pi

    Lets consider the following partition:

    iL2 =

    N

    i=1

    Fi

    piiL1 =

    N

    i=1

    pi

    mi

    ri

    exp(iL1t)

    ri ri+ t(pi/mi)

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    26/142

    Molecular Dynamics

    Given the Liouville operator:

    iL = {. . . ,H} =Ni=1

    H

    pi

    ri

    H

    ri

    pi

    =

    Ni=1

    pi

    mi

    ri+ Fi

    pi

    Lets consider the following partition:

    iL2 =

    N

    i=1

    Fi

    piiL1 =

    N

    i=1

    pi

    mi

    ri

    exp(iL2t/2)

    pi pi+ (t/2)Fi(r)

    exp(iL1t)

    ri ri+ t(pi/mi)

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    27/142

    Molecular Dynamics

    The action of the operator on the full set of momenta and positionscan be evaluated analytically, yielding the following approximate evolution equations:exp(iLPt

    )

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    28/142

    Molecular Dynamics

    The action of the operator on the full set of momenta and positionscan be evaluated analytically, yielding the following approximate evolution equations:exp(iLPt

    )

    ri(t) = ri(0) + vi(0)t+t

    2

    2miFi(0)

    vi(t) = vi(0) + t2

    2mi[Fi(0) + Fi(t)]

    These equations constitute

    the so-called velocity Verletintegrator. According to theapproximate propagator

    expression, we can look atthe integration procedure as

    if it was a set of threesequential updates:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    29/142

    Molecular Dynamics

    The action of the operator on the full set of momenta and positionscan be evaluated analytically, yielding the following approximate evolution equations:

    exp(iLPt)

    ri(t) = ri(0) + vi(0)t+t

    2

    2miFi(0)

    vi(t) = vi(0) + t2

    2mi[Fi(0) + Fi(t)]

    These equations constitute

    the so-called velocity Verletintegrator. According to theapproximate propagator

    expression, we can look atthe integration procedure as

    if it was a set of threesequential updates:

    vi vi +Fit/2mi

    vi vi +Fit/2mi

    ri ri + vi t

    Fi

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    30/142

    Molecular Dynamics

    Some Remarks:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    31/142

    Molecular Dynamics

    Some Remarks:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    32/142

    Molecular Dynamics

    Some Remarks:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    33/142

    Molecular Dynamics

    Some Remarks:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    34/142

    Molecular Dynamics

    Some Remarks:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    35/142

    Molecular Dynamics

    In the case of non-Hamiltonian systems it has been seen that the Lioville operatorcould be split in two parts:

    iL=

    N

    i=1

    xi

    xi=

    N

    i=1

    i(x)

    xi= iLH +iLnH

    Since the Trotter theorem is easily extended to the exponential of the sum of more

    than two operators, we could construct the propagator as follows:

    exp(iLt) exp(iLnHt/2)exp(iL(2)Ht/2)exp(iL

    (1)Ht)exp(iL

    (2)Ht/2)exp(iLnHt/2)

    iLnH

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    36/142

    Molecular Dynamics

    Many different integration schemes can be derived using the direct translation

    technique with different partitions of the propagator. All of them (usually called

    Verlet-like schemes) guarantee time reversibility and energy conservation at long

    times. Only for pedagogical purposes we introduce here the Verlet Leaprogscheme:

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    37/142

    Molecular Dynamics

    Many different integration schemes can be derived using the direct translation

    technique with different partitions of the propagator. All of them (usually called

    Verlet-like schemes) guarantee time reversibility and energy conservation at long

    times. Only for pedagogical purposes we introduce here the Verlet Leaprogscheme:

    The velocities and

    positions are updated

    at different times,

    which hinders the

    definition of the total

    energy!

    ri(

    t) =ri

    (0) +vi

    (

    t/2)

    t+

    t2

    miFi

    (0)

    vi(t/2) = vi(t/2)t+t2

    miFi(0)

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    38/142

    Molecular Dynamics

    Many different integration schemes can be derived using the direct translation

    technique with different partitions of the propagator. All of them (usually called

    Verlet-like schemes) guarantee time reversibility and energy conservation at long

    times. Only for pedagogical purposes we introduce here the Verlet Leaprogscheme:

    The velocities and

    positions are updated

    at different times,

    which hinders the

    definition of the total

    energy!

    ri(

    t) =ri

    (0) +vi

    (

    t/2)

    t+

    t2

    miFi

    (0)

    vi(t/2) = vi(t/2)t+t2

    miFi(0)

    ri ri + vit

    Fi

    t

    t+t/2 vi vi +Fit/mi

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    39/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    40/142

