44
LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture, Microstructure & Anisotropy, Fall 2009 A.D. Rollett, P. Kalu Carnegie Mellon MRSEC

Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

  • Upload
    others

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

Anisotropy part 2: Using LApp-

Los Alamos polycrystal plasticity

27-750, Fall 2009 Texture, Microstructure & Anisotropy,

Fall 2009 A.D. Rollett, P. Kalu

CarnegieMellon

MRSEC

Page 2: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

2

Objective •  The objective of this lecture is to demonstrate how to

run LApp and obtain useful results in terms of texture prediction and anisotropic plastic properties.

•  LApp calculates the result (in terms of stress state) of applying a given strain (increment) to a set of orientations (grains). The number of grains can be varied from 1 to many thousands. The code can be used iteratively to find a macroscopic strain state that satisfies a certain applied stress state.

Page 3: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

3

Principles of LApp •  The principles governing the calculations in LApp are

described in more detail in subsequent lectures. •  This code is based on the Taylor assumption: each

grain/orientation experiences the same strain as the macroscopic body being deformed. A relaxation of this boundary condition is allowed for (“relaxed constraints”).

•  Since the strain (rate) is known for each grain, the objective of the calculation is therefore to obtain the stress state in each grain that permits the given strain to occur. This leads to an implicit equation relating strain rate to stress state.

Page 4: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

4

Input Files •  sxin lists of slip systems (for cubic

crystals, also lists vertices on the single crystal yield surface).

•  texin list of orientations; Euler angles with a weight (sometimes also state parameters).

•  bcin boundary conditions (strain and stress).

•  propin stress-strain constitutive relations (hardening).

Page 5: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

5

LApp Flow Chart

grain, slip!geometry

maxwork

sxin!bcin!texin!propin

sss

newton

orient

harden

hist!lapp.dat!texout!anal

input!files

preparation

Bishop!-Hill solution

rate-!sensitive!solution

update!orientation!of each!grain

update!hardening!on each!slip system

output!files

stop

Page 6: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

6

sxin: slip geometry cubic lattices (this is fcc; for bcc, LApp gives you option to

transpose) 1 28 =nmodes,nvertex. mode nsys ktwin twsh -corr (all numbers

must appear)

1 12 0 0.0 0.0 1 1 -1 0 1 1 +pk -pk 1 1 -1 1 0 1 +pq -pq 1 1 -1 1 -1 0 +pu -pu 1 -1 -1 0 1 -1 +qu -qu 1 -1 -1 1 0 1 +qp -qp 1 -1 -1 1 1 0 +qk -qk 1 -1 1 0 1 1 +kp -kp 1 -1 1 1 0 -1 +ku -ku 1 -1 1 1 1 0 +kq -kq 1 1 1 0 1 -1 +uq -uq 1 1 1 1 0 -1 +uk -uk 1 1 1 1 -1 0 +up -up

fcc: slip� planes

fcc: slip�directions

Slip�Systems

Page 7: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

7

sxin, contd. 28 =nvertex 8 1 2 0 0 0 0 2 3 5 6 9 8 11 12 8 33 0 2 0 0 0 1 15 16 18 19 21 10 24 8 65 -2 -2 0 0 0 13 14 4 17 7 20 22 23 6 97 0 0 1 1 1 1 2 17 18 7 9 25 25 6 103 0 0 1 -1 1 1 15 7 20 11 12 25 25………

number of active systems

stress vector

IDs of active�slip systems

8-fold �vertex

Page 8: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

8

propin: strain hardening properties Al : for Stout's 1100 Al, kond=2 for later batch (ten,com,chd) c 1 = lattice, nmodes. MODEs: 1 - no latent hardening mode rs tau+ tau- h(m,1) h(m,2) h(m,3)........ 1 0.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 STRESS LEVEL AND HARDENING LAWS: kond RATEref Tref mu[MPa] tau0[MPa] th0/mu tauv[MPa] th4/th0 kurve 1 1.0e-03 300. 25300. 20. 0.005 30. 0.04 1 kurve ntaun : DISCRETE HARDENING of TAUref, ntaun value pairs 1 30 taun harn: (taun=(TAUref-TAU0)/tauv, harn=th/th0) .02 1.00 .04 .96 .08 .92……… 1.40 .06 1.60 .05

