21
Outline Initial Formulae Final Time Domain . . . Frequency Domain Home Page Page 1 of 11 Go Back Full Screen Close Quit Fundamentals of Communications (XE37ZKT), Part I Angle Modulation Josef Dobeˇ s 3rd

Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 1 of 11

Go Back

Full Screen

Close

Quit

Fundamentals ofCommunications

(XE37ZKT), Part I

Angle Modulation

Josef Dobes

3rd

Page 2: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 2 of 11

Go Back

Full Screen

Close

Quit

1. Outline

• Characterization of PM in time domain

– Initial formulae

– Formulation as a sum of harmonic components

– Graphical representation of frequency modulated carrier

– Necessity of Bessel functions

– Programming the Bessel functions

Page 3: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 2 of 11

Go Back

Full Screen

Close

Quit

1. Outline

• Characterization of PM in time domain

– Initial formulae

– Formulation as a sum of harmonic components

– Graphical representation of frequency modulated carrier

– Necessity of Bessel functions

– Programming the Bessel functions

• Characterization of PM in frequency domain

– Carson formula

– PM bandwidth

– PM energetic properties

– Components’s spectral diagram

Page 4: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 3 of 11

Go Back

Full Screen

Close

Quit

2. Initial Formulae

The following is the simplest formula for the phase-modulated signal(see a graphical representation):

vPM(t) = Vc sin[ωct + β sin (ωmt)

],

Page 5: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 3 of 11

Go Back

Full Screen

Close

Quit

2. Initial Formulae

The following is the simplest formula for the phase-modulated signal(see a graphical representation):

vPM(t) = Vc sin[ωct + β sin (ωmt)

],

where β is the modulation index, which is the peak phase deviation, inradians, of the carrier (β = ∆fmax

fm). The modulation index determines

the amplitudes and frequencies of the components of the modulated

wave.

Page 6: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 3 of 11

Go Back

Full Screen

Close

Quit

2. Initial Formulae

The following is the simplest formula for the phase-modulated signal(see a graphical representation):

vPM(t) = Vc sin[ωct + β sin (ωmt)

],

where β is the modulation index, which is the peak phase deviation, inradians, of the carrier (β = ∆fmax

fm). The modulation index determines

the amplitudes and frequencies of the components of the modulated

wave.Using the standard trigonometric formula, we obtain

vPM(t) = Vc

[sin (ωct) cos

(β sin (ωmt)

)+ cos (ωct) sin

(β sin (ωmt)

)]

Page 7: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 3 of 11

Go Back

Full Screen

Close

Quit

2. Initial Formulae

The following is the simplest formula for the phase-modulated signal(see a graphical representation):

vPM(t) = Vc sin[ωct + β sin (ωmt)

],

where β is the modulation index, which is the peak phase deviation, inradians, of the carrier (β = ∆fmax

fm). The modulation index determines

the amplitudes and frequencies of the components of the modulated

wave.Using the standard trigonometric formula, we obtain

vPM(t) = Vc

[sin (ωct) cos

(β sin (ωmt)

)+ cos (ωct) sin

(β sin (ωmt)

)]For the blue parts of the equation, the formulae that uses Besselfunctions of the first kind must be utilized:

cos(x sin α) = J0(x) + 2J2(x) cos(2α) + 2J4(x) cos(4α) + · · ·sin(x sin α) = 2J1(x) sin(α) + 2J3(x) sin(3α) + · · ·

Page 8: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 4 of 11

Go Back

Full Screen

Close

Quit

3. Final Time Domain Formula

Using the initial formulae of the above section, the final sequence canbe derived

vPM(t) = Vc

{J0(β) sin (ωct)

Page 9: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 4 of 11

Go Back

Full Screen

Close

Quit

3. Final Time Domain Formula

Using the initial formulae of the above section, the final sequence canbe derived

vPM(t) = Vc

{J0(β) sin (ωct)

+ J1(β)[sin

((ωc + ωm) t

)− sin

((ωc − ωm) t

)]

Page 10: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 4 of 11

Go Back

Full Screen

Close

Quit

3. Final Time Domain Formula

Using the initial formulae of the above section, the final sequence canbe derived

vPM(t) = Vc

{J0(β) sin (ωct)

+ J1(β)[sin

((ωc + ωm) t

)− sin

((ωc − ωm) t

)]+ J2(β)

[sin

((ωc + 2ωm) t

)+ sin

((ωc − 2ωm) t

)]

Page 11: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 4 of 11

Go Back

Full Screen

Close

Quit

3. Final Time Domain Formula

Using the initial formulae of the above section, the final sequence canbe derived

vPM(t) = Vc

{J0(β) sin (ωct)

+ J1(β)[sin

((ωc + ωm) t

)− sin

((ωc − ωm) t

)]+ J2(β)

[sin

((ωc + 2ωm) t

)+ sin

((ωc − 2ωm) t

)]+ J3(β)

[sin

((ωc + 3ωm) t

)− sin

((ωc − 3ωm) t

)]

Page 12: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 4 of 11

Go Back

Full Screen

Close

Quit

3. Final Time Domain Formula

Using the initial formulae of the above section, the final sequence canbe derived

vPM(t) = Vc

{J0(β) sin (ωct)

+ J1(β)[sin

((ωc + ωm) t

)− sin

((ωc − ωm) t

)]+ J2(β)

[sin

((ωc + 2ωm) t

)+ sin

((ωc − 2ωm) t

)]+ J3(β)

[sin

((ωc + 3ωm) t

)− sin

((ωc − 3ωm) t

)]+ J4(β)

[sin

((ωc + 4ωm) t

)+ sin

((ωc − 4ωm) t

)]+ · · ·

},

which is infinite, of course. However, only a little group of members ofthe sequence is necessary to represent the frequency-modulated signal– see the Bessel functions.

