77
APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT REPORT for E. AU GRES RIVER SEA LAMPREY TRAP IOSCO COUNTY, MICHIGAN Prepared by the U.S. ARMY CORPS OF ENGINEERS DETROIT DISTRICT

APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

APPENDIX A

ENGINEERING APPENDIX FOR DETAILED PROJECT REPORT

for

E. AU GRES RIVER SEA LAMPREY TRAP

IOSCO COUNTY, MICHIGAN

Prepared by the

U.S. ARMY CORPS OF ENGINEERS

DETROIT DISTRICT

Page 2: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Table of Contents

1. GENERAL INFORMATION ................................................................................................................ 1

1.1 INTRODUCTION ..................................................................................................................................... 1 1.2 BACKGROUND ...................................................................................................................................... 1 1.3 LOCATION ............................................................................................................................................ 1 1.4 EXISTING SITE CONDITIONS ..................................................................................................................... 1

2. TRAP COMPLEX GENERAL REQUIREMENTS ..................................................................................... 2

2.1 LAMPREY TRAPS.................................................................................................................................... 2 2.2 LIFT SYSTEM ......................................................................................................................................... 3 2.3 PLATFORM ........................................................................................................................................... 3 2.4 REAL ESTATE ........................................................................................................................................ 3

3. ALTERNATIVES ................................................................................................................................ 3

3.1 ALTERNATIVE 1 - NO ACTION .................................................................................................................. 3 3.2 ALTERNATIVE 3 – ATTRACTANT WATER TRAP ADJACENT TO MDNR SEA LAMPREY BARRIER ............................... 3

4. DESIGN ........................................................................................................................................... 4

4.1 GENERAL ............................................................................................................................................. 4 4.2 SURVEY DATA ....................................................................................................................................... 4 4.3 GEOTECHNICAL DATA............................................................................................................................. 4 4.4 HYDRAULIC DATA...................................................................................................................................... 4 4.5 ALTERNATIVE 3 ..................................................................................................................................... 5

4.5.1 Loading ......................................................................................................................................... 5 4.5.2 Platform: ...................................................................................................................................... 5 4.5.3 Walkway Support ......................................................................................................................... 5 4.5.4 Hoist: ............................................................................................................................................ 6 4.5.5 Lamprey Traps: ............................................................................................................................. 6 4.5.6 Steel Sheet Pile (SSP) Barrier: ....................................................................................................... 6 4.5.7 Site Access: ................................................................................................................................... 6

5. CONSTRUCTION ................................................................................................................................... 6

6. OPERATION AND MAINTENANCE ......................................................................................................... 6

7. COST: ................................................................................................................................................... 7

ATTACHMENT A: PROJECT DRAWINGS

ATTACHMENT B: DESIGN COMPUTATIONS

ATTECHMENT C: SOIL PROFILE

Page 3: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

1

1. General Information

1.1 Introduction: The purpose of this report is to present alternatives for construction of a

new sea lamprey trap structure at the existing Michigan Department of Natural Resources

(MDNR) Sea Lamprey Barrier in National City, Iosco County, MI. This report will be an

appendix to the Detailed Project Report (DPR) being prepared by Planning Division.

1.2 Background: The East Au Gres River was selected by the United States Fish and

Wildlife Service (USFWS) for construction of a new sea lamprey trap. The purpose of the trap is

to prevent the upstream migration of sea lamprey during spawning season. Currently, there is an

existing sea lamprey barrier and the river is treated with lampricides. Although testing indicates

the lampricides are not detrimental to the ecosystem as a whole, there are some native species

which are adversely affected by the chemical treatment. A permanent lamprey trap would

significantly reduce, and possibly eliminate, the need for the costly lampricide treatment. In

addition, a permanent trap structure has been proven to be more efficient and effective than

temporary trapping methods.

1.3 Location: The proposed trap location is at the site of the current Michigan Department

of Natural Resources (MDNR) Sea Lamprey Barrier in Iosco County, MI (See Figure 1). The

barrier is currently owned and maintained by the MDNR.

Figure 1: Location Map

1.4 Existing Site Conditions: Per U.S. Fish and Wildlife Service requirements, the lamprey

trap structure will be placed on the downstream side of the MDNR sea lamprey barrier in the

barrier tailrace. The area downstream of the barrier is unaltered natural river geomorphology.

As-Built survey data of the E. Branch Au Gres River Lamprey Barrier was provided to USACE

by the MDNR. In addition, a survey was conducted in summer 2014 at the proposed project site.

Both the as-built drawings and the summer 2014 survey will act as the base for project design.