Mode/deformation system Rate sensitivity Relative hardening rates on each slip system

Page 9: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

9

Hardening parameters kond system number RATEref strain rate at which properties given Tref reference temperature mu[MPa] shear modulus (µ) tau0[MPa] yield stress (initial critical resolved shear stress) th0/mu hardening rate over modulus in Stage II tauv[MPa] Voce stress (saturation, or asymptotic flow stress) th4/th0 ratio of hardening in Stage IV to that in Stage II Kurve ID number of discretized hardening rate versus stress

curve

Page 10: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

10

texin: initial orientations, grain shape

texran :use any portion (only file when less than tetr.cry.sym.) Evm F11 F12 F13 F21 F22 F23 F31 F32 F33 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 Kocks:Psi Theta phi weight (up to 6 state params, f8.2) XYZ= 1 2 3 158.61 44.96 -161.52 1.0 1. 1. 176.88 77.35 -171.43 1.0 1. 1. 30.33 72.20 158.06 1.0 1. 1. -145.33 59.09 -143.55 1.0 1. 1. 130.84 35.92 150.44 1.0 1. 1.

99.57 79.29 10.73 1.0 1. 1. 105.42 22.61 6.19 1.0 1. 1.

Euler angles Weight

State Parameters

Page 11: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

11

bcin: boundary conditions <ten;com;rol;tor>,iplane,iline,evmstep,updt(g.a.),RCacc 3 3 1 0.02500 0.0 0.0 av.strain dir.<33; (22-11); 2*23; 2*31; 2*12>; epstol 1.000 1.000 0.000 0.000 0.000 0.5 exp'd stress dir.<33-(11+22)/2;(22-11)/2;23;31;12>,99 if ?;sigtol 99.0 99.0 99. 99.0 99.0 0.05

Stress components Strain components

Strain increment

Test type

ε33, ε22-ε11, 2ε23, 2ε31, 2ε12 σ33-(σ22+σ11)/2, (σ22-σ11)/2, σ23, σ31, σ12

“99” means component can take any value

Page 12: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

12

LApp dialog KRYPTON.MEMS.CMU.EDU> lapp68

(C)opyright 1988, The Regents of the University of California. This software was produced under U. S. Government contract by Los Alamos National Laboratory, which is operated by the University of California for the U. S. Department of Energy. Permission is granted to the public to copy and use this software without charge, provided that this Notice and the above statement of authorship are reproduced on all copies. Neither the Government nor the University makes any warranty, express or implied, or assumes any liability or responsibility for the use of this software. ************************************************************** *** LA-CC-88-6 *** *** Los Alamos Polycrystal Plasticity simulation code *** U.F. Kocks, G.R. Canova, C.N. Tome, A.D. Rollett, S.I. Wright* *** Center for Materials Science *** *** Los Alamos National Laboratory *** *** Los Alamos, New Mexico 87545, USA *** *** Please advise Fred Kocks of any errors you find: *** *** Fax: (1)505-665-2992; Email: [email protected] *** *** GTDA *** ************************************************************** <RETURN>

User responses �in red

Page 13: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

13

LApp: 2

LApp Version 6.8, 22 Sep 1995 Needs single crystal deformation modes in SXIN, kinetics and hardening data in PROPIN, grain state data in TEXIN: 3 angles;grwt;state pars. (all must be in prescribed format)

TEXIN file= texlat.wts from texlat.write [viii 00]

Enter title (8 chars.): Enter a (short!) title

Page 14: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

14

ksys: Deformation System

Enter KSYS: 1 for FCC {111}<110> slip (perhaps w/LH) 2 for BCC restricted glide on 110 3 for BCC pencil glide 4 for FCC card glide Enter a number for the lattice type (fcc vs. bcc) and the

restriction on slip plane (bcc)/ direction (fcc). Typical: use “1” for fcc, and “3” for bcc; at ambient conditions,

fcc metals deform in restricted glide, whereas bcc metals typically deform in pencil glide.