    Molecular Dynamics

    lim

    A =A

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    41/142

    Molecular Dynamics

    In Hamiltonian systems the ensemble average is generated according to a microcanonicaldistribution. In order to generate trajectories which sample other statistical mechanicalensembles Andersen introduced the use of extended Lagrangians.

    lim

    A =A

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    42/142

    Molecular Dynamics

    In Hamiltonian systems the ensemble average is generated according to a microcanonicaldistribution. In order to generate trajectories which sample other statistical mechanical

    ensembles Andersen introduced the use of extended Lagrangians.

    lim

    A =A

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    43/142

    Molecular Dynamics

    In Hamiltonian systems the ensemble average is generated according to a microcanonicaldistribution. In order to generate trajectories which sample other statistical mechanical

    ensembles Andersen introduced the use of extended Lagrangians.

    lim

    A =A

    L(rN,rN) =

    N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    44/142

    Molecular Dynamics

    In Hamiltonian systems the ensemble average is generated according to a microcanonicaldistribution. In order to generate trajectories which sample other statistical mechanical

    ensembles Andersen introduced the use of extended Lagrangians.

    lim

    A =A

    L(rN,rN, V, V) =N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    45/142

    Molecular Dynamics

    In Hamiltonian systems the ensemble average is generated according to a microcanonicaldistribution. In order to generate trajectories which sample other statistical mechanical

    ensembles Andersen introduced the use of extended Lagrangians.

    lim

    A =A

    L(rN,rN, V, V) =N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    46/142

    Molecular Dynamics

    In Hamiltonian systems the ensemble average is generated according to a microcanonicaldistribution. In order to generate trajectories which sample other statistical mechanical

    ensembles Andersen introduced the use of extended Lagrangians.

    lim

    A =A

    L(rN,rN, V, V) =N

    i=1

    mi

    2 ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    47/142

    Molecular Dynamics

    L(rN

    ,rN

    , V, V) =

    N

    i=1

    mi

    2 ri

    ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    48/142

    Molecular Dynamics

    L(rN

    ,rN

    , V, V) =

    N

    i=1

    mi

    2 ri

    ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    49/142

    Molecular Dynamics

    L(rN

    ,rN

    , V, V) =

    N

    i=1

    mi

    2 ri

    ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    50/142

    Molecular Dynamics

    L(rN

    ,rN

    , V, V) =

    N

    i=1

    mi

    2 ri

    ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    51/142

    Molecular Dynamics

    L(rN

    ,rN

    , V, V) =

    N

    i=1

    mi

    2 ri

    ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    52/142

    Molecular Dynamics

    LNH= L(rN,rN, s,s) =

    N

    i=1

    mi

    2 s2ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    53/142

    Molecular Dynamics

    LNH= L(rN,rN, s,s) =

    N

    i=1

    mi

    2 s2ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    54/142

    Molecular Dynamics

    LNH= L(rN,rN, s,s) =

    N

    i=1

    mi

    2 s2ri ri

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    55/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    56/142

    Molecular Dynamics

    dpMdt

    =GM

    dri

    dt=

    pi

    mi

    dpidt =

    N

    j=i

    riju

    (rij)

    p1

    1pi

    dk

    dt =

    pkk

    k = 1, . . . ,M

    dpkdt

    =Gk pk+1

    k+1pk k = 1, . . . ,M 1

    G1 =

    N

    i=1

    pi pi

    mi dNkBT Gk =

    pk1

    k1 kBT k = 2, . . . , M

    1 = dNkBT2 k =kBT

    2 k = 2, . . . ,M

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    57/142

    Molecular Dynamics

    !

    ! !"

    ! !

    !" # $#

    !" # #!%#

    !& !#!

    !$% $

    %$

    &

    " !#! !!

    !$% $#%#$& !$

    %

    !$ &"

    ! #$%&' ()(*('+ , #$%&' ()(*('+- . #$%&' ()(*('+-

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    58/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    59/142

