67

ANALISIS ULTIMATE FIXED PLATFORM TERHADAP BEBAN GEMPA … · terhadap beban gempa berlebih sampai mengalami batas keruntuhan ? 5. ... - K = Faktor Panjang efektif - l = panjang batang

  • Upload
    lamkien

  • View
    240

  • Download
    1

Embed Size (px)

Citation preview

LATAR BELAKANG Indonesia merupakan 5 negara terbesar penghasil

MIGAS di dunia, Letak sumur penghasilmayoritas berada pada perairan dangkal, < 100 m

Indonesia terletak pada 6o LU - 11o LS dan 95o BT - 141o BT, lempeng Asia, Lempeng Australia, danLempeng Pacifik, Berada pada kawasan gempa

Pengaruh Gempa terhadap kekuatan platform

PERUMUSAN MASALAH1. Bagaimana cara melakukan perancangan fixed

platform dengan bracing yang berbeda ?2. Bagaimana cara memodelkan platform dengan

menggunakan program SACS 5.2. ?3. Bagaimana kondisi platform apabila terjadi

gempa yang melebihi perencanaan ?4. Bagamana cara menganalisis kekuatan struktur

terhadap beban gempa berlebih sampai mengalami batas keruntuhan ?

5. Berapa kekuatan gempa yang dapat ditopang oleh struktur tersebut ?

BATASAN MASALAH1. Pemodelan struktur utama mengacu pada

keadaan sebenarnya di lapanganmenggunakan 4 kaki,

2. Pemodelan detail tidak seluruhnyadimodelkan,

3. Beban yang ditinjau berdasarkan bebanrencana yang diinputkan dengan metodeblanked load,

4. Analisis yang dilakukan adalah padabagianjacket.

TUJUAN1. Mampu membuat model dengan menggunakan

program SACS 5.2., serta mengoperasikan untuk melakukan analisis platform terhadap beban gempa

2. Mampu menganalisis kekuatan struktur fixed platform terhadap beban gempa berlebih,

3. Mampu merencanakan sambungan las pada platform

4. Mampu merencanakan pondasi dari platform5. Membuka wawasan bahwa offshore memiliki

banyak kesamaan dengan teori Teknik Sipil

Offshore Platform : Anjungan Lepas Pantai Tempat yang digunakan untuk melakukan

pengeksplorasian SDA yang terletak di laut lepas

Jenis Offshore Platform Berdasarkan Kedalaman: 450 m Fixed Platform 450 – 910 m Compilant Tower ( CT ) 150 – 1060 m SeaStar 450 – 1800 m FPS 450 – 2100 m TLP 610 – 3050 m Truss Spar / Classic Spar FPSO

JENIS ANJUNGANBERDASARKAN KEDALAMAN DASAR LAUT

• OFFSHORE PLATFORM MAMPU MENDUKUNG BANGUNAN ATAS

• PARAMETER PERANCANGAN :1. TEKNIK PENAHAN BEBAN VERTIKAL BEBAN FUNGSIONAL, BERAT STRUKTUR2. TEKNIK MENAHAN BEBAN HORIZONTAL BEBAN LINGKUNGAN

GELOMBANG, ANGIN, ARUS, GEMPA

JACKET PLATFORM

GEMPA• Proses pergerakan lempeng bumi yang

mengakibatkan getaran baik secara langsung didaerah asal pergerakan ataupun daerah disekitar titik asal gempa

• Dipengaruhi oleh :• Jarak terhadap daerah asal gempa• Daerah gempa ( PGA )• Karakteristik bangunan tersebut ( tinggi, massa, fungsi )

PETA WILAYAH GEMPA 500 th

PERCEPATAN BATUAN DASAR

Wilayah Gempa

Percepatanpuncak batuan

dasar (‘g’)

Percepatan puncak muka tanahAo (‘g’)

Tanah Keras Tanah Sedang Tanah Lunak Tanah Khusus

1 0.03 0.04 0.05 0.08

Diperlukanevaluasi

khusus disetiap lokasi.

