6

Click here to load reader

Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

  • Upload
    y-n

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

Analysis of 4d85s-4d85p and 4d9-4p54dW0 transitions in Sb vilTh. A. M. van Kleef and Y. N. Joshi*

Zeeman-Laboratorium, Universiteit van Amsterdam, 1018 TVAmsterdam, The Netherlands(Received 11 December 1979)

The spectrum of antimony was photographed in the region 600-2100 A on a 10.7-m normal-inci-dence spectrograph using a triggered spark source. All the levels of the 4d85s configuration, theunknown levels of the 4d85p configuration, and the 4p54d'0 2P levels have been established. Least-squares-fitted parametric calculations support the analysis. An additional 177 lines have been classi-fied in this spectrum.

INTRODUCTION AND EXPERIMENT

The ground-state configuration of the seventh spectrumof antimony (SbvII) is 4d9. Recently we reported an analysisof the 4d9-4d 8 5p transitions of this spectrum.' Ten of the45 levels of the 4d85p configuration could not be located be-cause the transitions to 4d9 2D levels either were too weak tobe observed on our plates or were not allowed (AJ > 2). Inaddition two levels, viz., 377 456 (J = 7/2) and 389 422 cm-'(J = 7/2), needed to be verified. Therefore an analysis of the4d 8 5s-4d 85p transitions was undertaken.

The spectrum of antimony was photographed in the region600-2100 A on a 10.7-m normal-incidence spectrograph at theNational Bureau of Standards Laboratory in Washington D.C.The source used was a triggered vacuum spark. The seriesinductance in the discharge circuit and the polarity exhibitedby the spectral lines helped to discriminate between the linesbelonging to different ionization stages. Further experi-mental details are given in an earlier publication.2

All exposures were taken on Kodak SWR plates and theplates were reduced using either C, N, 0, Si, and Al as internalstandards3 or yttrium external standards.4

SbVII 4d8 5s

3522T

.E

U00

0

D-J

(5

Iiiz

-JLi

290

280

2p

2 Dl

4P II 2F

'_ 4

F

ANALYSIS

The accuracy of wavelength measurements in general was±0.005 A except for asymmetric lines or for the lines on theshoulder of other lines (having character 8 or 9 and 7, re-spectively). The Sbvii lines showed polarity and thereforecould easily be identified. However, in certain cases, espe-cially when the line was weak or in the neighborhood of astrong line, the polarity of lines made the measurementsomewhat difficult and therefore the accuracy in these caseswas ±0.01 A.

Since the 4d 85s-4d 85p transitions were studied by us in theAg III isoelectronic sequence from Ag III to Sn VI, 5 -8 the cor-responding wavelength region for Sbvii could be predictedeasily. The energy levels and the intensity of the 4d 85s-4d 85p transitions for Sb vii were calculated by extrapolatingthe least-squares-fitted (LSF) parameters in the Ag III iso-electronic sequence following the procedures outlined byCowan9 and Poppe.10 The LSF parameters and the Har-tree-Fock parameters (HF)14 used in the analysis are givenin Table I.

In the 4d8 5p configuration the doubtful level at 377456cm-' (J = 7/2) was rejected and its new value is 377764.2cm-'. The other doubtful level at 389422 cm-1 (J = 7/2) wasfound to be correct but deviated from this value +17 cm-l.We must also point out that the level 412 377 cm- (J = 1/2)which was based on a doubly classified line (214.774 A) wasalso found to be incorrect. The new value is 146 cm-' higher.The unknown levels in this configuration have been estab-lished.

The 4d8 ('S)5s 2S 1 2 level gives strong transitions to the4d8 (1SO)5p 2P 1/23/2 levels. The determination of this levelposed difficulty as the difference 2p 1 2 - 2p!/2 was not present

2 TPY2 T

59339 cm-4p54d 10

4d9

{

P3/2

5A

2 /2 T10405 cmD 5/

FIG. 1. Structure of the 4d85s configuration in Sb vii.

