14
An Overview of Collaborative Testbeds Within the Future Renewable Electric Energy Delivery and Management Center 1

An Overview of Collaborative the Future Electric Energy ...electriconf/slides_2015/Crow_Mariesa... · An Overview of Collaborative ... Renewable Electric Energy Delivery ... security

  • Upload
    lytruc

  • View
    218

  • Download
    2

Embed Size (px)

Citation preview

An Overview of Collaborative Testbeds Within the Future 

Renewable Electric Energy Delivery and Management Center

1

FREEDM Center

2

GEH

3

Green Energy Hub

• The Green Energy Hub testbed is an integrated hardware system demonstration incorporating technologies from the Enabling Technology and Fundamental Science research planes.

• Functions include testing and demonstration of– Solid State Transformer ‐ SST (Gen I, Gen II)– Fault Isolation Device ‐ FID (Gen I, Gen II)– Distributed Energy Storage Device – DESD (AC and DC)– Distributed Renewable Energy Resource ‐ DRER (PV, Wind)– Household Load Emulator

• Previous focus on basic power (Intelligent Power Management ‐ IPM) and fault management (Intelligent Fault Management ‐ IFM) functions.

4

SST Development

• Software– Redesign of Dual Active Bridge Code for 

Interleaved Operation – HIL Tested– Inverter Implementation – HIL Tested– Original LV‐SST Started by Sumit – Full 

Hardware Tested• Hardware

– 2x21 Semiconductor and BusbarMounting – Complete

– 14 Gate Drivers ‐ Complete– Interface Board – Borrowing MMC 

Boards– Transducers – Borrowing MMC Boards– 3/12 HF Transformers – Complete– Inverter, Rectifier – Sumit Version 

Working• Other Results

– DRER Tested in HIL– DESD Tested in HIL

5

Hardware in the Loop Testbed

6

HIL 

• HIL experiments with 10 kW Gen‐II SST at FSU‐CAPS– Setup will also incorporate DESD interface developed under DESD sub‐thrust (Dr. Li)

• Implement and test invariants for Multi‐Domain Cyber‐Physical Systems control in the HIL‐TB real‐time environment

• Implement and test DGI algorithms with Cyber‐Physical Security– Develop and test new security association (SA) mechanisms, and demonstrate the Ipsecbased

security platform using OPNET network emulator on the HIL‐TB• RTDS SST Model Validation

– Will validate switching and average models of SSTs used in HIL‐TB through correlation with test results from Gen‐II SST hardware

• Advanced Controller Validation– Implement robust control laws partly developed in Y6 (impedance uncertainty) and new 

robust control laws to be developed in Y7 as part of SMC project (communication uncertainty) in the DSP/FPGA controller board used for SST CHIL on HIL‐TB

• Model Maintenance– Develop, maintain, and version control SST simulation model library; ensure compatibility with 

the analytical models delivered to SMC– Engage with the FREEDM Architecture Working Group (FAWG)

7

LSSS

8

Project ObjectivesTo demonstrate FREEDM capabilities and functionalities in a large scale, multi-bus, distribution system

Technical ApproachDevelop a consistent distribution system on several software platforms to provide

System IntegrationDescribe the ways that this project interacts with other projects and it’s role in the overall FREEDM system

Significant Technical Challenges• Computational burden of fully-modeled system• SST model validation

Accomplishments• Extension of system to mesh-looped system with

performance validation (stable small signal operation)

Date 1/28/2015

Project Number: Y7.LSSS

PI: CrowCo-PIs: Baran, Bhattacharya, Karady, FerdowsiMajor Milestones• PSCAD model of FREEDM system – stable operation• OpenDSS model of FREEDM system• SST and FID coordinate with pilot protection to isolate

and clear fault – radial system• Centralized volt-var controlFinal Deliverables• Looped/meshed pilot protection for fault management• Decentralized volt-var control

Background/Motivation

The ultimate customer of the FREEDM system are utilities.  Utilities will not adopt the SST and FID until they can be assured that• The SSTs and FIDs will not 

interact poorly• System stability will be 

maintained• System reliability and 

resiliency will be improved (benefit > cost)

The LSSS is the demonstration platform that will provide the evidence of SST and FID operation in a distribution system

9

V Ph

12.47, 60.0 [Hz]12.0 [MVA]

0.0*

12.47

300 300 300

303

300 300 301 301

302

301 303

301

301 301 303

301301

301

301 301

301301

301 301

301 301

301

304

#1 #2

500 [kVA]12.47 [kV] / 4.16 [kV]

300

A B C

0.19

2333

[ohm

]0.