Page 4: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

2

Figure 2: Existing Conditions

2. Trap Complex General Requirements

2.1 Lamprey Traps: Per USFWS one lamprey trap is required for Alternative 3. The trap

will be approximately 4-feet square and 5 feet tall. The trap is constructed with galvanized steel

mesh, plates and angles. All requirements pertaining to the lamprey trap were provided by

USFWS. A typical photo of an existing lamprey trap has been provided in Figure 3. Detailed

design of the trap will be completed during the next phase of the project. To provide cost

estimate data for the trap, the trap example shown in Figure 3 was used to estimate member sizes

and quantities. The trap will bisect the existing MDNR barrier, with two baffles located in the

downstream portion. The upstream portion will be enclosed in a steel plate structure fed with two

12” valves, creating the desired velocity of water to attract the Sea Lamprey. The trap will sit at

an elevation of 627.00’ when submerged.

PROPOSED ACCESS ROAD

STAGING AREA

PROPOSED TRAP STRUCTURE LOCATION

EXISTING MDNR BARRIER

EXISTING DAM ACCESS

Page 5: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

3

Figure 3: Lamprey Trap

2.2 Lift System: A lift system is required to raise the trap inserts from the riverbed to the

platform. Per the USFWS each trap insert will hold up to 500 pounds of lamprey. In addition,

USFWS has indicated that the use of a manual, mechanical hoist is preferred. The lift system for

the alternative will consist of a jib crane secured to a pile support. The required rating capacity of

the crane will be 1000 lbs to account for the potential for additional loading.

2.3 Platform: A platform/walkway is needed to provide access to the lamprey trap. The

platform will be located adjacent to the trap and will be approximately 10 feet wide to allow for

access for transporting the lamprey, the lamprey trap, and USFWS personnel. The platform will

be supported with steel piles and will have a surface consisting of steel grating. A galvanized

steel handrail will also be installed. The top of the platform will be located at an elevation of

639.89’, in order to facilitate easier retrieval of trapped sea lamprey. The height of the platform

allows for clearance of the existing SSP on the west bank. The structure will be designed to

withstand submerged conditions.

2.4 Real Estate: All real estate requirements including work and storage areas, channel

improvement, and site access easements were coordinated with Real Estate Branch (RE) and are

shown in Attachment A. For further discussion and real estate quantities see the Real Estate

Appendix of the DPR report.

3. Alternatives

3.1 Alternative 1 - No Action: For this alternative, no action will be taken and the USFWS

will continue with their current temporary trapping procedures.

3.2 Alternative 3 – Attractant Water Trap Adjacent to MDNR Sea Lamprey Barrier: The

trap complex for this alternative would be placed bisecting the existing MDNR sea lamprey

barrier, with two baffles located downstream to attract and trap the sea lamprey. The trap

Page 6: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

4

structure would utilize piles in conjunction with steel plates and angles as trap guides to direct

flow and secure the lamprey trap. Access to the trap would be provided through the construction

of a pile supported platform and connecting to a proposed steel sheet pile wall. The platform

would not rely on existing structures for support and the piles would not disrupt existing scour

stone adjacent to the bank. In addition, to maneuver the traps, a manual hoist and the required

support structure would be installed.

Concept drawings of this alternative can be found in Attachment A to this appendix. It should be

noted that this alternative is the preferred location for the USFWS because of access to the trap

for maintenance. This alternative places the lamprey trap in a location for optimal sea lamprey

capture per USFWS.

4. Design

4.1 General: All design calculations can be found in Attachment B.

4.2 Survey Data: As Built survey data of the East Au Gres Sea Lamprey Barrier was

provided to USACE by MDNR. In addition, a survey was conducted in summer 2014 at the

proposed project site. Both the as-built drawings and the summer 2014 survey will act as the

base for project design.

4.3 Geotechnical Data: The generalized subsurface conditions for the proposed Sea

Lamprey Traps are based on historical borings conducted in the vicinity of the proposed trap for

the adjacent MDNR sea lamprey barrier. Boring Location Test Hole-1 and Test Hole-3 from the

1982 MDNR investigation provided the nearest and most representative view of the likely

subsurface conditions. The maximum depth that the soil borings extended to was El. 575. Based

on an assumed channel bottom elevation of EL. 583, the subsurface soil profile of Test Hole-3

likely consists of approximately 2-4 feet of loose brown sand with an average Standard

Penetration Test (SPT) N-value of 4-10 blows per foot (bpf), 2-4 feet of soft brown clay with an

average Standard Penetration Test (SPT) N-value of 2-4 blows per foot (bpf) and an undrained

shear strength of 250 psf (based on historical data), and finally hard brown clay with an average

Standard Penetration Test (SPT) N-value of more than 30 blows per foot (bpf) and an undrained

shear strength of 4000 psf (based on historical data).