2 0.10 0.12 0.15 0.20

3 0.15 0.18 0.23 0.30

4 0.20 0.24 0.28 0.34

5 0.25 0.28 0.32 0.36

6 0.30 0.33 0.36 0.38

SNI 1726 - 2002

API RP 2A

Wil. Gempa PGA ( g )0 01 0.052 0.13 0.24 0.255 0.4

Gelombang

Arus

Angin

Gempa

BEBAN ARAH HORIZONTAL

Basic Load Condition SeismicIn Place

OperatingStorm

Structural Dead WeightX X X

Area Live Loads X X X

Storm Wind, Wave, & Current Loads- - X

Operating Wind, Wave, & Current

Loads- X -

Buoyancy X X X

Miscellaneous & appurtenancesX X X

Earthquake Induced Force X - -

BEBAN YANG BEKERJA

KONSEP GEMPA Kesetimbangan Statik

P = K. VP = Beban yang bekerjaK = Kekakuan dari tahananV = Perpindahan yag dilakukan

GedungV = C I W

RV = Gaya Geser Dasar W = berat total I = Faktor Keutamaan R = Faktor Reduksi

METODOLOGI

Kekuatan Ultimate Fixed

Platform

MULAI

STUDY LITERATUR

PERMASALAHAN

PENGUMPULAN DATA

ANALISA IN-PLACE

KESIMPULAN

SELESAI

ANALISA SEISMIC

ANALISA ULTIMATE

FLOWCHART TUGAS AKHIR

FLOWCHART SEISMIC

MULAI

DATA GEOMETRI DAN BAHAN

KOMBINASI BEBAN

PEMODELAN STRUKTUR DAN PONDASI

EIGEN VALUE DAN PERIODE NATURAL

DATA GEMPA LINGKUNGAN

KONTROL DESAIN

OKE

KESIMPULAN

SELESAI

DATA TANAH DAN LINGKUNGAN

BEBAN MATI, BEBAN HIDUP DAN

PERALATAN

MASSA TAMBAH

BEBAN DINAMIS

RESPON SPEKTRUM HASIL

PERHITUNGAN

ANALISIS AXIAL LOAD & PILE STRESS

NOT OKE

FLOWCHART PUSHOVER

MULAI

PEMODELAN STRUKTUR

INPUT BEBAN GEMPA

PERHITUNGAN KEKUATAN

KONTROL DESAIN

MAMPU MENAHAN

GAGAL

KESIMPULAN

SELESAI

DATA DAN STRUKTUR LINGKUNGAN

1. NAMA : ANOA PLATFORM2. LOKASI : NATUNA

: 5’13’’55’” N, 105’35”40’” E3. FUNGSI : PRODUCTION4. LWS : 77 METER5. TINGGI JACKET : 85 METER6. JUMLAH DEK : 4 LANTAI

LETAK ANOA PLATFORM

85.04

30.65

28.27

26.14

24.31

22.48

77.27

7.77

TAMPAK SISI ROW B

10 : 1

85.04

22.48

24.31

26.14

28.27

30.65

TAMPAK SISI ROW A

10 :

1

76.20

14.18

17.83

21.49

25.76

30.51

85.04

TAMPAK SISI ROW 2

10 : 11

0 :

1

78.03

37.67

77.27

14.18

17.83

21.49

25.76

30.51

85.04

TAMPAK SISI ROW 1

10 : 11

0 :

1

PEMODELAN PLATFORM

PEMODELAN STRUKTUR

Horizontal Brace

Model Top Side 3D

Model 3D

Properties Member

ID MODEL OD ( Cm ) WT ( Cm )

LG2 TUBULAR 139.7 5.08

LG3 TUBULAR 135.89 3.175

LG4 TUBULAR 139.7 5.08

LG5 TUBULAR 137.16 3.81

MODEL PROPERTIES

-52,4m

-12,8 m

-31,1 m

-76,2 m

+5,44 m

Deck Platform

1. Main Deck2. Cellar Deck3. Sub Cellar Deck4. Living Quarter

Properties DeckMD 36 x 230 ( 12’/4’ )MD 36 x 130 ( 12’ /4’ )MD 36 x 150 ( 12’ /4’ )

PEMBEBANAN

Load Description

LC Description Units value

1 Self Weight Kn

2 Work Over Rig Kn 8366

3 Plating, Grating, Handrail Kn 1466.45

4 Equipment All Deck Kn 6058.19

5 Live Load All Deck Kn 6615.36

6 Piping All Deck Kn 1391.60

Load Condition 2

Load Condition 3

Fz = - 1466,45 Kn

Load Condition 4

Load Condition 5

Load Condition 6

Load Combination

LC LOAD CASE

DESCRIPTION

LOAD COMBINATION

30011 Self Weight 100 %2 Work Over Rig 100 %3 Plating, Grating, Handrail 105 %4 Equipment All Deck 100 %5 Live Load All Deck 75 %6 Piping All Deck 100 %

Kriteria ModifikasiDesain Awal :-Memiliki Susunan Bracing K-Dengan Perbandingan Member Utama

