21
An Introduction to Fourier Transforms D. S. Sivia St. John’s College Oxford, England August 12, 2015 Outline ....................................................................... 2 Taylor Series ................................................................... 3 Taylor Series (0) ................................................................ 4 Taylor Series (1) ................................................................ 5 Taylor Series (2) ................................................................ 6 Taylor Series (3) ................................................................ 7 Taylor Series (4) ................................................................ 8 Fourier Series .................................................................. 9 Fourier Series (0) .............................................................. 10 Fourier Series (1) .............................................................. 11 Fourier Series (1) .............................................................. 12 Fourier Series (2) .............................................................. 13 Fourier Series (3) .............................................................. 14 Fourier Series (4) .............................................................. 15 Taylor Versus Fourier Series ..................................................... 16 Complex Fourier Series ......................................................... 17 Fourier Transform ............................................................. 18 Some Symmetry Properties ...................................................... 19 Convolution .................................................................. 20 Convolution Theorem........................................................... 21 Auto-correlation Function ....................................................... 22 Auto-correlation Function (1) .................................................... 23 Auto-correlation Function (2) .................................................... 24 Fourier Optics................................................................. 25 Young’s Double Slits............................................................ 26 Single Wide Slit ............................................................... 27 Two Wide Slits (0) ............................................................. 28 Two Wide Slits (1) ............................................................. 29 Two Wide Slits (2) ............................................................. 30 Two Wide Slits (3) ............................................................. 31 Finite Grating (0) .............................................................. 32 Finite Grating (1) .............................................................. 33 Finite Grating (2) .............................................................. 34 1

An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

An Introduction to

Fourier Transforms

D. S. Sivia

St. John’s College

Oxford, England

August 12, 2015

Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Taylor Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Taylor Series (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Taylor Series (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Taylor Series (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Taylor Series (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Taylor Series (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Fourier Series (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Fourier Series (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Fourier Series (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Fourier Series (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Fourier Series (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Fourier Series (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Taylor Versus Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Complex Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Some Symmetry Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Convolution Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Auto-correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Auto-correlation Function (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Auto-correlation Function (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Fourier Optics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Young’s Double Slits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Single Wide Slit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Two Wide Slits (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Two Wide Slits (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Two Wide Slits (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Two Wide Slits (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Finite Grating (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Finite Grating (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Finite Grating (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1

Page 2: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Finite Grating (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Write up of this Talk!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

The phaseless Fourier problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

The phaseless Fourier problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2

Page 3: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Outline

■ Approximating functions

◆ Taylor series

◆ Fourier series → transform

■ Some formal properties

◆ Symmetry

◆ Convolution theorem

◆ Auto-correlation function

■ Physical insight

◆ Fourier optics

Oxford School on Neutron Scattering 2 / 38

Taylor Series

Oxford School on Neutron Scattering 3 / 38

3

Page 4: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Taylor Series (0)

■ f(x) ≈ a0

Oxford School on Neutron Scattering 4 / 38

Taylor Series (1)

■ f(x) ≈ a0 + a1(x−xo)

Oxford School on Neutron Scattering 5 / 38

4

Page 5: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Taylor Series (2)

■ f(x) ≈ a0 + a1(x−xo) + a2(x−xo)2

Oxford School on Neutron Scattering 6 / 38

Taylor Series (3)

■ f(x) ≈ a0 + a1(x−xo) + a2(x−xo)2 + a3(x−xo)

3

Oxford School on Neutron Scattering 7 / 38

5

Page 6: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Taylor Series (4)

■ f(x) ≈ a0 + a1(x−xo) + a2(x−xo)2 + a3(x−xo)

3 + a4(x−xo)4

Oxford School on Neutron Scattering 8 / 38

Fourier Series

■ Periodic: f(x) = f(x+λ) k =2π

λ(wavenumber)

Oxford School on Neutron Scattering 9 / 38

6

Page 7: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Fourier Series (0)

■ f(x) ≈a0

2

Oxford School on Neutron Scattering 10 / 38

Fourier Series (1)

■ f(x) ≈a0

2+A1sin(kx+φ1)

Oxford School on Neutron Scattering 11 / 38

7

Page 8: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Fourier Series (1)

■ f(x) ≈a0

2+ a1cos(kx)

+ b1sin(kx)

Oxford School on Neutron Scattering 12 / 38

Fourier Series (2)

■ f(x) ≈a0

2+ a1cos(kx) + a2 cos(2kx)

+ b1sin(kx) + b2 sin(2kx)

Oxford School on Neutron Scattering 13 / 38

8

Page 9: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Fourier Series (3)

■ f(x) ≈a0

2+ a1cos(kx) + a2 cos(2kx) + a3 cos(3kx)

+ b1sin(kx) + b2 sin(2kx) + b3 sin(3kx)

Oxford School on Neutron Scattering 14 / 38

Fourier Series (4)

■ f(x) ≈a0

2+ a1cos(kx) + a2 cos(2kx) + a3 cos(3kx) + a4 cos(4kx)

