156
Angle-resolved photoemission spectroscopy (ARPES) Daniil Evtushinsky Kourovka, 1 st of March 2012

Angle-resolved photoemission spectroscopy (A RPES)sadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · 2012. 2. 29. · Band dispersion from ARPES k y k x t | ky ky kx 45.8 45.6 45.4-15

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

  • Angle-resolvedphotoemission spectroscopy

    (ARPES)

    Daniil Evtushinsky

    Kourovka, 1st of March 2012

  • Angle-resolved photoemission

    sample

    i

  • Angle-resolved photoemission

    sample

    i

    h

  • Angle-resolved photoemission

    sample

    fi

    i + h – A = f

    h

  • Angle-resolved photoemission

    sample

    kfki

    h

    i + h – A = fk||i = k||f

  • Momentum conservation

  • Momentum conservationfor semi-infinite case

  • Angle-resolved photoemission

    sample detector

    kf

    h

    ki

  • Angle-resolved photoemission

    sample detector

    kf

    h

    ki

  • Angle-resolved photoemission

    sample detector

    kf ~1/f

    h

    ki

    E

  • Angle-resolved photoemissionspectroscopy (ARPES)

  • BESSY 13 station

  • Scienta electron analyzer

  • Sample preparation

  • Sample preparation

  • e-

    UE 112 LowE1meV*10JANIS1K

    SES R40001meV*0.1°

    BESSY 13 station

  • Unitary ARPES image

    Electronic band dispersion

  • Unitary ARPES image

  • Band dispersion from ARPES(

    k y)

    k x=c

    onst

    |

    ky

    ky

    kx

    45.8

    45.6

    45.4

    -15 -10 -5 0 5 10 15

    3500

    3000

    2500

    2000

    1500

    1000

    500

    min

    max

    ky

    kx

    (kx, ky)

    (kx, ky)=0

    2H-TaSe2

  • kxk y

    EK

    TiSe2

    Another typical experimentaldata set: 1T-TiSe2

  • 151050-5-1 0

    95

    94

    93

    92

    91

    Kin

    etic

    ene

    rgy

    (eV

    )

    Momentum

    kxk y

    EK

    TiSe2

    Another typical experimentaldata set: 1T-TiSe2

  • Beamline

  • Excitation energy range5.

    85.

    65.

    45.

    25.

    0

    Kine

    tic e

    nerg

    y (e

    V)

    -5 0 5

    h=9 eV

    Bi2Se3

    BSCCO

    h=200 eV

  • Cuprates

  • Fermi surface

    Aebi et al. (1996) Borisenko et al. (1999)

  • d-wave

    Shen et al. (1993) Ding et al. (1996)

  • Effects of interaction with bosonic mode

    Inosov et al., PRB (2006)Fedorov et al. (1999)

  • Pseudogap

    Kondo et al., Nature (2009)

  • ARPES data analysis

  • Ideal and measured signal

  • Nodal Direction of cuprates

    No gap

  • Voigt fit of energy-momentum cut

    Evtushinsky et al., PRB (2006)

  • Spectral Function Extraction fromARPES Data

    I(k, ) A(k, )R(k, )

    Inte

    nsity

    -0.05 0.00 0.05

    k - km (Å-1)

    L G

    - 0.01 eV

    - 0.1 eV

    We measure I(k, )We are interested inA(k, )We need to remove R(k, )

  • Spectral line shapef --- LorentzianR --- Gaussian

    g --- Voigt profile

    Voigt profile in optical spectroscopy

  • Linewidthfrom Voigt Fit

    60

    50

    40

    30

    20

    10

    0

    HW

    HM

    (1/

    Å)

    -0.3-0.2-0.10.0(eV)

    Voigt fit:

    WV WG WG

    f

    WL WLf

    Lorentz fit:

    Wlor

    Bi-2212 OP 89K, T = 110–135 Ka

    Evtushinsky et al., PRB (2006)

  • 60

    50

    40

    30

    20

    10

    0

    HW

    HM

    (1/

    Å)

    -0.3-0.2-0.10.0(eV)

    Voigt fit:

    WV WG WG

    f

    WL WLf

    Lorentz fit:

    Wlor

    Bi-2212 OP 89K, T = 110–135 Ka

    Intrinsic width,WL

    Evtushinsky et al., PRB (2006)

    Linewidthfrom Voigt Fit

  • 60

    50

    40

    30

    20

    10

    0

    HW

    HM

    (1/

    Å)

    -0.3-0.2-0.10.0(eV)

    Voigt fit:

    WV WG WG

    f

    WL WLf

    Lorentz fit:

    Wlor

    Bi-2212 OP 89K, T = 110–135 Ka

    Resolution:WG=const

    Evtushinsky et al., PRB (2006)