895 J. Opt. Soc. Am., Vol. 70, No. 8, August 1980

FIG. 2. 4d9 2D-4p 5 4dt° transitions in Sb vii. The figures in brackets underthe wavelength values are the observed intensities of the lines.

0 1980 Optical Society of America 895

,

51/2 3/2 /2 �'2 9/2

0030-3941/80/080895-06$00.50

Page 2: Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

TABLE I. LSF and HF parameter values for the 4d85s and 4p5 4d1 0 configurations of Sbvil.

Parameter value (cm-')Configuration Parameter' LSF HF LSF/HF

4d85s Ea, 301321 ± 72 328065 0.918F2(4d4d) 88530 ± 312 106621 0.830F4 (4d4d) 64698 ± 370 71164 0.909G2(4d5s) 15 656 + 226 15130 1.035);4d 4 236 + 39 4188 1.011a 21.5 + 6.8ab 132

4p54d' 0 Eav 584522 602546 0.970~4p 39559 40829 0.969

n The parameters and TIO were fixed on zero.b a = mean error = [(Exp. value - calc. value)2/(m - n)1/2, where m is the number of known levels and n is the number of free parameters.

in the predicted region. On reexamining our data in thegrazing incidence region,' we found another pair of lines with4d9 2D5 /2,3/2 difference and with the correct intensities. It leadto a revised value of the 4d 8('So)5p 2 P,12 level, 158 cm-' higherthan the previously reported value.' The new4d8 ('So)5p 2P , 2,3,2 difference established 4d8 ('So)5S 2 S /2.All levels of the 4d 8 5s configuration have been established.

All levels of the 4d 85s configuration and the new and therevised levels of the 4d8 5p configuration along with theirLS-percentage compositions are given in Table II. Thestructure of the 4d 85s configuration is shown in Fig. 1. In the4d85s-4d85p transition array, 172 lines are classified; six ofthem are doubly classified. The classified lines are given inTable III. In the classification column, the designations given

TABLE II. Energy levels and percentage composition of the levels of the 4d85s and 4p

54d1

0 configuration and the new levels of the 4d85p configuration

in Sbvii.

Configura- Designa- Level value (cm-')tion tion J Exp. Calc. An Percentage composition b

4d85s (3F)4F 9/2 280678.4 280645.8 32.6 98% + 2%('G)2G7/2 285259.0 285181.5 77.5 75%+ 23%(3F)2F + 2% ('G)2G5/2 290854.2 290688.5 165.7 87% + 8%('D)2D + 3% (3P) 4 P + 2%(3F)2F3/2 292307.8 292279.9 27.9 73% + 24%('D)2D + 2%(3P)2P + 1%(3P)4 P

(3F)2F 7/2 294353.0 294355.0 -2.0 74% + 25%(3F)4 F+ 1%(QG)2G5/2 302515.2 302507.9 7.3 54% + 41%(3P)4 P + 3%(3F) 4 P + 2%('D)2D

(3p)4 p 5/2 295781.2 296073.6 -292.4 40% + 29%('D)2D + 26%(3F)2F + 4%(3F)4F3/2 302612.7 302635.7 -23.0 54% + 16%('D)2D + 16%(3F)4 F + 15%(3P)2P1/2 305364.1 305340.7 23.4 96% + 4%(1S)2S

(ID)2D 5/2 313108.7 313269.5 -160.8 61% + 18%(3F)2F + 16%(3P)4 P + 5%(3F)4 F3/2 307795.4 307810.2 -14.8 25% + 45%(3P) 4 P + 23%(3P) 2P + 8%(3F) 4F

(IG)2G 9/2 314466.2 314527.5 -61.3 98% + 2%(3F)4F7/2 314 708.3 314686.8 21.5 97% + 2%(3F)2F + 1%(3F) 4F

(3p)2p 3/2 315702.8 315696.7 6.1 60% + 35%('D)2D + 4%(3F)4F1/2 314777.0 314642.6 134.4 97% + 2%(IS)2S

