64
AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) [email protected] 734-647-3530 Derek Posselt (Room 2517D, SRB) [email protected] 734-936-0502

AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) [email protected] 734-647-3530 Derek Posselt (Room 2517D, SRB) [email protected]

Embed Size (px)

Citation preview

Page 1: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

AOSS 401, Fall 2007Lecture 25

November 09, 2007

Richard B. Rood (Room 2525, SRB)[email protected]

734-647-3530Derek Posselt (Room 2517D, SRB)

[email protected]

Page 2: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Class News November 09, 2007

• Computing assignment– Second component assigned next week– Due 5 December (or thereabouts)– Involves writing a very simple numerical model…

• Important Dates: – November 12: Homework 6 due—questions?– November 16: Next Exam (Review on 14th)– November 21: No Class– December 10: Final Exam

Page 3: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Today

• Work through Homework 5

• Another perspective on planetary vorticity advection

• Finish discussion of QG omega equation

• Midlatitude cyclone energetics

Page 4: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

5.1) Homework ProblemIn pressure coordinates, the horizontal momentum equation is written as:

pfDt

Duk

u

Derive the equation for the conservation of vorticity. You should pursue the derivation until you have terms analogous to the divergence terms, tilting terms, and the baroclinic or solenoidal term (the term that included the pressure gradient). If there are additional or missing terms, then explain their presence or absence.

Page 5: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.1)

1. Recognize that we are in pressure coordinates

2. Split the equation into u- and v- components

xfv

Dt

Du

yfu

Dt

Dv

Page 6: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.1)

3. Differentiate the v-equation with respect to x and the u-equation with respect to y

xfv

Dt

Du

y

yfu

Dt

Dv

x

Page 7: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.1)

4. Subtract the u-equation from the v-equation and expand the material derivatives

x

fvp

u

y

uv

x

uu

t

u

y

yfu

p

v

y

vv

x

vu

t

v

x

Page 8: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.1)

5. Collect terms, use the definition of divergence and vorticity, and end up with

0

p

u

yp

v

xff

Dt

D V

No solenoidal term, as the equation is defined to be on a constant pressure surface

Page 9: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

5.2) Homework ProblemThis is a special homework problem. While we have not formally seen this equation, I think that we have the tools to do this problem.

Given the equation for the conservation of vorticity, ζ, where the prime represents a small quantity and the overbar represents a larger, mean quantity:

constant ,,, and 0 y

u

x

vvvuuuv

yv

xu

t

With the definition of the velocity field given below, show that the vorticity equation can be written as:

xv

yu

xxu

t

and where,02

What is the criterion for wave solutions to this equation?

Page 10: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.2)

1. Plug in the definitions for

2. Then plug in

3. and scale out terms that are products of perturbations

y

u

x

vvvuuu

,,

xv

yu

and

Page 11: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.2)(Lecture 22, slide 39…)

0))((

)Re(

)(

22

)(0

2

klkuk

e

xxu

t

g

tlykxi

g

Dispersion relation. Relates frequency and wave number to flow. Must be true for waves.

0))((

)Re(

0

22

)(0

2

klkuk

e

xxu

t

tlykxi

Page 12: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Solution to (5.2)

• Rearrange the dispersion relation to find

• Mean wind must be positive (from the west) for waves to form

)( 22 lkk

k

ku

Page 13: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Back to the Quasi-Geostophic System

Page 14: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Scaled equations in pressure coordinates (The quasi-geostrophic (QG) equations)

Dg

v g

Dt f0

k v a y

k v g

v g

1

f0

k

ua

x va

y p0

tv g

p

J

p

with R

c p

and stability parameter =RdTo

p

d ln0 dp

momentum equation

continuity equation

thermodynamicequation

geostrophic wind

Page 15: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Application of QG:Prediction of Atmospheric Flow

• Want to know how distribution of geopotential will change in the atmosphere– changes in pressure gradient force (jet

stream, convergence/divergence, cyclogenesis)

