70
Lecture 2 Thur. 8.27.2015 Analysis of 1D 2-Body Collisions (Ch. 3 to Ch. 5 of Unit 1) Review of elastic Kinetic Energy ellipse geometry The X2 Superball pen launcher * Perfectly elastic “ka-bong” velocity amplification effects (Faux-Flubber) Geometry of X2 launcher bouncing in box Independent Bounce Model (IBM) Geometric optimization and range-of-motion calculation(s) Integration of (V 1 ,V 2 ) data to space-time plots (y 1 (t),t) and (y 2 (t),t) plots Integration of (V 1 ,V 2 ) data to space-space plots (y 1 , y 2 ) Multiple collisions calculated by matrix operator products Matrix or tensor algebra of 1-D 2-body collisions Ellipse rescaling-geometry and reflection-symmetry analysis Rescaling KE ellipse to circle How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12 *Launch Superball Collision Simulator http://www.uark.edu/ua/modphys/markup/BounceItWeb.html 1 Friday, August 28, 2015

Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Lecture 2 Thur. 8.27.2015

Analysis of 1D 2-Body Collisions(Ch. 3 to Ch. 5 of Unit 1)

Review of elastic Kinetic Energy ellipse geometryThe X2 Superball pen launcher *

Perfectly elastic “ka-bong” velocity amplification effects (Faux-Flubber)

Geometry of X2 launcher bouncing in boxIndependent Bounce Model (IBM)Geometric optimization and range-of-motion calculation(s)Integration of (V1,V2) data to space-time plots (y1(t),t) and (y2(t),t) plotsIntegration of (V1,V2) data to space-space plots (y1, y2)

Multiple collisions calculated by matrix operator products Matrix or tensor algebra of 1-D 2-body collisions

Ellipse rescaling-geometry and reflection-symmetry analysisRescaling KE ellipse to circle

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12

*Launch Superball Collision Simulator http://www.uark.edu/ua/modphys/markup/BounceItWeb.html

1Friday, August 28, 2015

Page 2: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

VVW

100

110

120

-120

(60,10)

Initial-point

Final“Ka-Bong”-point

a=√=60.21

2·KE

MSUV

b=√=120.42

2·KEmVW

Elastic

Kinetic

Energy

ellipse

(KE=7,250)

Momentum

PTotal=250

line

(50,50)

(40,90)

MSUV=4M

SUV=4

mVW=1m

VW=1

VSUV

Fig. 3.1 ain Unit 1

a=√=55.9

2·IE

MSUV

b=√=111.8

2·IEmVW

COM

Energy

ellipse

(ECOM=1,000)

elastic

FIN

IN

inlastic

FIN is

VCOM

point

Inelastic

Kinetic

Energy

ellipse

(IE=6,250)

Fig. 3.1 bin Unit 1

Review of elastic Kinetic Energy ellipse geometry

2Friday, August 28, 2015

Page 3: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcher

The X-2 Pen launcher and Superball Collision Simulator*

*Launch Superball Collision Simulator http://www.uark.edu/ua/modphys/markup/BounceItWeb.html

3Friday, August 28, 2015

Page 4: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axisVym2

m1 Velocity axisVym1

(0,0)

Bang-1(01)INIT point at(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

Bang-1(01)FINAL point(+1.0,-1.0)

This 1st bang is a floor-bounce ofM1 off very massive plate/Earth M0

2.02.01st bang:mass (M0)vs. mass (M1)

2nd or 3rd bangs:mass (M1) vs. mass (M2)

1st bang:M1 off floor

*Launch Superball Collision Simulator http://www.uark.edu/ua/modphys/markup/BounceItWeb.html

4Friday, August 28, 2015

Page 5: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axisVym2

m1 Velocity axisVym1

(0,0)

Bang-1(01)INIT point at(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

Bang-1(01)FINAL point(+1.0,-1.0)

This 1st bang is a floor-bounce ofM1 off very massive plate/Earth M0

2.02.01st bang:mass (M0)vs. mass (M1)

2nd or 3rd bangs:mass (M1) vs. mass (M2)

M1 mirror reflection

thru m2 axis

1st bang:M1 off floor

5Friday, August 28, 2015

Page 6: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axisVym2

m1 Velocity axisVym1

(0,0)

Bang-1(01)INIT point at(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

Bang-1(01)FINAL point(+1.0,-1.0)

This 1st bang is a floor-bounce ofM1 off very massive plate/Earth M0

2.02.01st bang:mass (M0)vs. mass (M1)

2nd or 3rd bangs:mass (M1) vs. mass (M2)

M1 mirror reflection

thru m2 axis

1st bang:M1 off floor

2nd bang:m2 off M1

*Launch Superball Collision Simulator http://www.uark.edu/ua/modphys/markup/BounceItWeb.html

6Friday, August 28, 2015

Page 7: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axisVym2

m1 Velocity axisVym1

(0,0)

Bang-1(01)INIT point at(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

Bang-1(01)FINAL point(+1.0,-1.0)

This 1st bang is a floor-bounce ofM1 off very massive plate/Earth M0

2.02.01st bang:mass (M0)vs. mass (M1)

2nd or 3rd bangs:mass (M1) vs. mass (M2)

M1 mirror reflection

thru m2 axis

1st bang:M1 off floor

2nd bang:m2 off M1

3rd bang:m2 off ceiling

7Friday, August 28, 2015

Page 8: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kg

bounce

plate

bounce

plate

RRrr

d

Superball

penetration

depth

r2

2Rd=

SuperballSuperball

ballpoint

pen

M2=10gm

ballpoint

pen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axis

Vym2

m1 Velocity axis

Vym1

(0,0)

Bang-1(01)

INIT point at

(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

INITIAL

FINAL (Elastic)

0 V1

(b)

M1<<M

0

V0

FINAL

(Totally Inelastic)COM

FI

top of a very long ellipse

Fig. 4.2bin Unit 1(slightly modified)