(IS) 2S 1/2 352630.0 352571.9 58.1 94% + 3%(3p)4p + 3%(3p)2p4d8 5p (3F)4Do 7/2 377764.2 377775.0 -10.8 72% + 14%(3F) 4F + 6%(3F)2F + 4%(3P) 4D

5/2 386747.9 386793.2 -45.3 61% + 13%(3 P)4D + 11%(3D) 4 F+ 4%(QD)2F1/2 396065.9 396 137.4 -17.5 49% + 33%(3P) 4D + 9%( 1D)2P + 6%(3P)2p

(3F)4G0 11/2 391774.0 391524.0 250.0 98% + 2%(3F)4 G9/2 402571.4 402506.3 65.1 58% + 36%(3F)2G + 2%(3F)4 G + 1%(QG)2G

(3F)2G0 9/2 381550.7 381471.9 78.8 36% + 39%(3F)4G + 23%(3F)4 F+ 2%(QG)2H(3F)4F0 9/2 395588.7 395493.3 95.4 71% + 25%(3F)2G + 2%(3F)4 G + 1%('G)2G('G)2Ho 11/2 421818.6 421830.8 -12.2 98% + 2%(3F) 4G

9/2 410529.7 410575.0 -45.3 89% + 8%('G)2G + 2%(3F)2G(3P)4Do 1/2 412523.1 412682.7 -159.6 44% + 33%('D)2P + 10%(3P)2S + 7%(3P) 4D(3P)4So 3/2 427202.6 427014.1 188.5 79% + 6%(MD)2P + 5%(3p)2 p + 3%('D)2D(IG)2Go 9/2 432401.7 432392.4 9.3 90%+ 8%('G)2H + 1%(3F) 4 F+ 1%(3F)2G(lS)2 Po 3/2 465152.0 465071.2 80.8 91% + 3%(QD)2P + 2%(QP)2D + 2%(3P) 4D

4p5 4dI0 p 52po 3/2 564743 564743 0 100%

1/2 624082 624082 0 100%

A = experimental value - calculated value.b The first percentage corresponds to the designated level. The eigenvector is underlined if the eigenvector is negative.

896 J. Opt. Soc. Am., Vol. 70, No. 8, August 1980 Th. A. M. van Kleef and Y. N. Joshi 896

Page 3: Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

TABLE 1ll. Newly classified lines in Sbvii.

(A) (cm') Int.a Char.b Classification Remarksc

162.952 613677 40 1 d 9 2 D3/2 -p 52 P , 2

177.072 564742 50 1 d92D5/2_p52pk180.395 554339 19 1 d 9 2D 3 /2-p 5 2 P 1/2214.983 465152 80 1 d 9 2 D5 /2 -(IS) 2Pk 2

219.901 454750 15 1 d92D3/2-('S) 3/2710.742 140698.1 7 6 (3F) 4F7/2-(1D) 2F712739.075 135304.3 71 9 (3 p)4P5/ 2 -(1 G)2 G7/2 B744.373 134341.3 5 6 (3 F) 4F9/2-( 3 P) 4D7/2757.203 132065.0 4 2 (3F)4 F3 /2 -(3 P)2 S1/2 B759.936 131590.1 7 2 (3F) 4F5 /2 -( 3 P) 4D9/2760.920 131419.8 76 1 (3 P) 4 P5, 2 -(3 P) 4S31 2 S761.154 131 379.4 8 2 (3p) 4 p 5 2 -(G) 2F/, 2

770.658 129759.2 21 6 (3F) 4F7/2-(3p) 4D7/2776.594 128767.4 12 6 (IF)4F7/24(p)2D9/2801.999 124688.5 37 6 (3F)2F5/2-(3p)4S3/2802.630 124590.4 11 6 (3P)4P3/2 -( 3P)S4,/2804.795 124255.2 13 6 (3F)4F7/2-('D)2F/2805.518 124143.7 46 6 (3F) 4F5 /2 -( 3F) 2D32 B805.678 124119.0 71 6 (3F) 4 F9 /2 -(3F) 4F712