2707

5 [m

H]

3.08 [nF]

0.22

6675

[ohm

]0.3

25 [m

H]

302

1.59

5595

75 [o

hm]2

.245

75 [m

H]

302

1.36594925 [ohm]1.9225 [mH]

0.10040825 [ohm]141.25 [uH]

1.608 [nF]

0.77311 [ohm] 1.08825 [mH]

12.38 [nF]

0.36055225 [ohm]

216.75 [uH]

302

0.05

3683

5 [o

hm]7

5.5

[uH

]

0.86 [nF]

BUS846

BUS828

BUS824BUS816

BUS850

BUS818

BUS822

BUS800 BUS802 BUS806 BUS808 BUS812 BUS814

BUS830BUS854

BUS852

BUS858

BUS832

BUS844

BUS842

BUS848

BUS834BUS860

BUS836

BUS840

BUS862

BUS888

BUS890

BUS826

Ps

Qs

0.57

6999

25 [o

hm]

0.81

225

[mH

]

9.24 [nF]

BUS810

4.78

6787

5 [o

hm]

6.73

75 [m

H]

BUS8200.4553165 [ohm]0.64075 [mH]

0.30

1224

5 [o

hm]0.

424

[mH

]

4.824 [nF]

2.31933 [ohm] 3.2645 [mH]

37.14 [nF]

BUS856

0.16

105

[ohm

]226

.75

[uH

]

2.579 [nF]

BUS864

0.081657 [ohm]

0.6505 [mH

]

BUS838

P = 0.01551Q

= -0.0001993V = 0.9791

V A

P =

0.17

03Q

= -0

.001

093

V =

0.91

67

VA

P =

0.17

02Q

= -0

.001

092

V =

0.91

59

VA

P = 0.1328Q = -0.002456

V = 0.8932

VA

P = 0.003866Q = -0.0008682

V = 0.9138

VA

P =

0.00

194

Q =

-0.0

0013

17V

= 0.

8596

VA

V =

0.97

88

VA

P = 0.1321Q = -0.001661

V = 0.888

VA

V =

0.93

25

VA

V =

0.85

96

VA

V = 0.8755

V A

PQ PQ

P = 5.929Q = 0.1502

V = 1

VA

PQ PQ PQ

PQ

PQ

PQ

PQ

PQ

PQ PQ

PQ

PQ

PQ

Main ...

1.2

0

Vs

1

IEEE 34 BUS DISTRIBUTION TEST MODELDeveloped June 2006by Jen Z. Zhou, Dharshana Muthumuni, and Paul WilsonThis version has no wind generators and can only run in professional version of PSCAD.

IEEE Description papers and discussion available.

Q = -0.0001951V = 0.9136

VA

Ea

Eb

Ec

Ec

Eb

Ea

Main : Graphs

x 2.580 2.590 2.600 2.610 2.620 2.630 2.640 2.650 2.660

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5 5.0

7.5

10.0

(kA)

I890 I890 I890

0.007991 [uF]

2.664 [nF]

3.6 [nF]

25.55 [nF]

76.65 [nF]

7.291 [nF]

21.873 [nF]

Main : Graphs

x 0.0 1.0 2.0 3.0 4.0 5.0 6.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(MW

)