Bang-1(01)

FINAL point

(+1.0,-1.0)

This 1st bang is a floor-bounce of

M1off very massive plate/Earth M

0

2.02.01st bang:

mass (M0)vs. mass (M

1)

2nd or 3rd bangs:

mass (M1) vs. mass (M

2)

V1

V0Very skinny Energy ellipse for M0>>M1

M1 mirror reflection

thru m2 axis

1st bang:M1 off floor

2nd bang:m2 off M1

3rd bang:m2 off ceiling

1st bang M1 off floor “skinny-ellipse” 8Friday, August 28, 2015

Page 9: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kg

bounce

plate

bounce

plate

RRrr

d

Superball

penetration

depth

r2

2Rd=

SuperballSuperball

ballpoint

pen

M2=10gm

ballpoint

pen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axis

Vym2

m1 Velocity axis

Vym1

(0,0)

Bang-1(01)

INIT point at

(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

INITIAL

FINAL (Elastic)

0 V1

(b)

M1<<M

0

V0

FINAL

(Totally Inelastic)COM

FI

top of a very long ellipse

INITIAL

FINAL (Elastic)

0 V1

COM

(a)

M1>>M

2

V2

FINAL

(Totally Inelastic)

F0

I0

(+) side of a

very tall

ellipse

(-) side of a

very tall

ellipse

Fig. 4.2bin Unit 1(slightly modified)

Bang-1(01)

FINAL point

(+1.0,-1.0)

This 1st bang is a floor-bounce of

M1off very massive plate/Earth M

0

Fig. 4.2ain Unit 1(slightly modified)

Later is a ceiling-bounce of

M2off ceiling/Earth M

1

2.02.01st bang:

mass (M0)vs. mass (M

1)

2nd or 3rd bangs:

mass (M1) vs. mass (M

2)

Later:

V1

V0Very skinny Energy ellipse for M0>>M1

M1 mirror reflection

thru m2 axis

1st bang:M1 off floor

2nd bang:m2 off M1

3rd bang:m2 off ceiling

1st bang M1 off floor “skinny-ellipse” 9Friday, August 28, 2015

Page 10: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kg

bounce

plate

bounce

plate

RRrr

d

Superball

penetration

depth

r2

2Rd=

SuperballSuperball

ballpoint

pen

M2=10gm

ballpoint

pen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axis

Vym2

m1 Velocity axis

Vym1

(0,0)

Bang-1(01)

INIT point at

(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

INITIAL

FINAL (Elastic)

0 V1

(b)

M1<<M

0

V0

FINAL

(Totally Inelastic)COM

FI

top of a very long ellipse

INITIAL

FINAL (Elastic)

0 V1

COM

(a)

M1>>M

2

V2

FINAL

(Totally Inelastic)

F0

I0

(+) side of a

very tall

ellipse

(-) side of a

very tall

ellipse

Fig. 4.2bin Unit 1(slightly modified)

Bang-1(01)

FINAL point

(+1.0,-1.0)

This 1st bang is a floor-bounce of

M1off very massive plate/Earth M

0

Fig. 4.2ain Unit 1(slightly modified)

Later is a ceiling-bounce of

M2off ceiling/Earth M

1

2.02.01st bang:

mass (M0)vs. mass (M

1)

2nd or 3rd bangs:

mass (M1) vs. mass (M

2)

Later:

V1

V0Very skinny Energy ellipse for M0>>M1

V0

V2

M1 mirror reflection

thru m2 axis

1st bang:M1 off floor

2nd bang:m2 off M1

3rd bang:m2 off ceiling

1st bang M1 off floor “skinny-ellipse” 10Friday, August 28, 2015

Page 11: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometry of X2 launcher bouncing in boxIndependent Bounce Model (IBM)Geometric optimization and range-of-motion calculation(t)Integration of (V1,V2) data to space-time plots (y1(t),t) and (y2(t),t) plotsIntegration of (V1,V2) data to space-space plots (y1, y2)

11Friday, August 28, 2015

Page 12: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kg

bounce

plate

bounce

plate

RRrr

d

Superball

penetration

depth

r2

2Rd=

SuperballSuperball

ballpoint

pen

M2=10gm

ballpoint

pen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axis

Vym2

m1 Velocity axis

Vym1

(0,0)

Bang-1(01)

INIT point at

(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

Bang-1(01)

FINAL point

(+1.0,-1.0)

This 1st bang is a floor-bounce of

M1off very massive plate/Earth M

0

2.02.01st bang:

mass (M0)vs. mass (M

1)

-7

+1

1.0

1.0

0.5

2.0

m1 Velocity axis

Vym1

(0,0)

COM-point at

(0.75,0.75))

-1.0

Bang-2(12)

INIT point at

(+1.0,-1.0)

Bang-2(12)

FINAL point

(0.5,2.5)

(b)Bang-2(12)

2nd bang:

(M1)vs.(M

2)

M1 mirror reflection

thru m2 axis

12Friday, August 28, 2015

Page 13: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometry of X2 launcher bouncing in boxIndependent Bounce Model (IBM)Geometric optimization and range-of-motion calculation(s)Integration of (V1,V2) data to space-time plots (y1(t),t) and (y2(t),t) plotsIntegration of (V1,V2) data to space-space plots (y1, y2)

13Friday, August 28, 2015

Page 14: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

Fig. 4.5ain Unit 1Start at

(1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0 C

L

P

L is 15::1

P is 7::1C is 4::1

Line CPLis elastic collisionfinal pt. locus fordifferentmomentumslopesormassratiosM1::M2

M2 Velocity axisV2

M1 Velocity axis V1(0,0)

3.0

Bang-2(12)FINALpoints

(a)

14Friday, August 28, 2015

Page 15: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

Fig. 4.5a-bin Unit 1Start at

(1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0 C

L

P

L is 15::1

P is 7::1C is 4::1

Line CPLis elastic collisionfinal pt. locus fordifferentmomentumslopesormassratiosM1::M2

