45
An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact: Russell S. Peak Revision: March 15, 2001 Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved. Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.

An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

Embed Size (px)

Citation preview

Page 1: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

An Introduction toX-Analysis Integration (XAI)

Part 4: Advanced Topics & Current Research

Georgia Tech

Engineering Information Systems Lab

eislab.gatech.edu

Contact: Russell S. Peak

Revision: March 15, 2001

Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved.Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.

Page 2: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

2Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis » Circuit Board Thermomechanical Analysis» Chip Package Thermal Analysis

– Summary

Part 4: Advanced Topics & Current Research

Page 3: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

3Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Advanced Topics & Current ResearchOutline

Advanced Product Information-Driven FEA Modeling– Focus on cases with:

» Variable topology multi-body geometries» Different design & analysis geometries» Mixed analytical bodies and idealized interfaces

Constrained Object (COB) Extensions– Automating support for multiple views– Next-generation capabilities

Optimization and the MRA

Page 4: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

4Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

1

2

3

1

2

3

12

4

1a

2

3a

1b

1c

3b 3c

3a 3b

2

1a 1b 1c

1d 1e

3

1a 1b

1c1d

23

4a 4b 4c

Analytical Bodies FEA Model Decomposed Volumes

original

topology change (no body change)

variable body change(includes topology change)

Variable Topology Multi-Body (VTMB) FEA Meshing Challenges

Labor-intensive “chopping”

Page 5: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

5Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Product Information-Driven FEA MethodologyPurpose of VTMB Methodology [Gen. 1 - Koo, 2000]

algorithmij

Design Types i = 1…m Analysis Types j = 1…n

Design Instances Analysis Instances

VTMB FEA ModelsVTMB

Methodologycreate algorithmij

once

for a given ij j{1…n} (not all design types have all analysis types)e.g.) for i=1(EBGA), j=1(thermal resistance) j=2 (thermal stress) for i=2 (PWB), j=1 (warpage)

Chip package APMs thermal resistance CBAMs

PWB APMsthermal stress CBAMs

ANSYS SMMs

VTMB= variable topology multi-body

use algorithmij

many times

Page 6: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

6Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Gen. 2 Research Questionsa) How to represent ABB assembly?

Overall Objectives [Zeng thesis] Develop broader algorithm(s)

vs. Koo method [2000] Clarify & generalize representations

vs. Zhou method [1997]

L1

C1C2

C1 C2

S1

Distributed Force

Slip bonding

Glue bonding

Shell Body A

Continuum B

Fully constraint

Assembly Framework

L1 : Loading Constraints

C1,C2 :Connectivity Constraints

S1 :Support Constraints

Example ABB assembly

Page 7: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

7Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ABB assembly view ABB assembly view combined with ANSYS-specific consideration

Research Questionsb) How represent Preprocessor Solution Method Model (PSMM)?

(FEA model specific)

Page 8: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

8Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

L1 L1

C1 C1

C1 C1

C2

C2 S1

S1

S1

PSMM framework

Research Questionsb) How represent Preprocessor Solution Method Model? (cont.)

(FEA model specific)

Page 9: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

9Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Research Questions c) How map ABB assembly model to PSMM?

L1

C1

C2

C1

C2

S1

ABB Assembly Framework

L L

C C

C1

C1

C

C2

SS

S

Preprocessor SMM Framework

ABBPSMM

Page 10: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

10Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Chip Package Applications

Automatic FEA Pre/Post-processing & Solution (in vendor-specific Solution Method Model)

Idealized Model(ABB Assembly)

Page 11: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

11Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Benchmark ExampleExtended wing in-deck galley end tie (ewidget) - case 1

Case 1.a• Blocks = analytical solids (turns into FEA elements)• Sheet = analytical shell• Idealized body interfaces = no-slip

Case 1.bSame as 1.a except:• Idealized body interfaces = mixture of no-slip and possible gap regions

Design model

Idealized geometry for analytical model(not shown yet)

Page 12: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

12Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Benchmark ExampleExtended wing in-deck galley end tie (ewidget) - case 2

Case 2

Same as 1.a except:• Need transition between blocks for shell surfaces (matching outer vs. inner faces vs. mid-plane faces)

Design model

Idealized geometry for analytical model(not shown yet)

Page 13: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

13Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Airframe ApplicationsAutomatic FEA Pre/Post-processing & Solution