810.104 123441.0 28 6 (3F) 2F5 /2 -(QD) 2F,/2815.058 122 690.7 7 2 (3F) 4 F3 /2 -(3F) 2 D3/2820.388 121893.6 25 1 (3F) 4F9/2-(3F) 4G;/2820.755 121839.1 18 6 (3P) 4p,/2-(3p) 4S;/2821.263 121763.7 25 6 (3P) 4P3 2 -(3p) 2S1 2

821.551 121721.0 9 2 (3F) 4F31 2 - 3 P) 2D.;/2824.580 121273.8 12 1 (3F) 4 F7/ 2-(3F) 2F9/2825.822 121091.5 10 2 (3F) 4F5/2- D3/2826.608 120976.3 62 6 (3 F)4 F3 /2 -(3 P)2 P1,2831.831 120216.7 41 6 (3F)4Fj/2-(3p)4D'12833.828 119928.8 81 7 (3F2 F5 /2 -(3P)4 D , 2

835.603 119674.0 26 6 (3 F)2F7 /2 -(3P)2 D9/2835.859 119637.4 16 6 (3F)4F3/2- 3836.553 119538.1 28 6 (3F) 4F7/2-(3F) 4F7/2837.466 119407.9 19 6(D)2D3/2-(3p)4S3/2838.652 119 238.9 40 6 (3 P) 4P 5/2 -(3 P) 4D7/2838.811 119216.4 3 2 (3p)4P5/2-(3F)2Dk840.258 119011.0 23 1 (3p)4p, (3p)2S '842.732 118661.7 3 6 (3F) 4F5 /2-(1 D)2 F9/2847.629 117976.1 12 2(D)2D5/2-('G)2G~/2847.925 117934.9 79 6(G)2G912-(GG)2G;/2849.662 117693.9 4i 6(G)2G7/2-('G)2G;/2850.815 117534.4 22 6 (3 F)4F5 /2 -(3F)4 F3/2852.371 117319.8 60 6 (IF)2F7/2-('G)2F7/2853.195 117 206.5 11 6 (3 F) 4 F3,2 -(1 D) 2 F9/2857.497 116618.5 43 2 (3 P) 4P3 /2 -('D) 2D5/2 D

(1G) 2 G9 / 2 -('G) 2Gq/2 D859.288 116375.4 76 6 ('G)2 G7 /2-(1 G)2 Gq12 D

('D) 2D3/ 2 -(3 P) 4D3,2 D860.842 116165.3 46 6 (3P) 4 P5 /2-(3 P) 4D3,2862.064 116000.7 65 6 ( 3F) 4F9 /2 -(3 F) 2F 1/2862.413 115953.7 29 6(3p)2p,/2-('D)2p/2862.849 115895.2 22 6 (1p)4p3/2-('D)2pk864.460 115679.2 20 6 (3F)4 F5 /2 -(3 F)2 F , 2

866.316 115431.3 15 6 (3p)4p 1/2-(3p)2pk,2 Q

868.356 115160.2 40 6 (3F) 2F7/2-(1D) 2F9/2869.354 115028.0 20 6 (3p) 2P3/2-(1 D) 2p'1 2870.244 114910.3 32 6 (3F)4F9/2-(3F)4F5/2875.470 114224.4 15 6 (3F) 4F 3/2-(3F) 2F9/2876.479 114092.8 39 2(1D) 2D5/2-(3p) 4Sk876.812 114049.5 50 6(1D) 2D5/2-(G) 2F5/2879.238 113 734.8 12 2 (3P) 4P5/2-('D) 2F9/2883.819 113145.3 10 2 (3P) 4p,/2-('D) 2p5/2886.145 112848.4 85 1(1D) 2D5/2-(1D) 2F/2888.715 112522.0 50 6 (IS)2S1/2-(IS)2p3/2

889.260 112453.0 69 6 (IG)2G7/2-('G)2F9/2

897 J. Opt. Soc. Ani., Vol. 70, No. 8, August 1980 Th. A. M. van Kleef and Y. N. Joshi 897

Page 4: Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

Table IlIl (continued).