    Linewidthfrom Voigt Fit

  • Comparison to the low-energy high-resolution data

    0.03

    0.02

    0.01

    0.00

    W (

    1/Å

    )

    -0.15-0.10-0.050.00 (eV)

    Kordyuk PRL 2004WL

    Koralek PRL 2006

    a

    Bi-2212 OP 89 KT = 30 K

    J. D. Koralek et al., PRL 2006

    R(h)-1/2

    R6eV LASER/R27eV synchrotron=0.25

  • Temperature dependence of scattering rateΣ"(ω=0,T)

    20

    15

    10

    5

    0HW

    HM

    (1/

    Å)

    3002001000

    T (K)

    Voigt Gauss Lorentz

    width decreases!Overall Intrinsic width increases

  • Temperature dependenceof scattering rate

    Evtushinsky et al., PRB (2006)

  • ARPES on charge-density-wavecompounds

  • Phase diagram

    Morosan et al., Nat. Phys. (2006); PRB (2008)

  • - π / a π / a0

    E F

    normal state, V=0

    - π / a π / a0

    4 V

    E F

    modulated state, V 0

    - π / a π / a0

    E F

    A(k, ω)

    Electronic structure modification bymodulating potential

  • Band dispersion of 2H-TMDs

  • 2H-TaSe2

  • CDW-induced Change in ElectronicStructure

    180K

    30K

  • New Parts of Fermi surface

  • Fermi surface nesting andsuperstructure formation

    ( ) ( ) k q

    nesting vectorin the momentum space

    periodicity of the superstructurein the coordinate space

  • Charge ordering in 2H-TaSe2 andNbSe2

    Davis et al.

    S. V. Borisenko et al., PRL (2008)

    S. V. Borisenko et al., PRL (2009)

    D. S. Inosov et al., NJP (2008)

    2H-TaSe2

    2H-NbSe2 2H-NbSe2

  • Magnetic ordering in Gd2PdSi3 andTb2PdSi3

    D. S. Inosov et al., PRL (2009)

  • Charge-orbital ordering inLa0.5Sr1.5MnO4

    D. V. Evtushinsky et al., PRL (2010)

  • Comparison to complementarymeasurements of electronic

    structure

    ARPESElectron transport,thermodynamics, etc.

    ε(k) Φ[ε(k)]dk∫

  • Electron dynamics in applied fieldBloch wave packet

  • Electronic response to the weakexternal field

    where

    Can be expressedin a similar way

    Resistivity , Hall coefficient RH, and magnetoresistance /

  • Calculated and measured RH forsimple metals

    RH (10-10 m3/C)

    T. P. Beaulac, PRB (1981)http://www.phys.ufl.edu/fermisurface/

  • Hall effect in 2H-TaSe2 and NbS2

    Evtushinsky et al., PRL (2008)

  • Hall effect in 2H-TaSe2 and NbS2

    Evtushinsky et al., PRL (2008)

  • Band dispersion of 2H-TMDs

    2H-NbSe2, 2H-NbS22H-TaSe2

  • ARPES on iron-basedsuperconductors

  • Iron-based superconductors

  • Fermi surfaces of iron-basedsuperconductors

    S. Raghu et al., PRB (2008)D. J. Singh, PRB (2008)A. Nekrasov et al., JETP (2008)…

  • Fermi surfaces of iron-basedsuperconductors

  • Electronic bands at Fermi level

    Ene

    rgy

    Momentum

    Γ X

  • Fermi surface of Ba1-xKxFe2As2

    (kx, ky)

    Zabolotnyy et al., Nature (2009)Evtushinsky et al., JPSJ (2011)

  • Zabolotnyy et al., Nature (2009);Physica C (2009)Evtushinsky et al., NJP (2009);JPSJ (2011)

    Band dispersion near Fermi levelin Ba1-xKxFe2As2 from ARPES

  • Propellers again

    T. Sato et al., 0810.3047

    17th of October

    L. Wray et. al.,arXiv:0812.2061

    11th of December15th of August

    L. Wray et al.,arXiv:0808.2185

    V. B. Zabolotnyy et al.,arXiv:0808.2454

    18th of August

  • Hall and FS in parent

  • Borisenko et al., PRL (2009)

    LiFeAs: no nesting, no magnetism,superconductivity

  • LiFeAs map

  • Band renormalization in LiFeAs

    ~3

  • Superconducting gap extractionfrom ARPES spectra

  • Opening of the superconducting gapin electronic dispersion

    TTc

  • Superconducting gap in ARPES spectra

    15.68eV

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    827

    826

    825

    824

    823

    Inte

    nsity

    (ar

    b. u

    .)