-LG5 : D = 137,16 cm / T = 3,810 cm-DB3 : d = 86,36 cm / t = 2,54 cm

- Kriteria Modifikasi :- D / d = 1,588 - D / T = 36- d / t = 34 - Kl/r = 5,997

Dimana:- K = Faktor Panjang efektif- l = panjang batang- r = radius gyration ( 0,35 D )

Kombinasi Bracing

Bracing K Bracing A Bracing X Bracing N

Kombinasi 4 Bracing

Input PGA ( 0,05 ; 0,2 ; 0,4 ; 0,5 )

•Superelement•Input : Sacinp. for superelement

Psinp. for superelement•Output : Psilist

PsiinpfDynsef*SeaociPsvdbPsicfPsi run

•Static Analysis•Input : Sacinp. for static

Dynsef* from superelement•Output : Sacilist

Saccsf*Sac runSea oci

Static Running

Dynamic Running

•Extrac Mode Shape ( Dyamic Analysis )•Input : Sacinp. for dynamic

Dyninp for dynamic•Output : Dynlist

Dynmass*Dynmod*Dyn runSeaociPSVDB

•Earthquake Analysis•Input : Dyrinp for DLE

Dynmass* from dynamicDynmod* from dynamicSaccsf from static

•Output : DyrlistDyrcsf*Dyr run

•Joint Punching Shear Stress•Input : Jcpinp for joint can

Dyrcsf* from DLE•Output : Jcnlist

Jcn run•Element Stress Code Check•Input : Pstinp for post

Dyrcsf* from DLE•Output : Pstlist

Pstcsf*

Pst run

PERIODE STRUKTUR•Bracing K

SACS IV-FREQUENCIES AND GENERALIZED MASSMODE FREQ.(CPS) GEN. MASS EIGENVALUE PERIOD(SECS)1 0.533041 2.3700202E+03 8.9149687E-02 1.87603012 0.559257 2.4402986E+03 8.0987303E-02 1.78808583 0.962771 4.0619608E+03 2.7327165E-02 1.03866904 1.785738 2.0124489E+03 7.9433696E-03 0.55999265 1.921011 3.1009715E+03 6.8640489E-03 0.5205591

•Bracing ASACS IV-FREQUENCIES AND GENERALIZED MASS

MODE FREQ.(CPS) GEN. MASS EIGENVALUE PERIOD(SECS)1 0.165073 2.0426516E+03 9.2958055E-01 6.05791812 0.324209 1.4516799E+03 2.4098565E-01 3.08443393 0.513409 1.8028858E+03 9.6097746E-02 1.94776474 0.592332 2.3107117E+03 7.2195350E-02 1.68824125 1.003823 1.9191291E+03 2.5137725E-02 0.9961916

PERIODE STRUKTUR•Bracing N

SACS IV-FREQUENCIES AND GENERALIZED MASSMODE FREQ.(CPS) GEN. MASS EIGENVALUE PERIOD(SECS)1 0.500275 3.1642266E+03 1.0120996E-01 1.99890202 0.553110 3.1646859E+03 8.2797641E-02 1.80796023 0.904124 4.2226419E+03 3.0987333E-02 1.10604294 1.660313 2.2150302E+03 9.1888358E-03 0.60229625 1.847703 2.8143949E+03 7.4195204E-03 0.5412125

• Bracing XSACS IV-FREQUENCIES AND GENERALIZED MASS

MODE FREQ.(CPS) GEN. MASS EIGENVALUE PERIOD(SECS)1 0.540079 3.2529741E+03 8.6841232E-02 1.85158172 0.564125 3.2148575E+03 7.9595680E-02 1.77265673 1.058487 3.0084275E+03 2.2608370E-02 0.94474484 1.987788 2.7946695E+03 6.4106186E-03 0.50307175 2.511923 2.7486592E+03 4.0144652E-03 0.3981014

Base Shear Bracing A ( 37747.123 Kn )PGA 0,05** X-DIRECTION BASE SHEAR = 0.102E+04 KN ** Y-DIRECTION BASE SHEAR = 0.149E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.671E+05 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.380E+05 KN-M

PGA 0,2** X-DIRECTION BASE SHEAR = 0.407E+04 KN ** Y-DIRECTION BASE SHEAR = 0.596E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.268E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.152E+06 KN-M

PGA 0,4** X-DIRECTION BASE SHEAR = 0.815E+04 KN ** Y-DIRECTION BASE SHEAR = 0.119E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.537E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.304E+06 KN-M

PGA 0,5** X-DIRECTION BASE SHEAR = 0.102E+05 KN ** Y-DIRECTION BASE SHEAR = 0.149E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.671E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.380E+06 KN-M