    Molecular Dynamics

    iLNHC = iLr + iLv + iLC

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    60/142

    Molecular Dynamics

    iLNHC = iLr + iLv + iLC

    iLr =

    N

    i=1

    vi ri

    iLv =

    N

    i=1

    Fi

    miv

    i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    61/142

    Molecular Dynamics

    iLNHC = iLr + iLv + iLC

    iLr =

    N

    i=1

    vi ri

    iLv =

    N

    i=1

    Fi

    miv

    i

    iLC =

    M

    k=1

    vk

    k

    M

    i=1

    vi vi +

    M1

    k=1

    Gk vkvk+1

    vk

    +GM

    vM

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    62/142

    Molecular Dynamics

    iLNHC = iLr + iLv + iLC

    iLr =

    N

    i=1

    vi ri

    iLv =

    N

    i=1

    Fi

    miv

    i

    iLC =

    M

    k=1

    vk

    k

    M

    i=1

    vi vi +

    M1

    k=1

    Gk vkvk+1

    vk

    +GM

    vM

    eiLt

    = eiLCt/2

    eiLvt/2

    eiLrt

    eiLvt/2

    eiLCt/2

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    63/142

    Molecular Dynamics

    iLC =

    5

    j=1

    iLj

    C

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    64/142

    Molecular Dynamics

    iLC =

    5

    j=1

    iLj

    C

    eiLCt

    = eiL5

    Ct/4

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL5

    Ct/4

    eiL

    Ct/2

    eiL1Ct/2

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    65/142

    Molecular Dynamics

    iLC =

    5

    j=1

    iLj

    C

    eiLCt

    = eiL5

    Ct/4

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL5

    Ct/4

    eiL

    Ct/2

    eiL1Ct/2

    eiLt

    = eiLCt/2

    eiLvt/2

    eiLrt

    eiLvt/2

    eiLCt/2

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    66/142

    Molecular Dynamics

    iLC =

    5

    j=1

    iLj

    C

    eiLCt

    = eiL5

    Ct/4

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL5

    Ct/4

    eiL

    Ct/2

    eiL1Ct/2

    eiLt

    = eiLCt/2

    eiLvt/2

    eiLrt

    eiLvt/2

    eiLCt/2

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    67/142

    Molecular Dynamics

    iLC =

    5

    j=1

    iLj

    C

    eiLCt

    = eiL5

    Ct/4

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL4

    Ct/8

    eiL3

    Ct/4

    eiL4

    Ct/8

    eiL5

    Ct/4

    eiL

    Ct/2

    eiL1Ct/2

    eiLt

    = eiLCt/2

    eiLvt/2

    eiLrt

    eiLvt/2

    eiLCt/2

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    68/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    69/142

    Molecular Dynamics

    (x, t) = x=Ni=1

    [riri+ pipi] +Mk=1

    kk

    +pkpk

    = dN1

    Mk=2

    k

    d= exp

    1+

    Mk=2

    M

    dNpdNrdMpdM

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    70/142

    Molecular Dynamics

    (x, t) = x=Ni=1

    [riri+ pipi] +Mk=1

    kk

    +pkpk

    = dN1

    Mk=2

    k

    d= exp

    1+

    Mk=2

    M

    dNpdNrdMpdM

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    71/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    72/142

    Molecular Dynamics

    U= U0 + Upol

    Upol =

    i

    Ei Pi +

    i

    Pi Pi

    2i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    73/142

    Molecular Dynamics

    Ei = TijPi Pi = iEi

    U= U0 + Upol

    Upol =

    i

    Ei Pi +

    i

    Pi Pi

    2i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    74/142

    Molecular Dynamics

    Ei = TijPi Pi = iEi

    U= U0 + Upol

    Upol =

    i

    Ei Pi +

    i

    Pi Pi

    2i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    75/142

    Molecular Dynamics

    Ei = TijPi Pi = iEi

    U= U0 + Upol

    Upol =

    i

    Ei Pi +

    i

    Pi Pi

    2i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    76/142

    Molecular Dynamics

    Ei = TijPi Pi = iEi

    U= U0 + Upol

    Upol =

    i

    Ei Pi +

    i

    Pi Pi

    2i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    77/142

    Molecular Dynamics

    Ei = TijPi Pi = iEi

    U= U0 + Upol

    Upol =

    i

    Ei Pi +

    i

    Pi Pi

    2i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    78/142

    Molecular Dynamics

    l l

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    79/142

    Molecular Dynamics

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    80/142

    Molecular Dynamics

    L(rN,rN,PM, PM) = 12

    N

    i=1

    miri ri+12

    M

    i=1

    iPi Pi U(r

    N,P

    M)

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    81/142

    Molecular Dynamics

    L(rN,rN,PM, PM) = 12

    N

    i=1

    miri ri+12

    M

    i=1

    iPi Pi U(r

    N,P

    M)

    dri

    dt=

    pi

    mi

    dpidt

    =

    N

    j=i

    rijU(rij)

    id2Pi

    dt2 =

    L

    Pi=

    Pi

    i+Ei

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    82/142

    Molecular Dynamics

    L(rN,rN,PM, PM) = 12

    N

    i=1

    miri ri+12

    M

    i=1

    iPi Pi U(r

    N,P

    M)

    dri

    dt=

    pi

    mi

    dpidt

    =

    N

    j=i

    rijU(rij)

    id2Pi

    dt2 =

    L

    Pi=

    Pi

    i+Ei

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    83/142

    Molecular DynamicsSome Remarks:

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    84/142

    Molecular DynamicsSome Remarks:

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    85/142

    Molecular DynamicsSome Remarks:

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    86/142

    Molecular DynamicsSome Remarks:

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    87/142

    Molecular DynamicsSome Remarks:

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    88/142

    Molecular DynamicsSome Remarks:

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    89/142

    Molecular Dynamics

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    90/142

    Molecular Dynamics

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    91/142

    Molecular Dynamics

    M l l D i

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    92/142

    Molecular Dynamics

    MoldMnew

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    93/142

    Molecular Dynamics

    MoldMnew

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    94/142

    Molecular Dynamics

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    95/142

    Molecular Dynamics

    Fi = Fref

    i +F

    del

    i

    Fdel

    i = F

    ref

    i Fi

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    96/142

    Molecular Dynamics

    Fi = Fref

    i +F

    del

    i

    Fdel

    i = F

    ref

    i Fi

    F

    del

    i

    Fref

    i

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    97/142

    Molecular Dynamics

    Fi = Fref

    i +F

    del

    i

    Fdel

    i = F

    ref

    i Fi

    F

    del

    i

    Fref

    i

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    98/142

    Molecular Dynamics

    Fi = Fref

    i +F

    del

    i

    Fdel

    i = F

    ref

    i Fi

    F

    del

    i

    Fref

    i

    t t

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    99/142

    Molecular Dynamics

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    100/142

    Molecular Dynamics

    iLref=

    Ni=1

    pi

    mi

    ri+Frefi

    pi

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    101/142

    Molecular Dynamics

    iLref=

    Ni=1

    pi

    mi

    ri+Frefi

    pi

    iL

    del=

    N

    i=1

    Fdeli

    pi

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    102/142

    Molecular Dynamics

    iLref=

    Ni=1

    pi

    mi

    ri+Frefi

    pi

    iL

    del=

    N

    i=1

    Fdeli

    pi

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    103/142

    Molecular Dynamics

    iLref=

    Ni=1

    pi

    mi

    ri+Frefi

    pi

    iL

    del=

    N

    i=1

    Fdeli

    pi

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    104/142

    Molecular Dynamics

    iLref=

    Ni=1

    pi

    mi

    ri+Frefi

    pi

    iL

    del=

    N

    i=1

    Fdeli

    pi

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    105/142

    Molecular Dynamics

    iLref=

    Ni=1

    pi

    mi

    ri+Frefi

    pi

    iL

    del=

    N

    i=1

    Fdeli

    pi

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    106/142

    Molecular Dynamics

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    107/142

    Molecular Dynamics

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    108/142

    Molecular Dynamics

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    109/142

    Molecular Dynamics

    exp(iLt) = exp

    iL

    delt

    2

    exp

    iL

    ref

    2

    t

    2

    exp

    iL

    ref

    1 t exp

    iL

    ref

    2

    t

    2

    n

    exp

    iL

    delt

    2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    110/142

    Molecular Dynamics

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    111/142

    Molecular Dynamics

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    112/142

    Molecular Dynamics

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    113/142

    Molecular Dynamics

    f(r1, r2, . . . , rN, t) = 0;

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    114/142

    y

    f(r1, r2, . . . , rN, t) = 0;

    =|ri(t)

    rj(t)|2

    d2ij = 0

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    115/142

    y

    f(r1, r2, . . . , rN, t) = 0;

    L(rN,rN) =1

    2

    N

    i=1

    miri ri U(rN)

    Nc

    =1

    (rN)

    =|ri(t)

    rj(t)|2

    d2ij = 0

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    116/142

    y

    dri

    dt

    = pi

    mi

    dpidt

    =

    N

    j=i

    riju(rij)

    Nc

    =1

    ri=Fi+Gi

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    117/142

    y

    dri

    dt

    = pi

    mi

    dpidt

    =

    N

    j=i

    riju(rij)

    Nc

    =1

    ri=Fi+Gi

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    118/142

    y

    dri

    dt

    = pi

    mi

    dpidt

    =

    N

    j=i

    riju(rij)

    Nc

    =1

    ri=Fi+Gi

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    119/142

    y

    dri

    dt

    = pi

    mi

    dpidt

    =

    N

    j=i

    riju(rij)