    15.68eV15.6615.6415.6215.60

    Kinetic energy (eV)

    T=1K

  • Superconducting gap in ARPES spectra

    15.67

    15.66

    15.65

    15.64

    15.63

    Kine

    tic e

    nerg

    y (e

    V)

    0.50ky, 1/Å0.450.400.350.30

    Momentum (1/Å)

    Fermi level

    15.68eV

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    T=1K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    300

    250

    200

    150

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=22K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    300

    250

    200

    150

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=22K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    350

    300

    250

    200

    150In

    tens

    ity (

    arb.

    u.)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=20K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    500

    400

    300

    200In

    tens

    ity (

    arb.

    u.)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=18K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    600

    500

    400

    300

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=16K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    600

    500

    400

    300

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=14K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    600

    500

    400

    300

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=12K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    600

    500

    400

    300

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=10K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    500

    400

    300

    200In

    tens

    ity (

    arb.

    u.)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=8K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    500

    400

    300

    200In

    tens

    ity (

    arb.

    u.)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=6K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    500

    400

    300

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=4K

  • Superconducting gap opening inARPES spectra

    15.74eV

    15.72

    15.70

    15.68

    15.66

    15.64

    15.62

    15.60

    Kine

    tic e

    nerg

    y (e

    V)

    0.7ky, 1/Å0.60.50.40.30.2

    Momentum (1/Å)

    600

    500

    400

    300

    Inte

    nsity

    (ar

    b. u

    .)

    15.74eV15.7215.7015.6815.6615.6415.6215.60

    Kinetic energy (eV)

    T=2K

  • Gap extraction from ARPES dataFit of IEDC

    Evtushinsky et al., PRB (2009)Dynes et al., PRL (1978)

  • Ene

    rgy

    Momentum

    Gap extraction from ARPES data

    Evtushinsky et al., PRB (2009)Dynes et al., PRL (1978)

    below Tc

    Ene

    rgy

    ? = 10 meV

    = 10 meV

    Fit vs. Symmetrization

  • Superconducting gapin Ba1-xKxFe2As2

  • Fermi surfaces of iron-basedsuperconductors

  • Hole-doped BaFe2As2

  • Superconducting gap distributionfor Ba1-xKxFe2As2 (Γ FS sheets)

  • Hole-doped BaFe2As2

  • Gap on propeller-like structure

  • Hole-doped BaFe2As2

  • Gap on propeller-like structure

  • Gap anisotropy

  • Anisotropy of gap for -barrels

  • Momentum dependence of thesuperconducting gap in Ba1-xKxFe2As2

  • Fermi surface and gap distribution incuprate superconductors

  • Superconducting gap in LiFeAs from fit ofARPES spectra

  • Superconducting gap of 1.7meV in underdopedBa1-xNaxFe2As2 with Tc=10K

  • Evtushinsky et al., NJP (2009)

    Coupling strength, 2/kBTc, in iron-arsenidesuperconductors

    P. Szabo et al., PRB (2009)

    Ba1-xKxFe2As2

    R. S. Gonnelli et al., PRB (2009)

    LaFeAsO1−xFx SmFeAsO1−xFx

    R. S. Gonnelli et al., Physica C (2009)

    Ba1-xKxFe2As2

    C. Ren et al., PRL (2008)

    Ba1-xKxFe2As2

  • Comparison to complementarymeasurements of electronic

    structure in superconducting state

    ε(k), (k) Φ[ε(k), (k)]dk∫

    ARPESSR, Hc1,specific heat, etc.

  • Superfluid density in Ba1-xKxFe2As2 fromARPES

    Khasanov et al., PRL (2009)Evtushinsky et al., NJP (2009)

    Chandrasekhar and Einzel, Ann. Physik (1993)

    Superfluid densityin LiFeAs

    Inosov et al., PRL (2010)

  • 3D

  • Sensitivity to 3D electronic structurevia scanning h

    Inosov et al., PRB (2008)

  • kz-dispersion in iron arsenides

  • kz-dispersion in iron arsenides

  • kz-dependence of the superconductinggap in BKFA

  • kz-dependence of the superconductinggap in BKFA

  • 3D band structure

  • Comparison of calculated andmeasured band dispersions

    Yaresko (2011)

  • Comparison of calculated andmeasured band dispersions

  • Tc = 38K

    T = 1K

    Comparison of calculated andmeasured band dispersions

  • Hole-doped BaFe2As2

  • Comparison of calculated andmeasured band dispersions

  • Zeroing matrix element due tosymmetry reasons

    wave, propagatingto detector

    initial state of electronin crystal

    polarization ofincoming light

  • Zeroing matrix element due tosymmetry reasons

  • Comparison between of and measuredband dispersions

  • Special role of iron 3dxz,yz orbitals inmagnetism

    Yi et al., PNAS (2011)