1.0

1.0

-1.0

0.5

2.0 C

L

P

L is 15::1

P is 7::1C is 4::1

II iiss 11::::00oorr ∞∞::::11II

MM iiss 33::::11

MM

3.0M2 Velocity axisV2

M2 Velocity axisV2

M1 Velocity axis V1 M1 Velocity axis V1(0,0) (0,0)

3.0

D is 2::1

Uis 1::1

Bang-2(12)FINALpoints

(a) (b)

-1.0

U2

U1

15Friday, August 28, 2015

Page 16: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometry of X2 launcher bouncing in boxIndependent Bounce Model (IBM)Geometric optimization and range-of-motion calculation(s)Integration of (V1,V2) data to space-time plots (y1(t),t) and (y2(t),t) plotsIntegration of (V1,V2) data to space-space plots (y1, y2)

16Friday, August 28, 2015

Page 17: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Geometric “Integration” (Converting Velocity data to Spacetime)

17Friday, August 28, 2015

Page 18: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Geometric “Integration” (Converting Velocity data to Spacetime)

18Friday, August 28, 2015

Page 19: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Geometric “Integration” (Converting Velocity data to Spacetime)

Until you specifyinitial conditions y0(t0)…

...you don’t know whatvy-line to use

19Friday, August 28, 2015

Page 20: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y

(a) Vy2vs. V

y1Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Geometric “Integration” (Converting Velocity data to Spacetime)

Fig. 4.6a-bin Unit 1

Until you specifyinitial conditions y0(t0)…

...you don’t know whichvy-lines to use

initial conditions y1(0)

...and y2(0)

20Friday, August 28, 2015

Page 21: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y

(a) Vy2vs. V

y1Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Geometric “Integration” (Converting Velocity data to Spacetime)

Fig. 4.6a-bin Unit 1

Until you specifyinitial conditions y0(t0)…

...you don’t know whichvy-lines to use

initial conditions y1(0)

...and y2(0)

21Friday, August 28, 2015

Page 22: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y

(a) Vy2vs. V

y1Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Geometric “Integration” (Converting Velocity data to Spacetime)

Fig. 4.6a-bin Unit 1

Until you specifyinitial conditions y0(t0)…

...you don’t know whichvy-lines to use

initial conditions y1(0)

...and y2(0)

22Friday, August 28, 2015

Page 23: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y

(a) Vy2vs. V

y1Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Geometric “Integration” (Converting Velocity data to Spacetime)

Fig. 4.6a-bin Unit 1

Until you specifyinitial conditions y0(t0)…

...you don’t know whichvy-lines to use

initial conditions y1(0)

...and y2(0)

23Friday, August 28, 2015

Page 24: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y

(a) Vy2vs. V

y1Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Geometric “Integration” (Converting Velocity data to Spacetime)

Fig. 4.6a-bin Unit 1

Until you specifyinitial conditions y0(t0)…

...you don’t know whichvy-lines to use

initial conditions y1(0)

...and y2(0)

24Friday, August 28, 2015

Page 25: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ceiling at y=7.1

Time

t-axis

Height

y-axisVy1

Vy2

1.0

1.0

-1.0

0.5

Velocity Vy2vs. V

y1Plot

Position y vs. Time t Plot

Vy1=+1.0

Vy2=-0.5

means M1is

somewhere

on some path of slope +1.0

slope

1/1=+11

1

slope

-0.5/1=-0.5-0.5

1means M

2is

somewhere

on some path of slope -0.5

Floor at y=0

-0.5

1

y

-0.5

+1.0

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y

(a) Vy2vs. V

y1Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Geometric “Integration” (Converting Velocity data to Spacetime)

Fig. 4.6a-bin Unit 1

Until you specifyinitial conditions y0(t0)…

...you don’t know whichvy-lines to use

initial conditions y1(0)

...and y2(0)

25Friday, August 28, 2015

Page 26: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t

(b)

M2

slope

-2.5

26Friday, August 28, 2015

Page 27: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t Bang-1(01)

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Bang-8(20)

Bang-9(12)

Time t

Floor at y=0

Ceiling at y=7

y

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-1(01)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Vy1

Vy2

(b)

(c)

(d)

M2

slope

-2.5

Fig. 4.7a-din Unit 1

Kinetic Energy Ellipse

KE = 12

M1V12 + 1

2M 2V2

2 =12

+ 72= 4

1 = V12

2KE /M1

+V2

2

2KE /M 2

=x1

2

a12 +

x22

a22

27Friday, August 28, 2015

Page 28: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t Bang-1(01)

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Bang-8(20)

Bang-9(12)

Time t

Floor at y=0

Ceiling at y=7

y

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-1(01)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Vy1

Vy2

(b)

(c)

(d)

M2

slope

-2.5

Fig. 4.7a-din Unit 1

Kinetic Energy Ellipse

KE = 12

M1V12 + 1

2M 2V2

2 =72

+ 12= 4

1 = V12

2KE /M1

+V2

2

2KE /M 2

=x1

2

a12 +

x22

a22

Ellipse radius 1

a1 = 2KE /M1

Ellipse radius 2

a2 = 2KE /M1

28Friday, August 28, 2015

Page 29: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t Bang-1(01)

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Bang-8(20)

Bang-9(12)

Time t

Floor at y=0

Ceiling at y=7

y

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-1(01)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Vy1

Vy2

(b)

(c)

(d)

M2

slope

-2.5

Fig. 4.7a-din Unit 1

Kinetic Energy Ellipse

KE = 12

M1V12 + 1

2M 2V2

2 =72

+ 12= 4

1 = V12

2KE /M1

+V2

2

2KE /M 2

=x1

2

a12 +

x22

a22

Ellipse radius 1

a1 = 2KE /M1

= 2KE /7

= 8/7 = 1.07

Ellipse radius 2

a2 = 2KE /M1

= 2KE /1

= 8/1 = 2.83

29Friday, August 28, 2015

Page 30: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Spacetime)

27825

Start Start

∞ ?