    Nc

    =1

    ri=Fi+Gi

    t= 0

    t

    =

    N

    i=1

    1

    mi

    Fii

    N

    i=1

    1

    mi

    Nc

    =1

    ii+

    i,j

    rirjij = FM+T = 0

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    120/142

    y

    dri

    dt

    = pi

    mi

    dpidt

    =

    N

    j=i

    riju(rij)

    Nc

    =1

    ri=Fi+Gi

    t= 0

    t

    =

    N

    i=1

    1

    mi

    Fii

    N

    i=1

    1

    mi

    Nc

    =1

    ii+

    i,j

    rirjij = FM+T = 0

    = M1 (F+T)

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    121/142

    y

    dri

    dt

    = pi

    mi

    dpidt

    =

    N

    j=i

    riju(rij)

    Nc

    =1

    ri=Fi+Gi

    t= 0

    t

    =

    N

    i=1

    1

    mi

    Fii

    N

    i=1

    1

    mi

    Nc

    =1

    ii+

    i,j

    rirjij = FM+T = 0

    = M1 (F+T)

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    122/142

    yiterative algorithm (SHAKE/RATTLE):

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    123/142

    yiterative algorithm (SHAKE/RATTLE):

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    124/142

    yFew words about the method of constraints to computefree energy differences:

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    125/142

    yFew words about the method of constraints to computefree energy differences:

    F(2) F(1) =

    2

    1

    d

    H

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    126/142

    yFew words about the method of constraints to computefree energy differences:

    F(2) F(1) =

    2

    1

    d

    H

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    127/142

    Few words about the method of constraints to computefree energy differences:

    F(2) F(1) =

    2

    1

    d

    H

    (rN

    ) =

    (rN

    ,

    rN

    ) = 0

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    128/142

    Few words about the method of constraints to computefree energy differences:

    F(2) F(1) =

    2

    1

    d

    H

    (rN

    ) =

    (rN

    ,

    rN

    ) = 0

    F(2) F(1) =

    2

    1

    ddF

    d

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    129/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    130/142

    F(2) F(1) =

    2

    1

    ddF

    d

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    131/142

    F(2) F(1) =

    2

    1

    ddF

    d

    dF

    d=

    Z1/2 [+ kBTG]

    Z

    1/2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    132/142

    F(2) F(1) =

    2

    1

    ddF

    d

    dF

    d=

    Z1/2 [+ kBTG]

    Z

    1/2

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    133/142

    F(2) F(1) =

    2

    1

    ddF

    d

    dF

    d=

    Z1/2 [+ kBTG]

    Z

    1/2

    Z=Ni=1

    1

    mi

    (rN)

    ri

    G =

    1

    Z2

    Ni,j

    1

    mimj

    (rN)

    ri

    2(rN)

    rirj

    (rN)

    rj

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    134/142

    F(2) F(1) =

    2

    1

    ddF

    d

    dF

    d

    =

    Z1/2 [+ kBTG]

    Z

    1/2

    Z=Ni=1

    1

    mi

    (rN)

    ri

    G =

    1

    Z2

    Ni,j

    1

    mimj

    (rN)

    ri

    2(rN)

    rirj

    (rN)

    rj

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    135/142

    (rN) =|ri rj |

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    136/142

    (rN) =|ri rj |

    Z=

    Ni=1

    1

    mi

    (rN)

    ri

    = constant

    G = 1

    Z2

    Ni,j

    1

    mimj

    (rN)

    ri

    2(rN)

    rirj

    (rN)

    rj

    = 0

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    137/142

    (rN) =|ri rj |

    Z=

    Ni=1

    1

    mi

    (rN)

    ri

    = constant

    G = 1

    Z2

    Ni,j

    1

    mimj

    (rN)

    ri

    2(rN)

    rirj

    (rN)

    rj

    = 0

    dF

    d=

    Z1/2 [+ kBTG]

    Z1/2

    =

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    138/142

    (rN) = ni(rN) =

    N

    k=i

    11 + exp [(rik rc)]

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    139/142

    (rN) = ni(rN) =

    N

    k=i

    11 + exp [(rik rc)]

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    140/142

    (rN) = ni(rN) =

    N

    k=i

    11 + exp [(rik rc)]

    Fig. 4 (a) Mean force of constraint as a function of the coordinationnumber n for the axial (K) and the equatorial (S) site; (b) correspond-ing free energy curves obtained by integration of the mean forces.

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    141/142

    Molecular Dynamics

  • 7/25/2019 An Introduction to Advanced Molecular Dynamics Techniques

    142/142