Page 15: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

15

ksol: Solution procedure Enter KSOL: 0 for Bishop-Hill yield stress only, no evolutions 1 for BH guess, then rate-sensitive Newton solution 2 for BH guess on first step only, then recursive 3 for Sachs guess on first step only, then recursive 4 for Sachs guess on every step: (recommended: 1) (need 3 or 4 for Latent Hardening) 1 “0” is the classical Taylor model in the “rate-insensitive limit”. “2” and “3” allow for more efficient calculation, based on the (reasonable) assumption

that the previous solution is close to the solution sought in the current step.

Page 16: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

16

exponent: Rate Sensitivity PROPIN: propfe : for Salsgiver's Fe-Si,exper.Stout&Lovato 8/89 mode rs tau+ tau- h(m,1) h(m,2) h(m,3)........ Value for max. rate sensitivity exponent <default 33>?

33

kond RATEref Tref mu[MPa] tau0[MPa] th0/mu tauv[MPa] th4/th0 kurve(or LH)

1 1.0e-03 300. 70000. 150. 0.0045 120. 0.04 1

The exponent controls the rate sensitivity of the single crystal yield surface: the lower the exponent, the more rounded the SXYS. In general, the results are not sensitive to the value of the exponent, unless you use a value less than 10.

Page 17: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

17

kpath: type of test Reenter TTY input <1>, or same as in preceding test <0> ?

(Get to choose nsteps and YS-space anyway)

1 (0 jumps to last question) Enter strain path (KPATH): 1: many steps in one straining direction (need BCIN)

2: 2-D yield surface probe 3: 3-D yield surface probe 4: Lankford Coefficients R(angle) in the 3-plane :

1 (i.e. texture evolution)

Page 18: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

18

hardening law REFERENCE STRESS AND ITS HARDENING LAW: Enter 0 for no hardening, 1 " " " but stress scale (tau0),

2 for linear hardening (stage II: th0), 3 for Voce law (stage III: tauv), 4 for Voce law plus stage IV (th4), 5 for digital hardening according to KURVE: :

1 (answer does not affect texture development, only hardening)

Page 19: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

19

krc, ngrains Relaxed Constraints when applicable <KRC=1> or Full Constraints <0>?

0 (boundary conditions on grain) ngrains <default = whole file,.le.1152> ?

999 (defaults to max. number of orientations in texin)

On modern computers, the maximum number of grains can be easily extended to >100,000.

Page 20: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

20

anal Complete file ANAL on the first how many <0,9,ngrains>?

0 (use for debugging, checks)

mode,systems= 1 12 n , b , nrs : 0.577 0.577 -0.577 0.000 0.707 0.707 33 n , b , nrs : 0.577 0.577 -0.577 0.707 0.000 0.707 33 n , b , nrs : 0.577 0.577 -0.577 0.707 -0.707 0.000 33 n , b , nrs : 0.577 -0.577 -0.577 0.000 0.707 -0.707 33 n , b , nrs : 0.577 -0.577 -0.577 0.707 0.000 0.707 33 n , b , nrs : 0.577 -0.577 -0.577 0.707 0.707 0.000 33 n , b , nrs : 0.577 -0.577 0.577 0.000 0.707 0.707 33 n , b , nrs : 0.577 -0.577 0.577 0.707 0.000 -0.707 33 n , b , nrs : 0.577 -0.577 0.577 0.707 0.707 0.000 33 n , b , nrs : 0.577 0.577 0.577 0.000 0.707 -0.707 33 n , b , nrs : 0.577 0.577 0.577 0.707 0.000 -0.707 33 n , b , nrs : 0.577 0.577 0.577 0.707 -0.707 0.000 33

Page 21: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

21

bcin - echo input input boundary conditions BCIN: c <ten;com;rol;tor>,iplane,iline,evmstep,updt(g.a.),RCacc c 3 3 1 0.0250 0 0.000 c av.strain dir.<33; (22-11); 2*23; 2*31; 2*12>;

epstol c -1.000 -1.000 0.000 0.000 0.000 0.50 c exp'd stress dir.<33-(11+22)/2;(22-11)/2;23;31;12>,99

if ?; sigtol c 99.000 99.000 99.000 99.000 99.000 0.05

Page 22: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

22

nsteps How many steps? -- Write every ? steps :

40,40

Thank you, now relax that I take care

For a step size of 2.5%, 40 steps required per unit strain; if the print interval is less, texout will have multiple sets of grains.