(in vendor-specific Solution Method Model)Design Model

Page 14: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

14Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Status: Advanced Product Info-Driven FEA Modeling

Building on previous work PhD thesis proposal underway [Zeng] Target applications identified & work underway:

– Chip package thermal analysis (Shinko)– Airframe structural analysis (Boeing)

Page 15: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

15Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Advanced Topics & Current ResearchOutline

Advanced Product Information-Driven FEA Modeling

Constrained Object (COB) Extensions– Automating support for multiple views– Next-generation capabilities

Optimization and the MRA

Page 16: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

16Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Constrained Object (COB) RepresentationCurrent Technical Capabilities - Generation 2

Capabilities & features:– Various forms: computable lexical forms, graphical forms, etc.– Sub/supertypes, basic aggregates, multi-fidelity objects– Multi-directionality (I/O change)– Wrapping external programs as white box relations

Analysis module/template applications: – Product model idealizations– Explicit associativity relations with design models & other analyses– White box reuse of existing tools (e.g., FEA, in-house codes)– Reusable, adaptable analysis building blocks

– Synthesis (sizing) and verification (analysis)

Page 17: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

17Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Constrained Objects (cont.) Representation Characteristics & Advantages - Gen. 2

Overall characteristics– Declarative knowledge representation (non-causal)– Combining object & constraint graph techniques– COBs = (STEP EXPRESS subset) +

(constraint graph concepts & views)

Advantages over traditional analysis representations– Greater solution control– Richer semantics

(e.g., equations wrapped in engineering context)– Capture of reusable knowledge– Enhanced development of complex analysis models

Toolkit status (XaiTools v0.4)– Basic framework, single user-oriented, file-based

Page 18: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

18Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Planned Generation 3 + COB Enhancements

Use standard forms: Express v3, STEP Parametrics, XML, UML OCL, …

Leverage standard content: STEP generic resources, APs, ... Support concurrent multiple users (block points/buffering,

synchronization, …) Enable interactive COS and COI construction Provide variety of interaction views/forms:

– textual/graphical– geometric/logical– definition/solution/documentation– traditional (e.g., classical equation form)

Page 19: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

19Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Interaction Views/Forms information structure navigation template/instance textual/graphical geometric/logical definition/solution/documentation traditional (e.g., classical equation form) native CAD/CAE tool specialized application view

Novice Users: Graphical forms and specialized applicationsExpert Users: All forms

Each form has its niche

Page 20: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

20Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB Modeling Views

COB InstanceLanguage

Extended Constraint Graphs-I

Constraint Schematic-I

STEPPart 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in

Subsystem Views

Object Relationship Diagram

COB SchemaLanguage

I/O Tables

Extended Constraint Graphs

Constraint Schematic

STEPExpress

Express-G

HTML

HTML

Page 21: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

21Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB Structure: Graphical Forms

Spring Primitive

v a r i a b l e s u b v a r i a b l es u b s y s t e m

e q u a l i t y r e l a t i o n

r e l a t i o n

s

a b

dc

a

b

d

c

e

a . das

r 1r 1 ( a , b , s . c )

e = f

s u b v a r i a b l e s . b

[ 1 . 2 ]

[ 1 . 1 ]o p t i o n 1 . 1

ff = s . d

o p t i o n 1 . 2

f = g

o p t i o n c a t e g o r y 1

gcbe

r 2

h o f c o b t y p e h

wL [ j : 1 , n ]

w j

a g g r e g a t e c . we l e m e n t w j

Basic Constraint Schematic NotationTemplate Structure (Schema )

L

L

Fk

u n d e fo rm e d le n g th ,

s p r in g c o n s ta n t, fo rc e ,

to ta l e lo n g a tio n ,

1x

Lle n g th ,0

2x

s ta rt,

e n d ,

oLLL

12 xxL

LkF

r1

r2

r3

Constraint Schematic

FF

k

L

deformed state

Lo

L

x2x1

Parameterized Figure

LkFr

LLLr

xxLr

:

:

:

3

02

121

Relations

SpringElementary

LL

Fk

1x L

0

2x

Subsystem View(for reuse by other COBs)

Page 22: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

22Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB Structure: Lexical Form Spring Primitive