• Derived geopotential height tendency equation

Page 16: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Geopotential Tendency Equation

))((

)1

(

))((

20

2

00

202

p

f

p

ff

f

tp

f

p

g

g

V

V

f0 * Vorticity Advection

Thickness Advection

Page 17: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Advection of vorticity

ggggg vf VV )(

Advection of vorticity

Advection of relative vorticity

Advection of planetary vorticity

Page 18: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Advection of vorticity

Φ0 - ΔΦ

Φ0 + ΔΦ

Φ0

ΔΦ > 0

A

B

C

٠

٠

٠

x, east

y, north

L LH

ζ < 0; anticyclonic

ζ > 0; cyclonicζ > 0; cyclonic

Advection of ζ tries to propagate the wave this way

Advection of f tries to propagate the wave this way

Page 19: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

x, east

y, north

Advection of planetary vorticity

Start with straight-line flow

Page 20: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Advection of planetary vorticity

Introduce perturbations and remember conservation of potential vorticity (assume no change in depth h)

0

h

f

Dt

DPV

Dt

D g

x, east

y, north

Page 21: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Advection of planetary vorticity

North/south movement change in planetary vorticity Conservation of angular momentum change in ζ

ζ < 0; anticyclonic

f > f0 ζ > 0; cyclonic

f < f0

ζ > 0; cyclonic

f < f0

f = f0

0

h

f

Dt

DPV

Dt

D g

x, east

y, north

Page 22: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Advection of planetary vorticity

Flow associated with rotation advects adjacent parcels north/south

ζ < 0; anticyclonic

f > f0 ζ > 0; cyclonic

f < f0

ζ > 0; cyclonic

f < f0

0

h

f

Dt

DPV

Dt

D g

x, east

y, north

Page 23: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

x, east

y, north

Advection of planetary vorticity

The wave propagates to the west (actual propagation direction depends on wind speed and wavelength…)

ζ < 0; anticyclonic

f > f0 ζ > 0; cyclonic

f < f0

ζ > 0; cyclonic

f < f0

0

h

f

Dt

DPV

Dt

D g

Page 24: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

VERTICAL VELOCITY

• Important for– Clouds and precipitation– Cyclogenesis (spinup of vorticity through

stretching)

• Computed from governing equations

Page 25: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Scaled equations in pressure coordinates (The quasi-geostrophic (QG) equations)

Dg

v g

Dt f0

k v a y

k v g

v g

1

f0

k

ua

x va

y p0

tv g

p

J

p

with R

c p

and stability parameter =RdTo

p

d ln0 dp

momentum equation

continuity equation

thermodynamicequation

geostrophic wind

Page 26: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Methods for Estimating Vertical Velocity

1. Kinematic method (continuity equation)

2. Adiabatic method (thermodynamic eqn)

3. Diabatic method (thermodynamic eqn)

4. QG-omega equation (unified equation)

Page 27: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

1. Kinematic Method:Link between and the ageostrophic wind

p

gh

ap

yxpppp

pvv

vp

vu)()()(

0 if

)(

2121

Continuity equation (pressure coordinates) and non-divergence of geostrophic wind lead to

which can berewritten as:

and solved for:

0v

pyx

u aa

Page 28: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Thermodynamic equation:

Tt uTx vTy Sp

J

c p

Assume the diabatic heating term J is small (J=0), and there is no local time change in temperature

2. Adiabatic MethodLink between and temperature advection

p

hp S

Tv

y

T

x

TuS

v 1Horizontal temperature advection term

Stability parameter

warm air advection: < 0, w ≈ -/g > 0 (ascending air)

cold air advection: > 0, w ≈ -/g < 0 (descending air)

Page 29: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

2. Adiabatic MethodLink between and temperature advection

Based on temperature advection, which is dominated by the geostrophic wind, which is large. Hence this is a reasonable way to estimate local vertical velocity when advection is strong.