Page 23: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

23

subroutines subroutine graxes(mupt,vfrc,irc1,irc2,rcacc) subroutine maxwork(icase,tayfac,ng,sirc1,sirc2) subroutine sss(nsys,ksys,smax,niter,evmstep) subroutine newton(niter,ksys,nsys) subroutine simq(aa,bb,n,ks) subroutine sigbc(sdirav,sigtol,itsbc) subroutine harden

(rlhm,khar,iref,ntaun,klh,namodes,emu)

Page 24: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

24

subroutines, contd. subroutine latent2(h,hq) subroutine update(eps,iline,iplane) subroutine twinor(ktw,ng,nomen,dbca) subroutine orient(iline,iplane) subroutine vecpro(k) subroutine euler(iopt,nomen,d1,d2,d3,ior,kerr)

subroutine vectra(q,d) subroutine vec5ten

Page 25: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

25

output; kpath=1 test LApp68 14-Apr-01 c texlat.wts from texlat.write [viii 00] Evm F11 F12 F13 F21 F22 F23 F31 F32 F33

nstate 0.000 50.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.020 2

c krc, ksys, klh, ksol,nrslim, khar,ngrains, iper,lsym, vfRC c 0 1 0 1 33 1 999 1 2 3 0 0.00 **************************************************************** Evm= 0.000 M= 2.55 Svm= 394. vfRC=0.00 itSbc= 0 Niter= 9 0.41 1.02=max

(dev&bimod Evm= 0.025 M= 2.54 Svm= 392. vfRC=0.00 itSbc= 0 Niter= 9 0.43 1.02=max

(dev&bimod Evm= 0.050 M= 2.53 Svm= 391. vfRC=0.00 itSbc= 0 Niter= 8 0.44 1.02=max

(dev&bimod

Strain, Taylor factor, von Mises equivalent stress, vol frac in RC iterations in sigbc, <iters.in sss>, standard deviation in stress

Page 26: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

26

output files •  texout similar to texin; contains

list of orientations corresponding to texin, rotated by accumulated slip.

•  anal details on a few grains •  hist history of stress and strain

used/calculated in each step

Page 27: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

27

hist: “history” c Result of SSS( 9 newton iters.avg.) : c av strain dir -0.866 -0.500 0.000 0.000 0.000 c av strain dev 0.002 0.000 0.000 0.000 0.000 c av stress dir -0.821 -0.522 -0.226 0.053 -0.016 c av stress dev 0.281 0.412 0.293 0.415 0.230 avg:

0.326 c 4th momentnor 0.966 1.024 0.876 0.914 0.949 c av CA deviatoric stress -0.297 0.039 -0.314 -0.171

-0.884 c av CA stress(ii) (SSS+mean) 0.094 0.149 -0.243 c F 50.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.020 c Evm SIGvm TAYav TAYrs GAMav Savdev vfRC a#sas #pl LHR< =0.000 393.6 2.55 2.40 0.00 0.33 0.00 4.59 3.05 1.00 c Evm nreor atwfr etwfr mode-repartition: n(+ -) $0.000 0 0.00 0.00 0.43 0.57