4.4 Hydraulic Data: The Hydraulics and Hydrology office estimated the flows and water

elevations for various intervals. The results are shown in the table below:

Event Conservative Height

(ft) Conservative Velocity

(fps) Regular Height

Regular Velocity

2-Yr 6.7 2.66 6.17 2.56

25-Yr 10 3.31 8.75 3.68

100-Yr 10.72 3.44 9.33 3.19

500-Yr 11.48 3.56 9.88 3.29

Page 7: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

5

4.5 Alternative 3

4.5.1 Loading: Loading on the lamprey trap complex will consist of dead loads, live loads, stream pressure loads, wind loads, and seismic loads. Loads were identified based on the AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges. In addition, ice load was considered. It was the opinion of the design engineer that because the project is located in a cold region it would be reasonable to design for horizontal ice load. In order to account for potential ice and debris forces, a load of 5 kip per foot was applied to the platform piles, at the two year design flow level, as this would be the most likely level of ice impact.

4.5.2 Platform: The access platform was designed in accordance with the AASHTO LRFD

Guide Specifications for the Design of Pedestrian Bridges using the software program STAAD Pro v8i. A572 Grade 50 steel was assumed for the design. Because the platform supports will be considered fracture critical members, additional material toughness criteria will be required. All walkway steel will be galvanized for reduced maintenance and increased corrosion resistance.

4.5.3 Walkway Support: Piles will be used to support the platform and trap guides. The

piles will be galvanized steel and will provide a moment connection to the walkway support columns. To provide flat surfaces to act as trap supports and guides, wide flange beam sections will be used. The recommended design soil properties for the design of the foundation systems is presented below.

Depth (ft)

Soil Description

Unit Weight, γ’ (pcf)

Undrained shear

strength, Su (psf)

Soil Modulus,

k (pci)

Soil Strain,

ε50

Angle of Internal Friction,

φ (degrees)

0

4 Loose Brown Sand

115 --- ---*4 ---*4

28

4 7

Soft Brown Clay 125 250 500 .007

22 7 20

Hard Brown Clay

135 to 145 4000 2000 .004

26

Notes: 1. Due to potential scour effects, some thickness of the soil strata immediately below the channel bottom shall be omitted from any analysis. 2. Borings did not extend below 9.5’ feet below the estimated channel bottom. Survey Boring notes indicate hard clay encountered for subsequent depth at neighboring boring hole number 3. 3. Subsurface profile based on conditions as reported at Boring Hole-1 and Boring Hole-3. 4. Omit soils to 4 feet depth from any P-4 lateral analysis.

The recommended design requirements for the pile foundation are as follows:

Page 8: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

6

1. Specify a minimum embedment depth of the piles based on the provided axial and lateral

shear capacity as well as the potential for up to two (2) foot of scour along the river

bottom at the pile locations.

2. Design each pile for an ultimate factored axial load of 10 kips, maximum shear at top of

pile of 5 kips, and maximum bending moment at top of pile of 152.714 kip – inches.

4.5.4 Hoist: Per the USFWS, a lift system shall be designed to lift 500 pounds of lamprey

plus the trap insert from the riverbed to the platform complex. In order to accomplish this, a

manual hoist will be specified with a capacity of 1000 lbs to account for any unforeseen applied

loadings.

4.5.5 Lamprey Traps: Lamprey traps as shown in Figure 3 will be designed per USFWS

recommendations. The traps are to be 4’x4’ and will be 5’ high allowing trapping of a significant

portion of the water column. Assisting with the direction and velocity are plates and two valves

on the upstream side of the trap. The two 12” inlet valves upstream are to direct the water

towards the trap structure. They are located on the northern part of the trap structure and will

include sluice gates. The plates are situated along the outside of the upstream trap, forming a cell

where the inflow from the valves can normalize to an ideal velocity to flow through the trap. For

the feasibility level design, no design calculations for the traps were completed. The trap

materials were estimated based on previous USFWS designs. Design calculations will be

completed at the beginning of the next project phase. To provide cost estimate data for the traps,

the trap example shown in Figure 3 was used to estimate member sizes and quantities.