Start

4PenV2

BallV1

ErgodicFill-inat t=∞ ?

(a) (b) (c)

Fig. 4.9in Unit 1

Fig. 4.8in Unit 1

30Friday, August 28, 2015

Page 31: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometry of X2 launcher bouncing in boxIndependent Bounce Model (IBM)Geometric optimization and range-of-motion calculation(t)Integration of (V1,V2) data to space-time plots (y1(t),t) and (y2(t),t) plotsIntegration of (V1,V2) data to space-space plots (y1, y2)

31Friday, August 28, 2015

Page 32: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

v(2)

Bang-1(01)

Start0 at

(y1(0)=1,y2(0)=3)

v(0)v(1)

Collisionliney 2=y 1

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

m2

Velocity axis

Vym2

m1

Velocity axis

Vym1

m1-Height

y1-axis

Ceilingaty1=7

Floor at y2=0.0

Flooraty1=0.0

1.0 2.0 3.0 4.0 5.0 6.0

1.0

2.0

3.0

4.0

5.0

6.0

Ceiling at y2=7

m2-Height

y2-axis

Bang-2(12)Bang-1(01)

Start0 at

(V1(0)=1, V2(0)=3)

v(1)v(0)

v(2)

Step-0: At starting position y(0)=(1,3) draw initial velocity v(0)=(-1,-1) line.Step-1: Extend v(0) line to floor point y(0)=(0,?) and draw Bang-1

(01)

velocity v(1)=(1,-1) line. (Find v(1) using V-V plot.)Step-2: Extend v(1) line to collision point y(0)=(?,?) and draw Bang-2

(12)

velocity v(2)=(0.5,2.5). (Find v(2) using V-V plot.)

Geometric “Integration” (Converting Velocity data to Space-space trajectory)

Fig. 4.11in Unit 1

32Friday, August 28, 2015

Page 33: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Bang-1(01)

Start0 at

(y1(0)=1,y2(0)=3)

Collisionliney 2=y 1

Bang-2(12)

Bang-3(20)

v(3)

v(4)

Bang-4(12)

v(2)

m2-Height

y2-axis

Ceiling at y2=7.1

v(5)

Bang-5(20)

Bang-6(12)

v(3)

v(4)

m1

Velocity axis

Vym1

Ceilingaty1=7.1

Floor at y2=0.0

Flooraty1=0.0

1.0 2.0 3.0 4.0 5.0 6.0

1.0

2.0

3.0

4.0

5.0

6.0

m1-Height

y1-axis

Step-2: Extend v(2) line to ceiling point y(3)=(?,7.1) and draw Bang-3(20)

velocity v(3)=(1,-1) line. (Find v(3) using V-V plot.)Step-3: Extend v(3) line to collision point y(4)=(?,?) and draw Bang-4

(12)

velocity v(4)=(0.5,2.5). (Find v(4) using V-V plot.)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-4(12)

m2 Velocity axis

Vym2

Step-5: Extend v(5) line to collision point y(6)=(?,?) and draw Bang-6(12)

velocity v(6)=(0.5,2.5). (Find v(6) using V-V plot.)

Step-4: Extend v(4) line to ceiling point y(4)=(?,7.1) and draw Bang-5(20)

velocity v(5)=(1,-1) line. (Find v(5) using V-V plot.)

v(5)

Geometric “Integration” (Converting Velocity data to Space-space trajectory)

Fig. 4.11in Unit 1

33Friday, August 28, 2015

Page 34: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Space-time trajectory)

Start at(1.0,-1.0)

1.0

1.0

-1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2.0

-3.0

-4.0

-5.0

-6.0

Bang-1(01)

Bang-1(01)

Bang-2(12)

Bang-4(12)

Bang-6(12)

m2 Velocity axisVym2

m1 Velocity axis Vym1

81012 14

16

18

7 9 111315 17 19

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-6(12)

810

12

5

7

9

5

-5

Bang-3(20)

m1 = 49

m2 = 1

1113

Fig. 5.1in Unit 1

Example with masses: m1=49 and m2=1

34Friday, August 28, 2015

Page 35: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Geometric “Integration” (Converting Velocity data to Space-time trajectory)

Start at(1.0,-1.0)

1.0

1.0

-1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2.0

-3.0

-4.0

-5.0

-6.0

Bang-1(01)

Bang-1(01)

Bang-2(12)

Bang-4(12)

Bang-6(12)

m2 Velocity axisVym2

m1 Velocity axis Vym1

81012 14

16

18

7 9 111315 17 19

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-6(12)

810

12

5

7

9

5

-5

Bang-3(20)

m1 = 49

m2 = 1

1113

Fig. 5.1in Unit 1

Example with masses: m1=49 and m2=1Kinetic Energy Ellipse

KE = 12

m1V12 + 1

2m2V2

2 =492

+ 12= 25

1 = V12

2KE /m1

+V2

2

2KE /m2

=x1

2

a12 +

x22

a22

Ellipse radius 1

a1 = 2KE /M1

= 2KE /49

= 50/49 = 1.01

Ellipse radius 2

a2 = 2KE /m2

= 2KE /1

= 50/1 = 7.07

35Friday, August 28, 2015

Page 36: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple collisions calculated by matrix operator products Matrix or tensor algebra of 1-D 2-body collisions“Mass-bang” matrix M, “Floor-bang” matrix F, “Ceiling-bang” matrix C.Geometry and algebra of “ellipse-Rotation” group product: R= C•M

36Friday, August 28, 2015

Page 37: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

M =

m1 −m2

m1 +m2

2m2

m1 +m2

2m1

m1 +m2

m2 −m1

m1 +m2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Matrix operations include...Floor bounce F of m1: Mass collision M of m1 and m2 : Ceiling bounce C of m2:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