L

L

Fk

u n d e fo rm e d le n g th ,

s p r in g c o n s ta n t, fo rc e ,

to ta l e lo n g a tio n ,

1x

Lle n g th ,0

2x

s ta rt,

e n d ,

oLLL

12 xxL

LkF

r1

r2

r3

Constraint Schematic

Lexical COB Schema Template

COB spring SUBTYPE_OF abb; undeformed_length, L<sub>0</sub> : REAL; spring_constant, k : REAL; start, x<sub>1</sub> : REAL; end, x<sub>2</sub> : REAL; length, L : REAL; total_elongation, &Delta;L : REAL; force, F : REAL; RELATIONS r1 : "<length> == <end> - <start>"; r2 : "<total_elongation> == <length> - <undeformed_length>"; r3 : "<force> == <spring_constant> * <total_elongation>";END_COB;

Page 23: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

23Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

22 m m

10 N

2 m m

5 N /m m

20 m m

e xa m p le 1 , s ta te 1

L

L

Fk

unde fo rm ed leng th ,

sp ring cons tan t, fo rce ,

to ta l e longa tion ,

1x

Lleng th ,0

2x

s ta rt,

end ,

oLLL

12 xxL

LkF

r1

r2

r3

200 lbs

30e6 psiResult b = 30e6 psi (output or intermediate variable)

Result c = 200 lbs (result of primary interest)

X

Relation r1 is suspended X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

COB Instance ViewsSpring Primitive

Constraint Schematic Instance Views Lexical COB Instances

Basic Constraint Schematic NotationInstances

input:

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 5.0; start : ?; end : ?; length : ?; total_elongation : ?; force : 10.0;END_INSTANCE;

result (reconciled):

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 5.0; start : ?; end : ?; length : 22.0; total_elongation : 2.0; force : 10.0;END_INSTANCE;

Page 24: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

24Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

spring2

spring1

Constraint Graph-STwo Spring System

P

k1 k2

2u1u

22223

202222

2122221

11113

101112

1112111

:

:

:

:

:

:

LkFr

LLLr

xxLr

LkFr

LLLr

xxLr

L10

k1

L1

L1

L20

k2

x21

x22

F2

L2

F1

x11

x12

u1 u2

P

1226

115

24

213

21122

111

:

:

:

:

:

0:

uLubc

Lubc

PFbc

FFbc

xxbc

xbc

L2

bc4

r12

r13

r22

r23

bc5bc6

bc3

r11r21

bc2

bc1

Page 25: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

25Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

spring2

spring1

L10

k1

L1

L1

L20

k2

x21

x22

F2

L2

F1

x11

x12

u1 u2

P

L2

bc4

r12

r13

r22

r23

bc5bc6

bc3

r11r21

bc2

bc1

Extended Constraint Graph-S Two Spring System

Extended Constraint Graph-S

Constraint Graph-S

• Groups objects & relations into parent objects• Object-oriented vs. flattened

spring 2

L

Lundeformed length,

spring constant, k

Fforce,

total elongation,

1xLlength,

0

2x

start,

end,

oLLL

12 xxL

LkF

r1

r2

r3

spring 1two-spring system

deformation 1, u1

deformation 2, u2

force , P

L

Lundeformed length,

spring constant, k

Fforce,

total elongation,

1xLlength,

0

2x

start,

end,

oLLL

12 xxL

LkF

r1

r2

r3

partial(BC relations not included)

Page 26: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

26Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Disciplines/Users Constraint Schematic

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

MCAD Tools

Materials DB

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

General MathMathematica

Matlab*

MathCAD*

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Generic Analysis Templates(ABBs)

CATIA, I-DEAS* Pro/E* , UG*

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia,J

radius, r

undeformed length,Lo

twist,theta start,1

theta end,2

r1

12

r3

0Lr

JrTr

torque,Tr

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

Continuum ABB

Extensional Rod

Linear-Elastic

E

One D Linear

(no shear)

T

e

t

temperature change,T

material model

temperature,T

reference temperature,To

cte,youngs modulus,E

force,F

area,A stress,

undeformed length,Lo

strain,

total elongation,L

length,L

start,x1

end,x2

mv6

mv5

smv1

mv1mv4

thermal strain,t

elastic strain,e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

Elastic Model

x

TT

G, r, ,

,J

Lo

y

Material Model ABB

Torsional Rod

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Page 27: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

27Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

Pullable Documentation Views

* Boundary condition objects & pullable views are WIP*

(1) Extension Analysisa. 1D Extensional Rodb. 2D Plane Stress FEA

1. Mode: Shaft Tension

2. BC ObjectsFlaps down : F =

3. Part Feature (idealized)

4. Analysis Calculations

1020 HR Steel

E= 30e6 psi

Leff = 5.0 in

10000 lbs

AF

ELL eff

5. Objective

A = 1.13 in2

allowable 18000 psi

1

allowableMS 1.03

(2) Torsion Analysis

(1a) Analysis Problem for 1D Extension Analysis

Solution Tool Links

BC Object Links(other analyses)*

Design/Idealization Links

Material Links

Pullable Views*

Flap Link SCN

Page 28: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

28Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Views with FEA templates & Native CAE

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

Page 29: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

29Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Generic COB Browser with design and analysis objects

(attributes and relations)

SpecializedAnalysis Module Tool

with idealized package cross-section

Idealized Graphical Views, Generic Browser,& Specialized Applications

Page 30: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

30Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Parameterized Geometry at Preliminary Design Fidelity

APM = analyzable product model

Page 31: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

31Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Native CAD

inter_axis_length

sleeve2.width

sleeve2.inner_diameter

Page 32: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

32Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Planned Generation 3 + Other COB Enhancements

Support units and automatic conversions Extend COI language capabilities Improve constraint graph algorithms

– Support structural loops– Support multiple subsolvers (for specified subgraphs)

Enable hybrid declarative/procedural approaches Allow constraint hierarchies

(i.e., relations with variable satisfaction priorities) Support enhanced relations Support explicit COS categories

(e.g., APMs, CBAMs, ABBs) Versioning & configuration management of structure

Page 33: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

33Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Enhanced Relations

Inequalities– Enable capture of model assumptions & limitations

Arbitrary aggregate elements: a[ i ] = 5 + a[i+1] a[n/2] = 9

Object relations: vs. Real no. relations: point1 = point2 point1.x = point2.x

Conditionals (higher order constraints): if (x > y) then (a = b)

Buffered relations

Page 34: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

34Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Status: Next Gen. COBs and Views

Building on previous work Needs and anticipated approaches identified Seeking extension opportunities

Page 35: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

35Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Advanced Topics & Current ResearchOutline

Advanced Product Information-Driven FEA Modeling

Constrained Object (COB) Extensions– Automating support for multiple views– Next-generation capabilities

Optimization and the MRA

Page 36: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

36Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Thesis AbstractObject Oriented Paradigm for Optimization Model Enhancement

Doctoral ThesisGeorgia Institute of Technology, Atlanta.

http://eislab.gatech.edu/Selçuk Cimtalay

Nov. 2000

The modeling process that transforms a detailed product design and its multi-fidelity analysismodels into an optimization model is a non-trivial task requiring large amounts of diverseinformation, engineering theory, and experienced-based heuristics, as well as the support ofoptimization, design, and analysis tools. Engineering optimization can be viewed as aninformation intensive problem that requires engineering information solutions.

This research has focused on developing a new information representation of optimizationmodels, termed Enhanced Optimization Model (EOM). EOM represents an informationframework for an object oriented design methodology for optimization model construction,enhancement, classification and solution. EOM utilizes a combination of constraint graph andobject techniques to provide semantically rich mappings. EOM representation consists of aninformation model structure and protocol, and modeling languages for creating EOM objects.Specifically, EOM representation is developed as an information representation by focusing onthe optimization aspects to partition the optimization area into more trackable and modularobjects. Key distinctions are the explicit representation of the associativity between anoptimization model and its analysis and design models and the ability to support multi-fidelityoptimization models as the design progresses.

EOM concepts have been prototyped in Java in conjunction with optimizers (Bolink, CONMINetc.), analyzers (Ansys FE) and symbolic solvers (Mathematica). Structural analysis andelectronic packaging test cases illustrate the different characteristics and help to evaluate theEOM representation with respect to the thesis objectives. Results show that EOM representationenables the enhancement ability to capture optimization model building information, to modifythe models easily, and provide flexibility to designers.

Page 37: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

37Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Mfg. CAD/CAM,Measurements

etc.