Ps

A

B

CBRK1

BRK2

TimedBreakerLogic

Open@t0BRK1

TimedBreakerLogic

Closed@t0

BRK2

BRK3

BRK4Timed

BreakerLogic

Closed@t0BRK3

TimedBreakerLogic

Open@t0BRK4

BRK5

A

B

C

BRK6

BRK6

TimedBreakerLogic

Open@t0BRK5

TimedBreakerLogic

Closed@t0

BRK8

BRK7A

B

C TimedBreakerLogic

Closed@t0BRK7

TimedBreakerLogic

Open@t0BRK8

A

B

C

BRK9

BRK10

BRK10

TimedBreakerLogic

Open@t0BRK9

TimedBreakerLogic

Closed@t0

SST824

Tabc

A

B

CBRK13

BRK14

BRK14

TimedBreakerLogic

Open@t0BRK13

TimedBreakerLogic

Closed@t0

BRK16

BRK15

A

B

C

TimedBreakerLogic

Closed@t0BRK15

TimedBreakerLogic

Open@t0BRK16

SST830

Tabc

A

B

CBRK23

BRK24

BRK24

TimedBreakerLogic

Open@t0BRK23

TimedBreakerLogic

Closed@t0

SST858

Tabc

BRK38

BRK38

TimedBreakerLogic

Open@t0BRK37

TimedBreakerLogic

Closed@t0

A

B

C

BRK37

SST834

Tabc

SST860

Tabc

SST836

Tabc

SST840

Tabc

BRK63

A

B

C

BRK64

TimedBreakerLogic

Closed@t0BRK63

TimedBreakerLogic

Open@t0BRK64

SST844

Tabc

SST846

Tabc

SST848

Tabc

SST890

Tabc

SST

Q806B0.0Q806B

SST

0.0Q806C

Q806C

SST

Q810B0.0Q810B

SST

0.0Q820A

Q820A

SST

Q822A0.0Q822A

Q824B0.0Q824B

0.0Q826B

Q826B

SST

SST

0.0Q828C

Q828C 0.0Q830A

Q830A

0.0Q830B

Q830B

0.0Q830C

Q830C

Q856B0.0Q856B

SST

Q890C0.0Q890C

Q890B0.0Q890B

Q890A0.0Q890A

0.0Q858A

Q858A

0.0Q858B

Q858B

0.0Q858C

Q858C

SST

Q864A0.0Q864A

0.0Q834A

Q834A

0.0Q834B

Q834B

0.0Q834C

Q834C

Q860C0.0Q860C

Q860B0.0Q860B

Q860A0.0Q860A

Q836C0.0Q836C

Q836B0.0Q836B

Q836A0.0Q836A

0.0Q838B

Q838B

SST

0.0Q844A

Q844A

0.0Q844B

Q844B

0.0Q844C

Q844C

Q846C0.0Q846C

Q846B0.0Q846B

Q848C0.0Q848C

Q848B0.0Q848B

Q848A0.0Q848A

6.9807e-4 [H]0.089179 [ohm]

feeder3

feeder17.8532e-4 [H]

0.1003 [ohm]

5.2356e-4 [H]

0.066948 [ohm]

SST

Tabc

SST

Tabc

6.9807e-4 [H]

0.066948 [ohm]

5.2356e-4 [H]

6.9807e-4 [H]

SST

Tabc

SST

Tabc

feeder3

7.8532e-4 [H]0.1003 [ohm]

5.2356e-4 [H]

0.066948 [ohm]

SST

Tabc

0.066948 [ohm]

5.2356e-4 [H]

0.1003 [ohm]

7.8532e-4 [H]

feeder1

feeder3

6.9807e-4 [H]

SST

Tabc

SST

Tabc

0.089179 [ohm]

0.089179 [ohm]

0.089179 [ohm]

feeder2 feeder2 feeder2

feeder1

feeder1

feeder2

Q1C0.0

Q1B0.0

Q1A0.0 0.0 Q2A

0.0 Q2B

0.0 Q2C Q3C0.0

Q3B0.0

Q3A0.0

Q4C0.0

Q4B0.0

Q4A0.0 0.0 Q5A

0.0 Q5B

0.0 Q5C Q6C0.0

Q6B0.0

Q6A0.0

Q7C0.0

Q7B0.0

Q7A0.0

BRKcon1

BRKcon2

TimedBreakerLogic

Open@t0 BRKcon1

TimedBreakerLogic

Open@t0 BRKcon2

Example Project 1Pilot directional protection

10

Unsymmetrical faults

• For a fault at the given location, R1, R2 and R3 calculate the direction of fault currents. The directionality offault current is communicated between the relays R1, R2 and R2, R3.

• Since R1 and R2 have the same direction of fault current, fault is not located in between them. R2 and R3have different fault current directions. Hence fault location is in between them.

Relay Faultdirection

Relay Fault direction

R1 Forward R2 ForwardR2 Forward R3 ReverseTrip signal No trip Trip signal Trip generated

Fault is between relay 1 and relay 2

Green signal is +1  Forward fault for relay 1Red signal is ‐1 Reverse fault for relay 2

11

Example Project 1

Remaind

er of system

Fault Interruption Device (FID)

Example Project 1

12

SST838B : SST Output

x 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-300

-200

-100

0

100

200

300

y

Vhs

-30

-20

-10

0

10

20

30

y

Ipl

-300

-200

-100

0

100

200

300

y

Vnl

-30

-20

-10

0

10

20

30

y

Inl

SST Waveforms

x 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-10.0k

-5.0k

0.0

5.0k

10.0k

Inpu

t Vol

tage

Vhs

-30

-20

-10

0

10

20

30

Inpu

t Cur

rent

Ihs

3.4k3.6k3.8k4.0k4.2k4.4k4.6k4.8k

HVD

C C

apac

itor V

olta

ge

Vhdc

399.70

399.80

399.90

400.00

400.10

400.20

LVD

C C

apac

itor V

olta

ge

Vldc

SST response outside of Fault RegionSST response inside of Fault Region

13

Example Project 2Distributed Volt‐Var Control

Non‐VVC SSTs hold unity pf

Actual solar insolation

Example Project 2

14