C = 1 00 −1

⎛⎝⎜

⎞⎠⎟

Let: m1=49 and m2=1 M = 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟

Define a “rotation” R as group product: R= C•M = 1 00 −1

⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

37Friday, August 28, 2015

Page 38: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

Matrix operations include...Floor bounce F of m1: Mass collision M of m1 and m2 : Ceiling bounce C of m2:

Let: m1=49 and m2=1

Define a “rotation” R as group product: R= C•M

38Friday, August 28, 2015

Page 39: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

Matrix operations include...Floor bounce F of m1: Mass collision M of m1 and m2 : Ceiling bounce C of m2:

Let: m1=49 and m2=1

Define a “rotation” R as group product: R= C•M

39Friday, August 28, 2015

Page 40: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

M =

m1 −m2

m1 +m2

2m2

m1 +m2

2m1

m1 +m2

m2 −m1

m1 +m2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Matrix operations include...Floor bounce F of m1: Mass collision M of m1 and m2 : Ceiling bounce C of m2:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

C = 1 00 −1

⎛⎝⎜

⎞⎠⎟

Let: m1=49 and m2=1 M = 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟

Define a “rotation” R as group product: R= C•M = 1 00 −1

⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

40Friday, August 28, 2015

Page 41: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple collisions calculated by matrix operator products Matrix or tensor algebra of 1-D 2-body collisions“Mass-bang” matrix M, “Floor-bang” matrix F, “Ceiling-bang” matrix C.Geometry and algebra of “ellipse-Rotation” group product: R= C•M

41Friday, August 28, 2015

Page 42: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

Matrix operations include...Floor-bang F of m1:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

Define a “rotation” R as group product: R= C•M

42Friday, August 28, 2015

Page 43: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

Matrix operations include...Floor-bang F of m1: Ceiling-bang C of m2:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

C = 1 00 −1

⎛⎝⎜

⎞⎠⎟

Define a “rotation” R as group product: R= C•M

43Friday, August 28, 2015

Page 44: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

M =

m1 −m2

m1 +m2

2m2

m1 +m2

2m1

m1 +m2

m2 −m1

m1 +m2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Matrix operations include...Floor-bang F of m1: Mass-bang M of m1 and m2 : Ceiling-bang C of m2:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

C = 1 00 −1

⎛⎝⎜

⎞⎠⎟

Define a “rotation” R as group product: R= C•M

44Friday, August 28, 2015

Page 45: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

M =

m1 −m2

m1 +m2

2m2

m1 +m2

2m1

m1 +m2

m2 −m1

m1 +m2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Matrix operations include...Floor-bang F of m1: Mass-bang M of m1 and m2 : Ceiling-bang C of m2:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

C = 1 00 −1

⎛⎝⎜

⎞⎠⎟

Let: m1=49 and m2=1 M = 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟

Define a “rotation” R as group product: R= C•M = 1 00 −1

⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

45Friday, August 28, 2015

Page 46: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple collisions calculated by matrix operator products Matrix or tensor algebra of 1-D 2-body collisions“Mass-bang” matrix M, “Floor-bang” matrix F, “Ceiling-bang” matrix C.Geometry and algebra of “ellipse-Rotation” group product: R= C•M

46Friday, August 28, 2015

Page 47: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Multiple Collisions by Matrix Operator Products

v1FIN

v2FIN

⎝⎜⎜

⎠⎟⎟=

2VCOM − v1IN

2VCOM − v2IN

⎝⎜⎜

⎠⎟⎟=

T-Symmetry & Momentum Axioms give: VCOM = VFIN +V IN

2= m1v1 +m2v2

m1 +m2

Gives vFIN in terms of vIN...

2 m1v1IN +m2v2

IN

m1 +m2

− v1IN

2 m1v1IN +m2v2

IN

m1 +m2

− v2IN

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

m1v1IN −m2v1

IN + 2m2v2IN

2m1v1IN +m2v2

IN −m1v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

=

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1IN

v2IN

⎝⎜⎜

⎠⎟⎟

m1 +m2

Finally as a matrix operation: vFIN =M•vIN...

M =

m1 −m2

m1 +m2

2m2

m1 +m2

2m1

m1 +m2

m2 −m1

m1 +m2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Matrix operations include...Floor-bang F of m1: Mass-bang M of m1 and m2 : Ceiling-bang C of m2:

F = −1 00 1

⎛⎝⎜

⎞⎠⎟

C = 1 00 −1

⎛⎝⎜

⎞⎠⎟

Let: m1=49 and m2=1 M = 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟

Define “ellipse-Rotation” R as group product: R= C•M= 1 00 −1

⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.041.96 −0.96

⎛⎝⎜

⎞⎠⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

47Friday, August 28, 2015

Page 48: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

C • M • C • M • C • M • C • M • F IN 0FIN 9 =

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ −1 0

0 +1⎛⎝⎜

⎞⎠⎟

v1IN = −1

v2IN = −1

⎝⎜⎜

⎠⎟⎟

INITIAL (0)( )

48Friday, August 28, 2015

Page 49: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

C • M • C • M • C • M • C • M • F

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅v1 = 1v2 = −1

⎝⎜⎜

⎠⎟⎟

after Bang-1( )

R • R • R • R • F

IN 0

IN 0FIN 9 =

FIN 9 =

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ −1 0

0 +1⎛⎝⎜

⎞⎠⎟

v1IN = −1

v2IN = −1

⎝⎜⎜

⎠⎟⎟

INITIAL (0)( )

“ellipse-Rotation” group product: R= C•M

49Friday, August 28, 2015

Page 50: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

C • M • C • M • C • M • C • M • F

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅v1 = 1v2 = −1

⎝⎜⎜

⎠⎟⎟

after Bang-1( )