Conditions

MCAD

ECAD

Analysis Results

Ansys

Abaqus

CAE

Analysis Results

Ansys

Abaqus

CAE

Analysis Module Catalogs

SelectedAnalysis Module (CBAM)

AutomatedIdealization/

Defeaturization

Product Model

Optimization Integration Thrust(work-in-process)

ImprovedDesign / Process

Optimization Module (OMEP)

CONMIN

DSIDES

X 1

X 2

F e a s i b l e R e g i o n

x x u p2

x xl o w 2

g x p1 0( , )

g x p2 0( , )

X 1

X 2

F e a s i b l e R e g i o n

x x u p2

x xl o w 2

g x p1 0( , )

g x p2 0( , )

Page 38: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

38Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Optimization Model Diversity

Min Weight

g (x)<0h(x) =0

subject toStressDesign variablesArea

Min Weight

OPTIMIZATION MODEL CLASS

Optimization Object 1 Optimization Object 2

Min Weight

subject to

X(H)

Min Weight

subject to

X(H,LL,LR)

OPTIMIZATION MODEL CLASS

Optimization Object 1 Optimization Object 2

Min Weight, Cost

subject to

Optimization Object 3

X(H,LL,LR,Mat)

g (x)<0h(x) =0

g (x)<0h(x) =0

2D PLANE STRAIN MODEL

1D EXTENSIONAL STRESS MODEL

Analysis Model(s)Enhancement and/or Addition

subject toStressBucklingDesign variablesArea, Material

y

xPP

E, A

LLeff

,

L

Objective, design variable, and/or constraint function enhancement

Page 39: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

39Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Optimization Model Enhancement

MinimizeLAf

1 WeightSubject to

0)(1 AMSg stress Normal Stress Margin of Safety

Design variables

X={A}

MinimizeLAf

1 WeightSubject to

0)(1 AMSg stress Normal Stress Margin of Safety

Design variables

X={A, material}

OPTIMIZATION MODEL I

OPTIMIZATION MODEL II

Page 40: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

40Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area) subject to (extensional stress)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stressMargin of Safety

(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraint

Design VariableA

weight,WW AL

MS 0

density,

MSstress

1

allowablestressMS

Page 41: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

41Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area, material) subject to (extensional stress)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stressMargin of Safety

(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraint

Design Variablearea,A

weight,WW AL

MS 0

density,

MSstress

1

allowablestressMS

material

Page 42: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

42Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Optimization Model Enhancement

M i n i m i z eLAf 1 W e i g h t

S u b j e c t t o0)(1 AMSg stress N o r m a l S t r e s s M a r g i n o f S a f e t y

0)(2 AMSg buckling B u c k l i n g M a r g i n o f S a f e t yD e s i g n v a r i a b l e s

X = { A }

MinimizeLAf

1 WeightSubject to

0)(1 AMSg stress Normal Stress Margin of Safety

0)(2 AMSg buckling Buckling Margin of SafetyDesign variables

X={A, material}

OPTIMIZATION MODEL III

OPTIMIZATION MODEL IV

Page 43: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

43Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area) subject to (extensional stress, buckling load)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal, buckling)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stress

Margin of Safety(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraints

Design VariablesA

weight,W W AL

MS 0MSstress

Margin of Safety(> case)

allowableactual

MS

moment of inertia, I

L

EIPcr

2

1

allowablestressMS

1F

PcrMSbuckling

load,P

MSbuckling

Lo

Extensional Rod(Buckling)

PcrI

E

density,

Page 44: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

44Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area, material) subject to (extensional stress, buckling load)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal, buckling)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stress

Margin of Safety(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraints

Design Variables A

weight,W W AL

MS 0MSstress

Margin of Safety(> case)

allowableactual

MS

moment of inertia, I

L

EIPcr

2

1

allowablestressMS

1F

PcrMSbuckling

load,P

MSbuckling

Lo

Extensional Rod(Buckling)

PcrI

E

density,

material

Page 45: An Introduction to X-Analysis Integration (XAI) Part 4: Advanced Topics & Current Research Georgia Tech Engineering Information Systems Lab eislab.gatech.edu

45Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Status: Optimization

Initial PhD thesis completed [Cimtalay, 2001] Seeking insertion & extension opportunities Need to leverage recent optimization tools

– Ex. iSIGHT, ProductCenter, …– Provide enhanced modularity & knowledge capture