Page 28: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

28

texout: final orientations test texout LApp68 14-Apr-01 c texlat.wts from texlat.write [viii 00] c <ten;com;rol;tor>,iplane,iline,evmstep,updt(g.a.),RCacc c 3 3 1 0.0250 0 0.000 c av.strain dir.<33; (22-11); 2*23; 2*31; 2*12>; epstol c -1.000 -1.000 0.000 0.000 0.000 0.50 c exp'd stress dir.<33-(11+22)/2;(22-11)/2;23;31;12>,99 if ?; sigtol c 99.000 99.000 99.000 99.000 99.000 0.05 c propfe : for Salsgiver's Fe-Si,exper.Stout&Lovato 8/89 c mode rs tau+ tau- h(m,1) h(m,2) h(m,3)........ c 1 0.02 1.00 1.00 1.00 c kond RATEref Tref mu[MPa] tau0[MPa] th0/mu tauv[MPa] th4/th0 kurve(or LH) c 1 0.1E-02 300. 70000. 150. c krc, ksys, klh, ksol,nrslim, khar,ngrains, iper,lsym, vfRC c 0 1 0 1 33 1 999 1 2 3 0 0.00 Evm F11 F12 F13 F21 F22 F23 F31 F32 F33 nstate 1.000117.778 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.008 2 Bunge:phi1 PHI phi2 ,,gr.wt., tau, taus;taumodes/tau; XYZ=1 2 3 0.00 70.00 0.00 1.00 150.00 0.00 1.07 70.00 1.07 1.00 150.00 0.00 2.21 70.00 2.21 1.00 150.00 0.00

Re-statement of the input in bcin

Page 29: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

29

Output of LApp

•  Figure shows pole figures for a simulation of the development of rolling texture in an fcc metal.

•  Top = 0.25 von Mises equivalent strain; 0.50, 0.75, 1.50 (bottom).

•  Note the increasing texture strength as the strain level increases.

Increasing strain

Graphics: wts2pop, then pf2ps

Page 30: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

30

r-value calculation •  The next sequence gives an example of

how to use LApp to calculate r-values based on a given texture (no evolution).

Page 31: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

31

kpath = 4 (r-values) Angle increment (degrees <15>) ?

15 (controls direction resolution) to what frac.accuracy of stress should I iterate?<0.01>

.02 (0.01= minimum practical value) What value of RCACC? (use 0 if in doubt) :

0 (trick for exaggerating relaxed constraints effect)

Page 32: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

32

kpath = 4, contd. Enforce sample symmetry for property calculations?

0: no 1, 2, or 3: diad on that axis (use 2 or 3 with TEXREG)

4: orthotropy LSYM=

0 (can add sample symmetry)

Page 33: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

33

output (kpath = 4) ang.fr.X1; r ; q ; shears(tension coords); tayfav;max(sdev&bimod); itsbc 0.000 0.727 0.421 0.395 -0.037 0.044 2.280 0.372 0.962 7 15.000 0.480 0.324 0.268 -0.129 0.111 2.440 0.362 1.002 10 30.000 0.299 0.230 0.045 -0.106 0.127 2.638 0.319 1.058 5 45.000 0.233 0.189 -0.250 -0.085 0.050 2.658 0.312 0.953 13 60.000 0.861 0.463 -0.322 -0.004 -0.068 2.712 0.332 0.973 5 75.000 2.109 0.678 -0.183 0.082 -0.045 2.693 0.385 1.003 6 90.000 2.811 0.738 0.094 0.102 0.003 2.664 0.372 1.017 4 ****************************************************************

r-bar, as calculated from an average of all q=-D22/D11 is 0.696

q = r/(1+r) this output is also recorded in lapp.dat

Page 34: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

34

R-value,q plotted (kpath = 4)

0

0.5

1

1.5

2

2.5

3

0 2 0 4 0 6 0 8 0

Lankford.example.data

Rq

Lank

ford

coe

ff. (R

), q

angleInput texture contained high fraction of Goss, giving rise to maximum in r-value at 90° to the rolling direction

Page 35: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

35

Yield Surface calculation •  The next sequence of slides shows how

to calculate the locus of points on a yield surface.

Page 36: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

36

kpath = 2 (2D yield surface) Enter strain path (KPATH): 1: many steps in one straining direction (need BCIN)

2: 2-D yield surface probe 3: 3-D yield surface probe 4: Lankford Coefficients R(angle) in the 3-plane :

2

Page 37: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

37

kpath = 2, contd. Relaxed Constraints when applicable <KRC=1> or Full Constraints <0>?

0 ngrains <default = whole file,.le.1152> ?