xa(A) (cmn1) Int.a Char.b Classification Remarksc

889.800 112384.8 20 6 (3p)4P3/2-f)2DI/2892.350 112063.6 18 6 (3F)4F5/2-(3F)4 F5s,2896.767 111511.7 19 6 (IF)2Fs/2-(3p)2D5/2896.921 111492.5 14 6 (IG)2G9/2-('D)2F7/2897.210 111456.6 19 6 (3p)2P3/2-(IG)2F5/2897.490 111421.9 29 6 (IF)4F7/2-(:3F)2F;/2897.544 111415.1 70 7 (.p)4P3/2-(3p)2Ds42898.866 111251.3 6 6 ('G)2G7/2-('D)2F;/2900.119 111096.4 51 6 (3F)4 (3F)4G'900.410 110060.5 42 6 (ID) 2 D51/2-(P)2D,/2901.131 110971.6 51 6 (3F)2F7/2-(:3F)2G;/2902.933 110750.2 48 6 (3P) 4P5/2-(3F) 2F5/2903.237 110712.9 10 6 (ID)2D:1/2-('D)2p"904.063 110611.7 49 6 (3F)4F3/2-(:3F)4F./2905.449 110442.4 88 1 (IF) 2F7/2-(:3F) 4F;/2906.376 110 329.5 28 6 (3F) 4F7 /2 -(3 F) 4F5/2909.838 109909.7 62 6 (3p)4 (3p)4D;912.130 109633.5 9 6 (3p)4PIF)2D/2912.455 109594.5 24 6 ( 3p) 2 p,/ 2-( 3 p) 2S 1/2 D

(3F) 4 F5 /2 -(3 P) 4 P /2 D912.906 109540.3 56 6 (3P) 4P5/2-(3F) 2G;/2913.825 109430.1 33 6 (3F)2 F 1/2-(

3P)4D3/2914.157 109390.4 37 6(3p)2p/2-(3p)2DI/2917.288 109017.0 74 2 (3P) 4P5/2-(3F) 4F7/2919.447 108761.0 11 2 (3F)4Fg/2-(3F)4G7/2920.199 108672.2 41 6 ( 3P)2 P31 2-(

3P)2 S;12921.093 108566.7 48 7 (3F)2F7/2-(3F)4F5/2921.964 108464.1 32 9 (3p)2P3/2-(3p)2D3/2924.050 108219.2 85 1 (3F)2F7/2-(3F)4Gk924.695 108143.8 42 6 (3F) 4 F3/2-(3P) 4 P,/2926.311 107955.1 8 2 (IF)4F312-(3p)4p;/2926.625 107918.5 60 6 (3P) 4PI/2-3P) 2p;/2928.213 107 733.9 14 6 (IG)2G7/2-(3p)4Dg/2928.551 107 694.7 17 2 (ID) 2 D5 /2 -(3 P) 2 P.32 Q929.190 107 620.6 28 6 ( 3F) 2F7 /2-(3P) 4P9/2931.512 107352.4 87 1 (IG)2G9/2-('G)2Hl/2933.195 107158.7 87 6 (3 P) 4PI/2 -(3 P) 4D,/2933.373 107 138.3 60 6 (3 P) 4 P5 /2 -(3 F) 4F5/2934.585 106999.4 43 6 (IF)2F5/2-('D)2Fg/2935.433 106902.4 51 7 (3p)4P3/2-('D)2F9/2936.827 106743.3 45 6 (3 P)2 P3 /2 -(3P)4 Dg/2938.263 106579.9 80 1 (3P) 4PI/2 -(3 P) 4D;/2 B940.465 106 330.4 72 6 (3F) 4 F5 /2-(3F) 2D9/2941.357 106229.6 60 6 (ID)2 D3 /2-( 3P)2 D9/2941.688 106192.3 37 . 6 (3 p) 4 P5 /2-( 3 p) 4P;/2942.329 106120.1 18 6 (ID) 2D5/2-('D) 2D q943.176 106024.8 46 6 (3 p)2 p,/ 2-( 3P) 2P3/2944.949 105 825.8 84 1 (3kF) 4F5/ 2 -(3 F) 2 F;/2 B947.980 105487.5 65 6(D)2D3/2-(3p)2p;/2951.497 105097.5 42 6 (3p)2P3/2-(3p)2p!/2953.537 104872.7 11 6 ( 3F)4 F312-( 3F)2 Dg/2954.860 104727.4 15 6 (ID)2 D3 /2-( 3P)4DI,2956.734 104522.3 25 6(G) 2G7/2-('D) 2D5/2959.882 104179.5 20 6 (3F) 4F7/2-(3F) 4G;/2960.162 104149.1 7 6 (1D) 2D 3 /2-( 3P) 4D3/2961.390 104016.1 8 6 (3F)2 F5 /2-( 3F) 2 F9/2962.298 103917.9 8 6 (3 P)4 P3 /2 -(3F) F912963.789 103757.2 18 6 (3F)4F 3/2-(