  • Node-like behavior in BFAP

    al. et Feng (2011)

  • Ba1-xNaxFe2As2

  • Ba1-xNaxFe2As2hν=80eVhν=80eV

    Ba1-xKxFe2As2

    Fermi surface

  • Gap on the inner Γ-barrel in Ba1-xNaxFe2As2

    2500

    2000

    1500

    1000

    500

    40.8640.8440.8240.8040.78eV

    EDC85 7K EDC86 16K EDC87 26K EDC88 30K EDC89 35K EDC90 40K EDC91 45K

    40.90

    40.85

    40.80

    40.75

    40.70

    40.65

    40.60

    eV

    151050-5-10-15deg

    1200

    1000

    800

    600

    400

    200

    40.9040.8540.8040.7540.7040.6540.60eV

    40.90

    40.85

    40.80

    40.75

    40.70

    40.65

    40.60

    eV

    151050-5-10-15deg

    2000

    1500

    1000

    500

    40.9040.8540.8040.7540.7040.6540.60eV

  • Gap on the electron-like pocket inBa1-xNaxFe2As2

    45.95

    45.90

    45.85

    45.80

    45.75

    45.70

    eV

    -6 -4 -2 0 2 4 6deg

    1200

    1000

    800

    600

    400

    200

    45.9545.9045.8545.8045.7545.70eV

  • Gap on the outer Γ-barrel in Ba1-xNaxFe2As2

    80

    60

    40

    20

    0

    -20

    meV

    -0.6-0.5-0.4-0.3-0.2-0.10.0ky, 1/Е

  • Surface sensitivity

  • Surface component of photoemissionsignal in YBCO

    V. Zabolotnyy et al., PRB (2006)

  • Surface component in BKFA

  • Surface component in BKFA

  • Surface component in BKFA

  • Surface component in BKFA

  • Absence of surface states in LiFeAs

  • Absence of surface states in LiFeAs

    bulk slab

    Lankau et al., PRB (2011)

  • Surface sensitivity:

    •no surface states at the Fermi level observedin 111 and 122 iron arsenides

    •surface layer may be non-superconducting,but band dispersion doesn’t differ from the bulk

  • SrPd2Ge2

    Kim et. al., PRB (2012)

    Experiment Theory

  • SrPd2Ge2

    Kim et. al., PRB (2012)

    Experiment Theory

  • •Completely 3D FS•No band renormalization•Likely conventional superconductivity

    Kim et. al., PRB (2012)

    SrPd2Ge2

  • Mode

  • DOS of stronglycoupled

    superconductor

  • Mode effects on the spectra ofBa1-xKxFe2As2 below Tc

    kink_energy = 23 meV

    Christianson et al., Nature (2008)

    = 10 meVM = 13-14 meV

  • Kink in Ba1-xNaxFe2As2

    1K

    1K40K

    4.54.03.53.02.5

    40.82

    40.80

    40.78

    40.76

    eV

    40.84

    40.82

    40.80

    40.78

    40.76

    40.74

    40.72

    eV

    7654321deg

    40.84

    40.82

    40.80

    40.78

    40.76

    40.74

    40.72

    eV

    7654321deg

    40K

  • Mode effect at X-pocketin Ba1-xKxFe2As2

  • Tc = 38K

    T = 40K T = 1K

  • T = 40K T = 1K

    Fusion of bogoliubons

  • Fusion of bogoliubons

  • Fusion of bogoliubons

  • Fine structure of electronic spectrum below Tc

  • Temperature dependence: fastersaturation for the larger gap

  • Relation between energy scales ofband structure and superconductivity

  • Conclusions for iron-based• Various Fermi surface shape for different iron-based

    superconductors

    • Large and small superconducting gaps in Ba1-xKxFe2As2and other materials, large 2/kTc

    • Correlation of superconducting gap magnitude withorbital composition: importance of iron 3dxz,yz

  • Acknowledgements

    V. B. ZabolotnyyA. A. KordyukT. K. KimJ. Maletz

    S. AswarthamI. MorozovS. WurmhelG. BehrC. HessR. HübelA. KoitzschM. Knupfer

    B. Büchner

    S. V. Borisenko

    A. VarykhalovE. RienksR. Follath

    DFG Research Unit 538

    D. S. InosovA. N. YareskoA. V. BorisG. L. SunD. L. SunV. HinkovC. T. LinB. Keimer

    H. Q. LuoZ. S. WangH. H. Wen

  • Acknowledgements

    S. V. Borisenko

    A. A. Kordyuk

    V. B. Zabolotnyy

    R. Follath

    B. Büchner

  • thank you for your attention

  • blank

    slide