Base Shear Bracing K ( 36439.858 Kn )PGA 0,05** X-DIRECTION BASE SHEAR = 0.224E+04 KN ** Y-DIRECTION BASE SHEAR = 0.227E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.120E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.113E+06 KN-M

PGA 0,2** X-DIRECTION BASE SHEAR = 0.896E+04 KN ** Y-DIRECTION BASE SHEAR = 0.909E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.479E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.454E+06 KN-M

PGA 0,4** X-DIRECTION BASE SHEAR = 0.179E+05 KN ** Y-DIRECTION BASE SHEAR = 0.182E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.959E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.907E+06 KN-M

PGA 0,5** X-DIRECTION BASE SHEAR = 0.224E+05 KN ** Y-DIRECTION BASE SHEAR = 0.227E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.120E+07 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.113E+07 KN-M

Base Shear Bracing N ( 36439.858 Kn )PGA 0,05** X-DIRECTION BASE SHEAR = 0.212E+04 KN ** Y-DIRECTION BASE SHEAR = 0.221E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.116E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.109E+06 KN-M

PGA 0,2** X-DIRECTION BASE SHEAR = 0.391E+04 KN ** Y-DIRECTION BASE SHEAR = 0.794E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.416E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.200E+06 KN-M

PGA 0,4** X-DIRECTION BASE SHEAR = 0.170E+05 KN ** Y-DIRECTION BASE SHEAR = 0.177E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.927E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.872E+06 KN-M

PGA 0,5** X-DIRECTION BASE SHEAR = 0.212E+05 KN ** Y-DIRECTION BASE SHEAR = 0.221E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.116E+07 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.109E+07 KN-M

Base Shear Bracing X ( 42225.354 Kn )PGA 0,05** X-DIRECTION BASE SHEAR = 0.243E+04 KN ** Y-DIRECTION BASE SHEAR = 0.262E+04 KN ** X-DIRECTION OVERTURNING MOMENT = 0.132E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.123E+06 KN-M

PGA 0,2** X-DIRECTION BASE SHEAR = 0.973E+04 KN ** Y-DIRECTION BASE SHEAR = 0.105E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.530E+06 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.492E+06 KN-M

PGA 0,4** X-DIRECTION BASE SHEAR = 0.195E+05 KN ** Y-DIRECTION BASE SHEAR = 0.210E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.106E+07 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.984E+06 KN-M

PGA 0,5** X-DIRECTION BASE SHEAR = 0.243E+05 KN ** Y-DIRECTION BASE SHEAR = 0.262E+05 KN ** X-DIRECTION OVERTURNING MOMENT = 0.132E+07 KN-M ** Y-DIRECTION OVERTURNING MOMENT = 0.123E+07 KN-M

Bracing K, Static V Dynamic

UC Seismic 0,24UC Static 0,16

Hasil UC Max 4 PGABracing A Bracing K Bracing N Bracing X

PGA UC Max0.05 0.91 0.24 0.29 0.250.2 1.54 0.68 0.67 0.60.4 2.38 1.3 1.3 1.140.5 3.4 3.3 3.31 1.42

Kontrol- Gaya yang terjadi : 20395200 N- Tegangan yang terjadi :- Aksial : 259 N/mm- Bending Y : 19,52 N/mm- Bending X : 61,90 N/mm

LG5

- Perencanaan Batang Tubular :- Fy = 2339,28 Kg / cm2 - r = 0,35 D = 46,672 cm- D = 133,350 cm - E = 2000000 kg/cm2- T = 1,905 cm - D/T = 70- A = 797,66 cm - kl/r = 39,574- I = 866600 cm4- k = 1- l = 1847 cm

1. Tarik AksialTegangan Tarik Ijin ( Ft ) = 0,6 x Fy = 1403,568 kg/cm2

2. Tekan Aksial, untuk D/T > 60 Fy diganti oleh Fxe yaitu :Fxe = 2 x 0,3 x E x ( T/D)

= 1,714 x 10^4 kg / cm2

Cc = 117,488 > kl/r = 39,574 maka fa pake rumus diatasfa = 1,308 x 10^3 kg/cm2

3. Bending 1500/36 < 70 < 3000/3641,67 < 70 < 83,34

( oke )

Maka dipakai Fb seperti rumus diatas, Fb = 1,632 x 10^3 kg/cm2

4. Kontrol UC

menghasilkan 1,37 < 1,00Terjadi selisih 0,05 dari UC SACS 5.2.