3F) 4 D1/2965.907 103529.6 8 6 (3P) 3P3/ 2-('D)WD5/2970.082 103084.1 15 6 (3F) 4F5/2 -(3F) 4D5/2972.668 102810.0 35 6 (3F)2F5 /2-( 3 F)2 G7/2977.268 102326.1 27 6 (3F)2F7/2-(3F)2F7/2977.712 102279.6 76 1 (3F) 2F5/2- 7/2981.434 101891.7 37 1(D) 2D5/2-(3F) 2D3/2983.950 101631.2 39 6 (3F) 4F312-(3F) 4D;/2

898 J. Opt. Soc. Am., Vol. 70, No. 8, August 1980 Th. A. M. van Kleef and Y. N. Joshi 898

Page 5: Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

Table Ill (continued).

a(A) (cm-') Int.a Char.b Classification Remarksc

985.332 101488.6 29 6 (3F) 4F7 / 2 -(3

F) 4Dg/2

987.792 101235.9 19 7 (3F)

2F7 /2 (

3F)

4F;/2990.872 100921.2 8 6 (ID) 2D 5 /2 -(

3P) 2D/2 Q

991.075 100900.5 18 6 (3p) 4P5/2-(3F) 2F;/2

991.349 100872.7 34 6 ( 3F) 4 F9/2 -('F) 2Gg/2994.134 100590.1 60 6 (ID) 2D3 2-( 3F) 4 F!/2 D

('S) 2

S1/ 2 -('S) 1P;/2 D

996.887 100312.3 45 2(G)2G7/2-(3p)4D;/2997.774 100223.1 69 2(3p) 2p/2-(3F) 2D1/2

1005.444 99458.5 90 7 (3

F) 2F5 /2 -(3P) 4P9/2

1006.716 99332.9 13 6 (IF) 4F5/2-(3F)4G/21009.101 99098.1 11 6 (3F)4F5/2-('D)2D/21014.370 98583.4 19 6 (3F) 4

F5/2 -(3F) 4

G;12

1014.554 98565.5 70 6 (ID)2D5/2-('G)2F7/21018.786 98156.0 5 6 (

3P)

4P,5/ 2 -(3F)

4DI/2

1021.066 97 936.9 65 6 (3F) 2F5/2- 3/2

1021.671 97878.9 35 6 (3F) 4F3/2-(3F) 4G9/2

1024.077 97648.9 63 1 (3P) 4 P,1 2 -(3P) 4 P;1 ,

1024.111 97645.7 63 1 (IF)4F3/2-('D)2D!/21028.701 97 210.0 50 6(G) 2G9/2-('G) 2F;/21030.031 97084.5 54 6 (3F)

4F9 / 2 -('F)