999 Complete file ANAL on the first how many <0,9,ngrains>?

0

Page 38: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

38

kpath = 2, contd. YS projection (0) or YS section (enter SIGTOL) ?

0 (typical to assume proj.)* you want tayfac <0> or stress [MPa] <1> ?

0 (stress proportional to <M>) Rate dep.on stresses only (0) or also on facets (1) ?

0 (allows contrast of Bishop-Hill soln. with RS solution)

* In order to obtain a result for which the only non-zero stress components (as opposed to strain components) are the two in the plane of interest (see later pages for this selection), choose “section” instead of “projection”.

Page 39: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

39

kpath = 2, contd. Angle increment in strain-rate space (>2 degrees:<5>)?

* Enter negative values if you want to scan +/- range *

15 (this is coarse: choose 2 for high resolution) Select one of the indices 0 for Cauchy(22) vs (11), with (33)=0 1 for pi plane -- 2 for S22-S11 vs Sij 3 for S11-S33 vs Sij -- 4 for S22-S33 vs Sij 5 for S11 vs Sij -- 6 for S22 vs Sij 7 for Sij vs S33 -- 8 for Sij vs Skl : 0 (as in most textbooks)

Page 40: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

40

kpath = 2, contd. Enforce sample symmetry for property calculations?

0: no 1, 2, or 3: diad on that axis (use 2 or 3 with TEXREG)

4: orthotropy LSYM=

0 (again, can compensate for a texture lacking the desired sample symmetry)

Page 41: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

41

lapp.dat KRYPTON.MEMS.CMU.EDU> more lapp.dat xs ys -xs -ys active_sys 2 3 4 5 6 7 8 9

0.93894 -4.58022 -0.93894 4.58022 1 2 3 4 5 6 7 8 9 10 11 12 0.68739 -2.21556 -0.68739 2.21556 1 2 3 4 5 6 7 8 9 10 11 12 1.12168 -2.00816 -1.12168 2.00816 1 2 3 4 5 6 7 8 9 10 11 12

1.62587 -1.66510 -1.62587 1.66510 1 2 3 4 5 6 7 8 9 10 11 12 1.80145 -1.44043 -1.80145 1.44043 1 2 3 4 5 6 7 8 9 10 11 12

stress components, + & -; active slip systems

To plot the complete yield surface, plot both ys versus xs, and -xs versus -ys (see example a few slides on from this one).

Page 42: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

42

hist (kpath = 2)

KRYPTON.MEMS.CMU.EDU> more hist nosort c ys HIST LApp68 14-Apr-01 c #dirs.,perp.; sub-space ;RC comps.;grains;vfRC;ksol;lsym c 12 0 1 1 2 0 0 999 0.00 2 0 -1.00000 0.00000 0.00000 0.00000 0.00000 2.83891 -4.58022 0.93894 -0.21041 0.01443 -0.19175 4.04711 -0.96593 0.25882 0.00000 0.00000 0.00000 2.92495 -2.21556 0.68739 -0.05986 -0.03260 -0.08404 0.51476

-0.86603 0.50000 0.00000 0.00000 0.00000 2.90462 -2.00816 1.12168 -0.05832 -0.06920 -0.06329 0.60977

(5) strain components; Taylor factor (5) stress components; standard deviation

Output contains pairs of lines:

Page 43: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

43

Yield Surface example (kpath=2)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

yield.surf.example.data

y s-ys

ys

x s

Page 44: Anisotropy part 2: Using LApp- Los Alamos polycrystal ...pajarito.materials.cmu.edu/rollett/27750/L12-LApp_tour_Aniso2-1Oct09.pdf · Using LApp- Los Alamos polycrystal plasticity

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

44

Summary •  The interface to the LApp code has been described

with examples of problems that can be computed. •  LApp is essentially a polycrystal plasticity code for

solving the Taylor/Bishop-Hill model. •  LApp can be used to compute the anisotropic

(plastic) properties of textured polycrystals, e.g. yield surfaces, r-values.

•  Other codes are required for different approaches to plastic deformation, e.g. self-consistent models, finite element models (incorporating crystal plasticity as a constitutive model).