θ - Δθ θ + Δθθ

WARMCOLD

adiabatic = no change in θ

Page 30: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Start from thermodynamic equation in p-coordinates:

pp c

JS 1

Diabatic term

Tt uTx vTy Sp

J

c p

If you take an average over space and time, then the advection and time derivatives tend to cancel out.

RadiationCondensationEvaporationMeltingFreezing

3. Diabatic MethodLink between and heating/cooling

Page 31: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

mean meridional circulation

Page 32: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

1. Kinematic method: divergence vertical motion– Links the horizontal and vertical motions. Since

geostrophy is such a good balance, the vertical motion is linked to the divergence of the ageostrophic wind (small).

– Therefore: small errors in evaluating the winds <u> and <v> lead to large errors in .

– The kinematic method is inaccurate.

Vertical Velocity: Problems

Page 33: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

2. Adiabatic method: temperature advection vertical motion– Assumes steady state (no movement of weather

systems)– Assumes no diabatic heating (no clouds or

precipitation)– What about divergence/convergence?– The adiabatic method has severe limitations.

Vertical Velocity: Problems

Page 34: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

3. Diabatic method: Heating/cooling vertical motion– Assumes definition of some average

atmosphere– Assumes vertical motion only due to diabatic

heating– What about divergence/convergence?– The diabatic method has severe limitations.

Vertical Velocity: Problems

Page 35: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

4. QG-omega equation Combine all QG equations

• None of the obvious methods work well for for midlatitude waves in general

• Combine information from the full set of QG equations– Geopotential tendency equation

(comes from vorticity equation--combines equation of motion, continuity equation, and geostrophic relationship)

– Thermodynamic energy equation

Page 36: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

1.) Apply the horizontal Laplacian operator ( 2 ) to the QG thermodynamic equation

2.) Differentiate the geopotential height tendency equation with respect to p

3.) Combine 1) and 2)

Jpp

ffp

f

p

f

g

g

22

2

0

02

2202

1

1

v

v

4. QG-omega equation Combine all QG equations

Page 37: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

4. QG-omega equation Combine all QG equations

• Link between vertical derivative of vorticity advection (divergence/stretching) and vertical motion

Jpp

ffp

f

p

f

g

g

22

2

0

02

2202

1

1

v

v

Page 38: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

4. QG-omega equation Combine all QG equations

• Link between vertical derivative of vorticity advection (divergence/stretching) and vertical motion

• Link between temperature advection and vertical motion

Jpp

ffp

f

p

f

g

g

22

2

0

02

2202

1

1

v

v

Page 39: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

4. QG-omega equation Combine all QG equations

• Link between vertical derivative of vorticity advection (divergence/stretching) and vertical motion

• Link between temperature advection and vertical motion• Link between diabatic heating and vertical motion

Jpp

ffp

f

p

f

g

g

22

2

0

02

2202

1

1

v

v

Page 40: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

4. QG-omega equation Combine all QG equations

• This is still a complicated equation to analyze directly—simplify it

• Assume small diabatic heating (scale out last term)• Use the chain rule on the first and second terms on the

right hand side and combine the remaining terms

Jpp

ffp

f

p

f

g

g

22

2

0

02

2202

1

1

v

v

Page 41: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

ffp

f

p

f g 2

0

02

2202 12 v

Advection of absolute vorticityby the thermal wind

4. QG-omega equation (simplified)

Simple, right?

Page 42: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

“Advection” by thermal wind?

• How to analyze this on a map?

pp

gT k

vv

Thermal

Wind

is

Perpendicular to

Thickness

Look at contours of constant thickness

Gradient of

Page 43: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What about that Laplacian?