4D7/11038.496 96293.1 59 7 (3F) 4F7/2-(3F) 2G9/2

1040.977 96063.6 45 6(1G) 2G9/2-(G) 2H5/2

1043.438 95837.0 50 6 (3F) 2F7/2-(3F) 4Gg/21043.614 95820.9 68 6(G) 2G7/2-('G) 2H;/2

1051.673 95086.6 59 6 (3P) 4 P 1 /2-(P) 4 P3/2 D(3F) 2F7/2-(3F) 4G7/2 D

1056.335 94666.9 28 6 (3F) 2F5/2-(3F) 2D9/2

1061.768 94182.5 86 6 ('D) 2D3/2 -(5P)4P,/2 Q

1065.976 93810.7 92 4 (3p)2P3/2-('D)2 F9/2 B1067.701 93659.2 34 6 (3P) 4P5/2-(3F) 4G /2

1070.377 93425.0 92 4 (ID) 2D5/2 -(F)

2F9/2 S

1081.013 92505.8 4 6 (IF) 4F7/2-(3F) 4D;/21081.445 92468.9 85 6(D)2D3/2-(3p)4p;/21082.299 92395.9 43 7 (IF) 2F7/2-(3F) 4D9/2

1093.792 91425.1 3 6 (3F) 2F5/2-(3F) 4D;/2

1094.965 91327.1 11 6 (3p)4 (3f)4D/21099.315 90965.7 90 4 (3p)4P5/2 -(3F)4 Ds/2 B1102.504 90702.6 17 6 (3p)4p, (3F)4D/21107.047 90330.4 42 1(G)2G9/2- F)4F7/21118.743 89386.0 78 6(D)2D3/2-(3F)2D9/21128.974 88576.0 83 2 (3P) 4 P,1/2 -(3F) 4D!/21138.156 87861.4 71 1(G)2G7/2-(3F)4G9/21140.589 87674.0 65 6 (IF) 2F5 /2 -(3F) 4G5/21144.931 87341.5 81 2 (ID)2D5 / 2-('D)

2D!/2 D

(3p) 4p32(D)2 /

1146.836 87196.4 15 6 (3F) 2F7/2- 9

1150.434 86923.7 9 6 (3F) 2 Fs/2-('F) 2 G7/21182.170 84590.2 11 7 (3p)4p I

1188.560 84135.4 46 6 (3P) 4

P3/ 2 -(3F) 4

D5/2

1198.884 83410.9 85 7 (3F)2F7/2-(3F)4D;/21217.143 82159.6 9 6(D) 2D3/2-('D) 2D5/2

1219.750 81954.0 51 6 (3P) 4 P,1 2 -('F) 4D,/2

a Intensity is on a scale 0-100.b Character of the line:(1) ordinaryline;(2) line difficult to measure, so deviation from the calculated value is large;(4) broad line;(6) line showing pole effect;(7) line on a shoulder of a stronger line; intensity too high and deviation from the calculated value large;(8) asymmetric line, shaded to the lower X;(9) asymmetric line, shaded to the higher X.c Remarks:(B) line masked by a lower ionization line or an impurity line;(D) doubly classified line;(S) observed intensity of the line is much higher than expected;(Q) doubtful classification.

899 J. Opt. Soc. Am., Vol. 70, No. 8, August 1980 Th. A. M. van Kleef and Y. N. Joshi 899

Page 6: Analysis of 4d^85s-4d^85p and 4d^9-4p^54d^10transitions in Sb VII

in Table II are used. To write it in complete spectroscopicnotations, the line 710.742 A should read4d 8(3 F)5s 4F7/ 2 -4d8(lD)5p 2F712. There are four classifiedlines in Table III with "Q" in the remarks column. Theselines have Sb VII character but their observed a value deviatesfrom the calculated value by larger than the acceptable de-viation. One expects these lines on the basis of their calcu-lated intensity value.

With all levels of the 4d85p configuration known, the LSFparameter values change slightly in this configuration com-pared with the values reported earlier.' The new LSF/HFvalues for the parameters Eav, F2 (dd), F4 (dd), t4d, ~5p,F2 (dp), G'(dp), and G3(dp) are 0.975, 0.831, 0.905, 1.029,1.244, 0.887, 0.944, and 1.005, respectively. New parametervalues further improve the agreement in the AgIII isoelec-tronic sequence.'