=v1 = 0.2925v2 = −6.768

⎝⎜⎜

⎠⎟⎟

after Bang-9( )

R • R • R • R • F

IN 0

IN 0FIN 9 =

FIN 9 =

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ −1 0

0 +1⎛⎝⎜

⎞⎠⎟

v1IN = −1

v2IN = −1

⎝⎜⎜

⎠⎟⎟

INITIAL (0)( )

“ellipse-Rotation” group product: R= C•M

50Friday, August 28, 2015

Page 51: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Start at(1.0,-1.0)

1.0

1.0

-1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2.0

-3.0

-4.0

-5.0

-6.0

Bang-1(01)

Bang-1(01)

Bang-2(12)

Bang-4(12)

Bang-6(12)

m2 Velocity axisVym2

m1 Velocity axis Vym1

81012 14

16

18

7 9 111315 17 19

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-6(12)

810

12

5

7

9

5

-5

Bang-3(20)

m1 = 49

m2 = 1

1113

C • M • C • M • C • M • C • M • F

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅v1 = 1v2 = −1

⎝⎜⎜

⎠⎟⎟

after Bang-1( )

=v1 = 0.2925v2 = −6.768

⎝⎜⎜

⎠⎟⎟

after Bang-9( )

R • R • R • R • F

IN 0

IN 0FIN 9 =

FIN 9 =

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ −1 0

0 +1⎛⎝⎜

⎞⎠⎟

v1IN = −1

v2IN = −1

⎝⎜⎜

⎠⎟⎟

INITIAL (0)( )

R

R

R

R

F

“ellipse-Rotation” group product: R= C•M

51Friday, August 28, 2015

Page 52: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Start at(1.0,-1.0)

1.0

1.0

-1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2.0

-3.0

-4.0

-5.0

-6.0

Bang-1(01)

Bang-1(01)

Bang-2(12)

Bang-4(12)

Bang-6(12)

m2 Velocity axisVym2

m1 Velocity axis Vym1

81012 14

16

18

7 9 111315 17 19

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-6(12)

810

12

5

7

9

5

-5

Bang-3(20)

m1 = 49

m2 = 1

1113

C • M • C • M • C • M • C • M • F

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅ 0.96 0.04−1.96 0.96

⎛⎝⎜

⎞⎠⎟

⋅v1 = 1v2 = −1

⎝⎜⎜

⎠⎟⎟

after Bang-1( )

=v1 = 0.2925v2 = −6.768

⎝⎜⎜

⎠⎟⎟

after Bang-9( )

R • R • R • R • F

IN 0

IN 0FIN 9 =

FIN 9 =

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ 1 0

0 −1⎛⎝⎜

⎞⎠⎟⋅ 0.96 0.04

1.96 −0.96⎛⎝⎜

⎞⎠⎟⋅ −1 0

0 +1⎛⎝⎜

⎞⎠⎟

v1IN = −1

v2IN = −1

⎝⎜⎜

⎠⎟⎟

INITIAL (0)( )

R

R

R

R

F

v1FIN−11

v2FIN−11

⎝⎜⎜

⎠⎟⎟= 0.96 0.04

−1.96 0.96⎛⎝⎜

⎞⎠⎟⋅

v1FIN−9

v2FIN−9

⎝⎜⎜

⎠⎟⎟

=v1 = 0.0100v2 = −7.071

⎝⎜⎜

⎠⎟⎟

after Bang-11( )

“ellipse-Rotation” group product: R= C•M

52Friday, August 28, 2015

Page 53: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling-geometry and reflection-symmetry analysisRescaling KE ellipse to circle

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12

53Friday, August 28, 2015

Page 54: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

54Friday, August 28, 2015

Page 55: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22

v1FIN1

v2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1v2

⎝⎜⎜

⎠⎟⎟

becomes: V1FIN1 / m1

V2FIN1 / m2

⎜⎜

⎟⎟ =

1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1 / m1

V2 / m2

⎝⎜⎜

⎠⎟⎟

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

55Friday, August 28, 2015

Page 56: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22

v1FIN1

v2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1v2

⎝⎜⎜

⎠⎟⎟

becomes: V1FIN1 / m1

V2FIN1 / m2

⎜⎜

⎟⎟ =

1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1 / m1

V2 / m2

⎝⎜⎜

⎠⎟⎟

or: V1FIN1

V2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

2 m1m2 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟=M i

V , or:

V1FIN2

V2FIN2

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

−2 m1m2 m1 −m2

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟= C iM i

V

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

56Friday, August 28, 2015

Page 57: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22

v1FIN1

v2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1v2

⎝⎜⎜

⎠⎟⎟

becomes: V1FIN1 / m1

V2FIN1 / m2

⎜⎜

⎟⎟ =

1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1 / m1

V2 / m2

⎝⎜⎜

⎠⎟⎟

or: V1FIN1

V2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

2 m1m2 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟=M i

V , or:

V1FIN2

V2FIN2

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

−2 m1m2 m1 −m2

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟= C iM i

V

Then collisions become reflections and double-collisions become rotations

where:

cosθ sinθsinθ −cosθ

⎝⎜⎞

⎠⎟cosθ sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

cosθ ≡ m1 −m2

m1 +m2

⎛⎝⎜

⎞⎠⎟

and: sinθ ≡2 m1m2

m1 +m2

⎝⎜⎞

⎠⎟ with: m1 −m2

m1 +m2

⎛⎝⎜

⎞⎠⎟

2

+2 m1m2

m1 +m2

⎝⎜⎞

⎠⎟

2

= 1

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

57Friday, August 28, 2015

Page 58: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22

v1FIN1

v2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1v2

⎝⎜⎜

⎠⎟⎟

becomes: V1FIN1 / m1

V2FIN1 / m2

⎜⎜

⎟⎟ =

1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1 / m1

V2 / m2

⎝⎜⎜

⎠⎟⎟

or: V1FIN1

V2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

2 m1m2 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟=M i

V , or:

V1FIN2

V2FIN2

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

−2 m1m2 m1 −m2

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟= C iM i

V

Then collisions become reflections and double-collisions become rotations

where:

cosθ sinθsinθ −cosθ

⎝⎜⎞

⎠⎟cosθ sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

cosθ ≡ m1 −m2

m1 +m2

⎛⎝⎜

⎞⎠⎟

and: sinθ ≡2 m1m2

m1 +m2

⎝⎜⎞

⎠⎟ with: m1 −m2

m1 +m2

⎛⎝⎜

⎞⎠⎟

2

+2 m1m2

m1 +m2

⎝⎜⎞

⎠⎟

2

= 1

Fig. 5.2a-c(revised)

θ=16.26°1

m1 - m2m1+m2 2√m1 m2

m1+m2

4850=

1450=

slope :

−m2

m1

= −17

slope :

+m2

m1

= +17

11

33

77

1177

1199

11331155

55

991111

2211

θ=16.26°V1

V2

[11]-tangent slope-√m1/√m2= -7

22

44

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

58Friday, August 28, 2015

Page 59: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22

v1FIN1

v2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

v1v2

⎝⎜⎜

⎠⎟⎟

becomes: V1FIN1 / m1

V2FIN1 / m2

⎜⎜

⎟⎟ =

1M

m1 −m2 2m2

2m1 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1 / m1

V2 / m2

⎝⎜⎜

⎠⎟⎟

or: V1FIN1

V2FIN1

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

2 m1m2 m2 −m1

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟=M i

V , or:

V1FIN2

V2FIN2

⎜⎜

⎟⎟= 1M

m1 −m2 2 m1m2

−2 m1m2 m1 −m2

⎝⎜⎜

⎠⎟⎟

V1

V2

⎝⎜⎜

⎠⎟⎟= C iM i

V

Then collisions become reflections and double-collisions become rotations

where:

cosθ sinθsinθ −cosθ

⎝⎜⎞

⎠⎟cosθ sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

cosθ ≡ m1 −m2

m1 +m2

⎛⎝⎜

⎞⎠⎟

and: sinθ ≡2 m1m2

m1 +m2

⎝⎜⎞

⎠⎟ with: m1 −m2

m1 +m2

⎛⎝⎜

⎞⎠⎟

2

+2 m1m2

m1 +m2

⎝⎜⎞

⎠⎟

2

= 1

Fig. 5.2a-c(revised)

θ=16.26°1

m1 - m2m1+m2 2√m1 m2

m1+m2

4850=

1450=

slope :

−m2

m1

= −17

slope :

+m2

m1

= +17

11

33

77

1177

1199

11331155

55

991111

2211

θ=16.26°V1

V2

[11]-tangent slope-√m1/√m2= -7

22

44

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

Note: If m1·m2 is perfect-square, then θ-triangle is rational (32+42=52, etc.)59Friday, August 28, 2015

Page 60: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22Then collisions become reflections and double-collisions become rotations

where:

cosθ sinθsinθ −cosθ

⎝⎜⎞

⎠⎟

cosθ ≡ m1 − m2

m1 + m2

⎛⎝⎜

⎞⎠⎟

and: sinθ ≡2 m1m2

m1 + m2

⎝⎜

⎠⎟ with: m1 − m2

m1 + m2

⎛⎝⎜

⎞⎠⎟

2

+2 m1m2

m1 + m2

⎝⎜

⎠⎟

2

= 1

Fig. 5.2a-c(revised)

θ=16.26°1

m1 - m2m1+m2 2√m1 m2

m1+m2

4850=

1450=

slope :

−m2

m1

= −17

slope :

+m2

m1

= +17

11

33

77

1177

1199

11331155

55

991111

2211

θ=16.26°V1

V2

[11]-tangent slope-√m1/√m2= -7

22

44

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

60Friday, August 28, 2015

Page 61: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Fig. 5.2a-c(revised)

θ=16.26°1

m1 - m2m1+m2 2√m1 m2

m1+m2

4850=

1450=

slope :

−m2

m1

=−17

slope :

+m2

m1

=+17

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

11

33

77

1177

1199

11331155

55

991111

2211

θ=16.26°V1

V2

[11]-tangent slope-√m1/√m2= -7

22

44

61Friday, August 28, 2015

Page 62: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling-geometry and reflection-symmetry analysisRescaling KE ellipse to circle

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12

62Friday, August 28, 2015

Page 63: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

What ellipse rescaling leads to...(in Ch. 9-12)

(a) Lagrangian L = L(v1,v2)

v1

v2(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisectorslope = 1/1

Collision line andCOM tangent slope= -m1/m2 =-16

Collision line andCOM tangent slope=-√m1/√m2=-4

COM Bisector slope= √m2/√m1 =1/4

Collision line andCOM tangent slope

= -1/1

COM Bisector slope= m2/m1 =1/16

slope√m1√m2

=4

slope=1

Fig. 12.1

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12

velocity v1 rescaled to momentum: p1 = m1v1

velocity v2 rescaled to momentum: p2 = m2v2

63Friday, August 28, 2015

Page 64: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

What ellipse rescaling leads to...(in Ch. 9-12)

(a) Lagrangian L = L(v1,v2)

v1

v2(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisectorslope = 1/1

Collision line andCOM tangent slope= -m1/m2 =-16

Collision line andCOM tangent slope=-√m1/√m2=-4

COM Bisector slope= √m2/√m1 =1/4

Collision line andCOM tangent slope

= -1/1

COM Bisector slope= m2/m1 =1/16

slope√m1√m2

=4

slope=1

Fig. 12.1

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12

velocity v1 rescaled to momentum: p1 = m1v1

velocity v2 rescaled to momentum: p2 = m2v2

Lagrangian L(v1,v2 ) = KE =12m1v1

2 +12m2v2

2

rescaled to

Hamiltonian H (p1, p2 ) = KE =p1

2

2m1

+p2

2

2m2

64Friday, August 28, 2015

Page 65: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

What ellipse rescaling leads to...(in Ch. 9-12)