Page 13: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 5 of 11

Go Back

Full Screen

Close

Quit

The modulating LF signal and frequency-modulated HF carrier canbe demonstrated using the following figure:

t

t

Modu

lating

Modu

late

d

fc

fm

= 24, β = 500

Page 14: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 6 of 11

Go Back

Full Screen

Close

Quit

The plot of the phase-modulated carrier was created using the follow-ing MetaPost-language code:

path p;

color c;

c:=(0.0,0.0,0.666);

p:=(0,0)

for ix=0 upto 1440/24:

...(4ix,40sind6ix)

endfor;

draw p withcolor c;

draw (0,-100)

for ix=0 upto 1440:

...(ix/6,-100+40sind(6ix+500sind0.25ix))

endfor;

Page 15: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 7 of 11

Go Back

Full Screen

Close

Quit

Computed components’ amplitudes relative to the unmodified carrieramplitude (i.e., the Bessel functions of the first kind) can be demon-strated by the following standard plot:

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

J0(β)

J1(β)J2(β)

J3(β) J4(β) J5(β) J6(β)

Modulation index (β)

Rel

ativ

eto

unm

odu

late

dca

rrie

r(J

n(β

))

Page 16: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 8 of 11

Go Back

Full Screen

Close

Quit

The graph of Bessel functions has been created using the followingC-language code (the Watcom compiler used):

#include <math.h>

#include <stdio.h>

const int bess_max = 8, beta_max = 8;

const int point_per_1 = 10;

void main () {

int np = point_per_1 * beta_max + 1, point, i_bess;

double beta, bess;

for (point = 0; point < np; point++) {

beta = (double)beta_max * point / (np-1);

bess = j0(beta);

printf("%lg %lg\n", beta, bess);

}

putchar(’\n’);

Page 17: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 9 of 11

Go Back

Full Screen

Close

Quit

for (i_bess = 1; i_bess <= bess_max; i_bess++) {

for (point = 0; point < np; point++) {

beta = (double)beta_max * point / (np-1);

bess = jn(i_bess, beta);

printf("%lg %lg\n", beta, bess);

}

putchar(’\n’);

}

}

Page 18: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 10 of 11

Go Back

Full Screen

Close

Quit

4. Frequency Domain

As shown, the theoretical infinite spectrum can be limited in an em-pirical way. For this purposes, the Carson formula can be used (here,the formula for FM is defined)

BFM = 2 (∆fmax + fm) = 2(1 + β)fm,

because the modulation index definition

β ,∆fmax

fm

Page 19: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 10 of 11

Go Back

Full Screen

Close

Quit

4. Frequency Domain

As shown, the theoretical infinite spectrum can be limited in an em-pirical way. For this purposes, the Carson formula can be used (here,the formula for FM is defined)

BFM = 2 (∆fmax + fm) = 2(1 + β)fm,

because the modulation index definition

β ,∆fmax

fm

For the European standards, maximum LF frequency fm = 15 kHzand β = 5 are used. Therefore, the bandwidth for one transmitter isnecessary

2× (1 + 5)× 15 kHz = 180 kHz,

which is worse than that in AM.

Page 20: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 10 of 11

Go Back

Full Screen

Close

Quit

4. Frequency Domain

As shown, the theoretical infinite spectrum can be limited in an em-pirical way. For this purposes, the Carson formula can be used (here,the formula for FM is defined)

BFM = 2 (∆fmax + fm) = 2(1 + β)fm,

because the modulation index definition

β ,∆fmax

fm

For the European standards, maximum LF frequency fm = 15 kHzand β = 5 are used. Therefore, the bandwidth for one transmitter isnecessary

2× (1 + 5)× 15 kHz = 180 kHz,

which is worse than that in AM. However, the energetic properties ofFM are (much more) better than those in AM.

Page 21: Angle Modulation - radio.feld.cvut.czradio.feld.cvut.cz/personal/dobes2/(3)PM.pp4.pdf · PM(t) = V c sin ω ct+βsin(ω mt), where β is the modulation index, which is the peak phase

Outline

Initial Formulae

Final Time Domain . . .

Frequency Domain

Home Page

JJ II

J I

Page 11 of 11

Go Back

Full Screen

Close

Quit

The spectral and energetic properties can be demonstrated using thecomponents’ histogram – see Bessel functions (again, here for FM):

J 0(5

)

−J 1

(5)

J 1(5

)

J 2(5

)

J 2(5

)

−J 3

(5)

J 3(5

)

J 4(5

)

J 4(5

)

−J 5

(5)

J 5(5

)

J 6(5

)

J 6(5

)

−J 7

(5)

J 7(5

)

J 8(5

)

J 8(5

)

f c

f c−

f m

f c+

f m

f c−

2f m

f c+

2f m

f c−

3f m

f c+

3f m

f c−

4f m

f c+

4f m

f c−

5f m

f c+

5f m

f c−

6f m

f c+

6f m

f c−

7f m

f c+

7f m

f c−

8f m

f c+

8f m

BFM = 2fm(1 + β)∣∣β=5

= 12fm

f