+ b1sin(kx) + b2 sin(2kx) + b3 sin(3kx) + b4 sin(4kx)

Oxford School on Neutron Scattering 15 / 38

9

Page 10: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Taylor Versus Fourier Series

■ Taylor: f(x) =

∞∑

n=0

an(x−xo)n |x−xo|<R

◆ an =1

n!

dnf

dxn

xo

■ Fourier: f(x) =a0

2+

∞∑

n=1

an cos(nkx) + bn sin(nkx) k =2π

λ

◆ an = 2

λ

λ∫

0

f(x) cos(nkx) dx and bn = 2

λ

λ∫

0

f(x) sin(nkx) dx

Oxford School on Neutron Scattering 16 / 38

Complex Fourier Series

eiθ = cos θ + i sin θ , where i2 = −1

■ Fourier: f(x) =

∞∑

n=−∞cn e

inkx

◆ cn = 1

λ

λ/2∫

−λ/2

f(x) e−inkx dx

■ c±n = 1

2(an∓ ibn) for n>1

■ c0 = a0

Oxford School on Neutron Scattering 17 / 38

10

Page 11: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Fourier Transform

■ As λ→∞, so that k→0 and f(x) is non-periodic,

∞∑

n=−∞cn e

inkx −→

∞∫

−∞

c(q) eiqx dq

■ In the continuum limit,

◆ Fourier sum (series) −→ Fourier integral (transform)

◆ f(x) =

∞∫

−∞

F(q) eiqx dq

■ F(q) = 1

∞∫

−∞

f(x) e−iqx dx

Oxford School on Neutron Scattering 18 / 38

Some Symmetry Properties

■ Even: f(x) = f(−x) ⇐⇒ F(q) = F(−q)

■ Odd: f(x) = − f(−x) ⇐⇒ F(q) = −F(−q)

■ Real: f(x) = f(x)∗ ⇐⇒ F(q) = F(−q)∗ (Friedel pairs)

Oxford School on Neutron Scattering 19 / 38

11

Page 12: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Convolution

f(x) = g(x)⊗ h(x) =

∞∫

−∞

g(t) h(x−t) dt

Oxford School on Neutron Scattering 20 / 38

Convolution Theorem

f(x) = g(x)⊗ h(x) ⇐⇒ F(q) =√2π G(q)×H(q)

f(x) = g(x)× h(x) ⇐⇒ F(q) = 1√2π

G(q)⊗H(q)

Oxford School on Neutron Scattering 21 / 38

12

Page 13: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Auto-correlation Function

∞∫

−∞

F(q) eiqx dq = f(x)

∞∫

−∞

∣F(q)∣

2eiqx dq =

∞∫

−∞

f(t)∗ f(x+t) dt = ACF(x)

◆ Patterson map

Oxford School on Neutron Scattering 22 / 38

Auto-correlation Function (1)

Oxford School on Neutron Scattering 23 / 38

13

Page 14: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Auto-correlation Function (2)

Oxford School on Neutron Scattering 24 / 38

Fourier Optics

I(q) =∣

∣ψ(q)∣

2

■ Fraunhofer: ψ(q) = ψo

∞∫

−∞

A(x) eiqx dx where q =2π sin θ

λ

Oxford School on Neutron Scattering 25 / 38

14

Page 15: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Young’s Double Slits

Oxford School on Neutron Scattering 26 / 38

Single Wide Slit

Oxford School on Neutron Scattering 27 / 38

15

Page 16: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Two Wide Slits (0)

Oxford School on Neutron Scattering 28 / 38

Two Wide Slits (1)

Oxford School on Neutron Scattering 29 / 38

16

Page 17: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Two Wide Slits (2)

Oxford School on Neutron Scattering 30 / 38

Two Wide Slits (3)

Oxford School on Neutron Scattering 31 / 38

17

Page 18: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Finite Grating (0)

Oxford School on Neutron Scattering 32 / 38

Finite Grating (1)

Oxford School on Neutron Scattering 33 / 38

18

Page 19: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Finite Grating (2)

Oxford School on Neutron Scattering 34 / 38

Finite Grating (3)

Oxford School on Neutron Scattering 35 / 38

19

Page 20: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

Write up of this Talk!

■ Elementary Scattering Theory for X-ray and Neutron Users (Chapter 2)

D. S. Sivia (2011), Oxford University Press

■ Foundations of Science Mathematics (Chapter 15)

Oxford Chemistry Primers Series, vol. 77 (and 82)

D. S. Sivia and S. G. Rawlings (1999), Oxford University Press

Oxford School on Neutron Scattering 36 / 38

The phaseless Fourier problem

Oxford School on Neutron Scattering 37 / 38

20

Page 21: An Introduction to Fourier Transforms - Neutron Scattering · Taylor Versus Fourier Series Taylor: f(x)= X ∞ n=0 an(x−xo) n |x−xo|

The phaseless Fourier problem

Oxford School on Neutron Scattering 38 / 38

21