(a) Lagrangian L = L(v1,v2)

v1

v2(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisectorslope = 1/1

Collision line andCOM tangent slope= -m1/m2 =-16

Collision line andCOM tangent slope=-√m1/√m2=-4

COM Bisector slope= √m2/√m1 =1/4

Collision line andCOM tangent slope

= -1/1

COM Bisector slope= m2/m1 =1/16

slope√m1√m2

=4

slope=1

Fig. 12.1

(Now we call this one “l’Etrangian”)

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12

65Friday, August 28, 2015

Page 66: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Ellipse rescaling-geometry and reflection-symmetry analysisRescaling KE ellipse to circle

How this relates to Lagrangian, l’Etrangian, and Hamiltonian mechanics in Ch. 12(Preview of Lecture 3)

Reflections in the clothing store: “It’s all done with mirrors!” Introducing hexagonal symmetry D6~C6v (Resulting for m1/m2=3)

Group multiplication and product tableClassical collision paths with D6~C6v (Resulting from m1/m2=3)

66Friday, August 28, 2015

Page 67: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

Reflections in clothing store mirrors

Fig. 5.4a-b

67Friday, August 28, 2015

Page 68: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

σφacts1st

σφacts2nd

(a)Reflections σA=( ),

x=σA·x=( )10

y=( )01

-y=( )=σA·y

-10

1 00 -1 -σA=( )-1 0

0 1

y=( ) = -σA·y01

10

-x=( )= -σA·x

-10

x=( )

(c) σφ reflection ( )of x-vector: ...of y-vector:

σφ·x=( )ycosφsinφ

cosφ sinφsinφ -cosφ

xφ/2

φ/2

σφ·y=( )sinφ-cosφ

y

xφ/2

φ/2φ

φ -cosφsinφ

cosφ

sinφ

(b)Reflections σB=( ),

x=( )=σB·y

10

y=( ) =σB·x01

0 11 0 -σB=( )

-y=( )= -σB·x

0-1

y=( )01

0 -1-1 0

-x=( )= -σB·y

-10

Mirror plane(edge-on)

(d)Rotation:R+φ=σφσA=( ) (e)Rotation:R−φ=σAσφ=( )cosφ -sinφsinφ cosφ

cosφ sinφ- sinφ cosφy

xφ/2

φ/2

y

xφ/2

φ/2

σA·y

σA·xσφ·y

σφ·x

φ/2

φ/2

σA acts1st

σA acts2nd

+φ y

x

−φ

−φ

Symmetry: It’s all done with mirrors!

Fig. 5.3a-e

68Friday, August 28, 2015

Page 69: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

σφacts1st

σφacts2nd

(a)Reflections σA=( ),

x=σA·x=( )10

y=( )01

-y=( )=σA·y

-10

1 00 -1 -σA=( )-1 0

0 1

y=( ) = -σA·y01

10

-x=( )= -σA·x

-10

x=( )

(c) σφ reflection ( )of x-vector: ...of y-vector:

σφ·x=( )ycosφsinφ

cosφ sinφsinφ -cosφ

xφ/2

φ/2

σφ·y=( )sinφ-cosφ

y

xφ/2

φ/2φ

φ -cosφsinφ

cosφ

sinφ

(b)Reflections σB=( ),

x=( )=σB·y

10

y=( ) =σB·x01

0 11 0 -σB=( )

-y=( )= -σB·x

0-1

y=( )01

0 -1-1 0

-x=( )= -σB·y

-10

Mirror plane(edge-on)

(d)Rotation:R+φ=σφσA=( ) (e)Rotation:R−φ=σAσφ=( )cosφ -sinφsinφ cosφ

cosφ sinφ- sinφ cosφy

xφ/2

φ/2

y

xφ/2

φ/2

σA·y

σA·xσφ·y

σφ·x

φ/2

φ/2

σA acts1st

σA acts2nd

+φ y

x

−φ

−φ

Symmetry: It’s all done with mirrors!

Fig. 5.3a-e

69Friday, August 28, 2015

Page 70: Analysis of 1D 2-Body Collisions · 8/27/2015  · Friday, August 28, 2015 1. V VW 100 110 120-120 (60,10) ... data to space-space plots (y 1, y 2) Friday, August 28, 2015 11. M 11

σφacts1st

σφacts2nd

(a)Reflections σA=( ),

x=σA·x=( )10

y=( )01

-y=( )=σA·y

-10

1 00 -1 -σA=( )-1 0

0 1

y=( ) = -σA·y01

10

-x=( )= -σA·x

-10

x=( )

(c) σφ reflection ( )of x-vector: ...of y-vector:

σφ·x=( )ycosφsinφ

cosφ sinφsinφ -cosφ

xφ/2

φ/2

σφ·y=( )sinφ-cosφ

y

xφ/2

φ/2φ

φ -cosφsinφ

cosφ

sinφ

(b)Reflections σB=( ),

x=( )=σB·y

10

y=( ) =σB·x01

0 11 0 -σB=( )

-y=( )= -σB·x

0-1

y=( )01

0 -1-1 0

-x=( )= -σB·y

-10

Mirror plane(edge-on)

(d)Rotation:R+φ=σφσA=( ) (e)Rotation:R−φ=σAσφ=( )cosφ -sinφsinφ cosφ

cosφ sinφ- sinφ cosφy

xφ/2

φ/2

y

xφ/2

φ/2

σA·y

σA·xσφ·y

σφ·x

φ/2

φ/2

σA acts1st

σA acts2nd

+φ y

x

−φ

−φ

Symmetry: It’s all done with mirrors!

Fig. 5.3a-e

70Friday, August 28, 2015