• QG omega equation relates vorticity advection by the thermal wind with the laplacian of omega

• Assume omega has a wave-like form

• This leads to

• which means

lykxp

pW sinsinsin

00

2

0

0222

2202 1

p

flk

p

f

2

2202

p

f

2

2202

p

f

Page 44: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather Maps

• Laplacian of omega is proportional to -ω• Omega can be analyzed as:

• Remember, from definition of omega and scale analysis

• Positive vorticity advection by the thermal wind indicates rising motion

f

fpg 2

0

1v

wg

Page 45: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather Maps

• Positive vorticity advection by the thermal wind indicates rising motion

pp

pp

p +

Lines of constant thickness

Descent

Ascent

Page 46: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather MapsSurface 500 mb

700 mb

Page 47: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather MapsSurface 500 mb

700 mb

Page 48: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather MapsSurface 500 mb

700 mb

Page 49: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather MapsSurface 500 mb

700 mb

Page 50: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vertical Motion on Weather MapsSurface 500 mb

700 mb

Page 51: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Energetics of Cyclone Development

http://www.aos.wisc.edu/weather/wx_models/gblav_104_12UTC.shtml

http://tempest.aos.wisc.edu/wxp_images/gfs104_06UTC/gblav_c300_h120.gif

http://tempest.aos.wisc.edu/wxp_images/gfs104_06UTC/gblav_c850_h120.gif

Page 52: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Energetics of Midlatitude Cyclone Development

• The jet stream is commonly associated with strong temperature gradients in the middle/lower troposphere (thermal wind relationship)

• Midlatitude cyclones develop along waves in the jet stream

• Midlatitude cyclones are always associated with fronts (Norwegian cyclone model)

• There is a link between temperature gradients and cyclone development…

Page 53: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Idealized vertical cross section

Page 54: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Two important definitions

• barotropic – density depends only on pressure. – By the ideal gas equation, surfaces of constant

pressure are surfaces of constant density are surfaces of constant temperature (idealized assumption). = (p)

• baroclinic – density depends on pressure and temperature (as in

the real world). = (p,T)

Page 55: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Barotropic/baroclinic atmosphere

Barotropic: pp + pp + 2p

pp + pp + 2p

T+2TT+TT

T

T+2TT+T

Baroclinic:

ENERGY HERE THAT IS CONVERTED TO MOTION

Page 56: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Barotropic/baroclinic atmosphere

Barotropic: pp + pp + 2p

pp + pp + 2p

T+2TT+TT

T

T+2TT+T

Baroclinic:

DIABATIC HEATING KEEPS BUILDING THIS UP

Page 57: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Barotropic/baroclinic atmosphere

• Energetics:– Baroclinic = temperature contrast = density

contrast = available potential energy– Extratropical cyclones intensify through

conversion of available potential energy to kinetic energy

Page 58: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Available Potential Energy

• Defined as the difference in potential energy after an adiabatic redistribution of mass

COLD WARM

Page 59: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Available Potential Energy

• Defined as the difference in potential energy after an adiabatic redistribution of mass

COLD

WARM

Page 60: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Energetics in the atmosphere

• Diabatic heating (primarily radiation) maintains the equator to pole temperature contrast

• Strength of temperature contrast referred to as “baroclinicity”

• Cyclones at midlatitudes reduce this temperature contrast—adjust baroclinic atmosphere toward barotropic

Page 61: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Energetics in the atmosphere

Ability to convert potential energy to kinetic energy directly related to tilt with height (offset) of low/high pressure

Page 62: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Back to this weekend’s East Coast cyclone

(animations of 500 mb and surface)

Page 63: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Back to this weekend’s East Coast cyclone

• Occlusion describes the transition of a cyclone from baroclinic (west-ward tilt with height) to barotropic (“vertically stacked”)

• Once there is no more westward vertical tilt with height, no further development can occur

• We will look at this schematically next time

Page 64: AOSS 401, Fall 2007 Lecture 25 November 09, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Next time

• Brief wrap-up of midlatidude cyclone dynamics

• Excursion into the boundary layer

• Introduction to the next computing assignment