Output SACS :

MAX. DIST EFFECTIVE CM

GRUP CRITICAL LOAD UNITY FROM * APPLIED STRESSES *

ID MEMBER COND CHECK END AXIAL BEND-Y BEND-Z

M N/MM2 N/MM2 N/MM2

LG5 499L-599L 2 1.42 16.4 -259.26 19.52 61.90

Sambungan Las

Gaya Geser yang terjadi ( Fz ) = 7,6 Kn = 760 KgTegangan yang dipikul =

√ IPB2 + OPB2 = √ 1.492 + 4.692

= 4,92 N/mm2Member detail yang berada pada joint 499L

antara lain :HBE = OD : 66,040 cm / WT : 1,905 cmDB2 = OD : 91,440 cm / WT : 2,540 cmLG2 = OD : 139,70 cm / WT : 5,080 cmLuas Permukaan DB2 = 729,289 cm2

* ACTING STRESSES **** PUNCHING SHEAR COMMON CHORD BRACE *CHORD** BRACE * ALLOWABLE

STRESSES

JOINT JOINT JOINT SRSS FA OPB IPB FA OPB IPB

**** (N/MM2) **** ** (N/MM2) **

499L 399L 381L 79.22 42.94 1.49 4.69 54.70 93.90 168.78

85.63 -48.16 1.49 4.69 51.32 89.84 167.49

Tebal Plat ( t ) Tebal Las ( a )

< 6,4 mm a < t

> 6,4 mm a < ( t - 1,6 mm )

Syarat Ketebalan Las

Syarat Ketebalan Maksimum

Perhitungan- Gaya Geser yang terjadi = 4,92 x 72928,9 = 358810,188 N = 35881 Kg- Panjang Bidang Las = 287, 12 cm- Tebal Bidang Las = 2 cm- Digunakan, a = 1,84 cm

- te = 0,707 a = 1,3008

Kekuatan Nominal LasMutu las Fe70xxKuat tarik min = 70 Ksi = 4921 Kg/cm2φ = 0,75

Kuat Sambungan Las per cm 1cm las = Ru = φ x 0,6 x fu x te

= 2880,73 kg/cmKontrol Kekuatan

Kekuatan Las > Gaya 287,12 x 2880,73 kg/cm 35881 kg

827116 kg > 35881 kg ( oke )Ratio : 0,043

PondasiData Tanah

RumusQd = Qf + Qp

2 3= kel*kedalaman*friction + Ap*Unit end

2 3

Kedalaman TanahJENIS TANAH

Unit Skin Unit End

( cm ) Friction ( Mpa ) Bearing (MPa )

0 Very Soft Clay 0.6894 0350.75 Very Soft Clay 0.6894 0991.25 Firm Clay 4.8258 02013 Very Stiff Clay 6.894 198.54722867 Very Stiff to Hard Clay 6.894 155.1154880 Very Stiff to Hard Clay 6.894 124.092

14884 Very Stiff to Hard Clay 30.3336 333.6696

Pondasi menggunakan D : 127 cmT : 5,08 cmAp = 3,14* 127 * 5,08 = 2025,802 cm2Kel = 3,14 * 127 = 398,78 cm

Kedalaman Tanah QP QS QL

( cm ) Kn Kn Kn

0 0 0 0

350.75 0 96427.82 32142.61

991.25 0 1329027 443008.9

2013 402217.394 4138011 1580446

2867 314232.339 6485819 2319056

4880 251385.871 12019937 4132339

14884 675948.676 1.33E+08 44682192

Untuk Beban AksialPlatform X : 42226 Kn- Digunakan Pile

dengan Kedalaman3,5 meter

KESIMPULAN Dan SARAN

Kesimpulan1. Parameter kekakuan bangunan baja untuk lepas pantai juga dapat dilihat

dari periode struktur yang terjadi, semakin besar periode maka semakin elastis struktur tersebut dan memiliki kekuatan yang semakin kecil pula. Pada offshore structure, periode yang diijinkan adalah 1,0-3,0 detik

2. Untuk perencanaan plaform dengan PGA dibawah 0,4 sebaiknya melakukan pemilihan antara platform bracing K, N, dan X.

Saran1. Untuk kawasan Indonesia, platform K, N, dan X dapat dipertimbangkan

karena maksimum PGA Indonesia 0,36 2. Untuk pemilihan bracing, disarankan agar melakukan beberapa analisis

lanjutan agar diperoleh hasil yang paling maksimal. 3. Adakalanya bangunan lepas pantai juga diajarkan di dalam perkuliahan

teknik sipil, agar untuk dunia pekerjaan para alumnus teknik sipil juga dapat berkecimpung di dunia oil and gas.

TERIMA KASIH