Although the 3d9 2 D-3p5 3d10 2P" transitions have beenidentified in the AsVI isoelectronic sequence from AsVI toZr,1"-' 3 the corresponding transitions 4d9-4p 5 4d'0 in theAgIII isoelectronic sequence have not been identified. Wecarried out Hartree-Fock (HF) calculations' 4 for the 4d54d' 0

configuration in SbvIi to estimate the position of thesetransitions. The transitions are shown in Fig. 2. The iden-tified lines have Sb VII ionization characters. The LSF andHF parameters are given in Table I; the levels and the classi-fied lines have been included in Tables II and III, respec-tively.

ACKNOWLEDGMENTS

We are thankful to the Atomic Spectroscopy Group at the.NBS Laboratory, Washington D.C. for their hospitality andassistance. We also thank NATO Scientific Affairs Divisionfor a grant for International Collaboration. One of us (Y.N.J.)wishes to acknowledge the assistance of Nederlandse Organ-

isatie voor Zuiver Wetenschappelijk Onderzoek (ZWO) fora visiting Fellowship at the Zeeman Laboratorium. The useof the CDC 6400 computer of Stichting Fundamenteel On-derzoek der Materie is highly appreciated. Thanks are alsodue to Mr. Schans for drawing the figures.

*On sabbatical leave (1979-1980) from St. Francis Xavier University,Antigonish, N.S., B2G ICO Canada.

'Th. A. M. van Kleef and Y. N. Joshi, "Analysis of 4d9-4d 85p tran-sitions in Sb VII and Te Vill and the ionization limits of Sb VI andTevII," J. Opt. Soc. Am. 69, 132-140 (1979).

2Th. A. M. van Kleef and Y. N. Joshi, "4d 95s-4d95p transitions inSbvI and TevII," Can. J. Phys. 57, 1073-1080 (1979).

3V. Kaufman and B. Edlen, "Reference wavelengths from atomicspectra in the range 15-25000 A," J. Phys. Chem. Ref. Data 3,825-895 (1974).

4J. Reader and N. Acquista (NBS), private communication.5H. Benschop, Y. N. Joshi, and Th. A. M. van Kleef, "The Spectrum

of Doubly Ionized Silver: Ag III," Can. J.Phys. 53, 498-503(1975).

6y. N. Joshi, Th. A. M. van Kleef, and M. Mazzoni, "Revised andExtended Analysis of CdIv," Can. J. Phys. (to be published).

7Th. A. M. van Kleef, R. P. Srivastava, and Y. N. Joshi, "4d85s and4d85p configurations in the fifth spectrum of Indium: Inv," J. Opt.Soc. Am. 67, 1525-1532 (1977).

8R. P. Srivastava, Y. N. Joshi, and Th. A. M. van Kleef, "4d 85p-4d05stransitions in Sn VI," Can. J. Phys. 55, 1936-1947 (1977).

9R. D. Cowan "Theoretical calculations of the atomic spectra usingdigital computers," J. Opt. Soc. Am. 58, 808-818 (1968).

'0R. Poppe, "Parametric Treatment of the 3dn- 14p Configurationsin Trebly Ionized Atoms," Physica (Utrecht) 75, 341-350 (1974).

"Th. A. M. van Kleef and Y. N. Joshi, "The sixth and seventh spectraof arsenic: AsVI and As VII," J. Opt. Soc. Am. 70, 491-499 (1980).

"Th. A. M. van Kleef and Y. N. Joshi, "Seventh spectrum of seleniumSeVII and the 3p53d' 0 configuration in SeViII," J. Opt. Soc. Am.67, 472-476 (1977).

3C. E. Moore, Atomic Energy Levels, Volume II, Natl. Bur. Stand.(U.S.) 1952, Circular 467 (unpublished).

14C. F. Fischer, "A multiconfiguration Hartree-Fock program withimproved stability," Comput. Phys. Commun. 4, 107-116 (1972).

900 J. Opt. Soc. Am., Vol. 70, No. 8, August 1980 Th. A. M. van Kleef and Y. N. Joshi 900