4.5.6 Steel Sheet Pile (SSP) Barrier: The SSP barrier height on the west bank of E. Au

Gres will be increased to match the height of the bank embedment, from the bank to the

westernmost edge of the sea lamprey trap. This will require a portion of the SSP wall to be

replaced (approximately 5 feet). To compensate for the additional height on the west side of the

E. Au Gres barrier, the east side of the barrier will be expanded by the same distance into the east

bank. An existing, failing SSP wall on the east bank will be removed and a new wall constructed

approximately 5 feet eastward. Additional analysis for correct embedment was completed in

CWALSHT for the SSP wall, resulting in an embedment depth of 27.1’.

4.5.7 Site Access: Access to the area will be accomplished through the use of a proposed

10’ wide maintenance access road. Analysis was completed in CWALSHT for a PZ22 Steel

Sheet Pile (SSP) wall to provide reinforcement, with a required embedment of at least 25.5’, to

be located between the access road and the river, adjacent to the access road. The SSP will run

from the top of the bank by the access to the existing dam to the connection at the walkway

access for the sea lamprey trap. Gravel will be placed to create a stable surface.

5. Construction: It was assumed that primary access to the project site would be from the area

adjacent to the existing MDNR sea lamprey barrier, on the west side of the Au Gres River. It is

assumed that construction will be completed using land based equipment working from the river

bank. It is assumed that a crane will be used to reach the opposite bank to perform the required

SSP removal and placement.

6. Operation and Maintenance: Operation and maintenance for this project is limited due to the

selection of galvanized steel materials. Maintenance of the project would include periodic

inspections of the steel members and traps. No major material corrosion or damage is expected

Page 9: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

7

over the 50 year design life of the project. Operation of the project may include the removal of

accumulated debris prior to placement of the lamprey traps and any requirements to maintain the

mechanical hoist. Overall operation and maintenance would be performed by USFWS personnel.

7. Cost: A copy of the construction cost estimate and supporting documentation can be found in

the cost appendix to the DPR.

Page 10: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

ATTACHMENT A

PROJECT DRAWINGS

Page 11: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

D

c

B

A

cott Rd

' • •

Minnesota

Duluth Office

Wisconsin

1

Location Map

~ Lake Superior

Michigan

Illinois

Proj~ct Location. MDNR Sea Lamprey Barner, East Au Gres River Iosco County, Ml

N

'

2 3 4

EAST AU GRES RIVER SEA LAMPREY TRAP MDNR SEA LAMPREY BARRIER

IOSCO COUNTY, MICHIGAN

5

SEA LAMPREY TRAP AND RAMP LOCATION WING WALL RELOCATION

lndlana Ohio

LOCATION MAP SCALE: N/A

I Plant Rd

WSherman St Whit t emor e . E Shermon St Whinemore Rd

Duby Rd

Tunl• Rd

Keystone Rd

~ "' ; ~ :t 'g i North St . " !

School SI PreseoU Rd

Le-g t Rd

Alob3ster Rd

eurlei&h :rwp lu•lle Rd

t<eyslone Rd

. • . I

Whlnemore Rd

• •

Alabaster Rd

lurtle Rd

. • • u

i • •

• 0

~ Whlttemore Rd Sh~rman

Cit)I

• • • " • ! ~

Keyslone Rd

Al.lbas!er Rd

Turli• Rd

• • i 0

~ . 'l . • • •

Legget Rd

I

I I

I I

I

I I MB·&

~=~;r: ------MDNR SEA LAMPREY BARRI~

Alabaster R<I

. • ~ < •

Turtle Rd

~

i •

' . •

• • ~ • ' • •

, . ' ~

SITE LOCATION

EXISTING ACCESS ROAD OFF OF GREENWOOD RD

Sources: Esri, HERE, Delorme. USGS, lntermap, increment P Corp OpenStreetMap contributors, and the GIS User Community

NRCAN. Esri Japan. METI . Esri China (Hong Kong ), Esri (Thailan'll), Tomlom , Mapmylndia. ©

VICINITY MAP SCALE: 1 "=3,000'

.................................

I I I I I I I I I I I I I I I I

'----,

,' , , I I

.... ----649---l

I I ,

847·7

147·3

r--.... 11'¥" I -..., /' I ' I I ' I ' ' I ' \\ I ', ' I

' ' ' ' ' I I I I

'

NOTES

' '

I , ,

, I

I

PLAN VIEW SCALE: 1" = 20'

THE INFORMATION DEPICTED ON THIS MAP REPRESENTS THE RESULTS OF THE SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME.

GRID COORDINATES GRIDS SHOWN ARE BASED ON THE U.S. STATE PLANE COORDINATE SYSTEM. STATE OF MICHIGAN, CENTRAL ZONE (2112), 1983 NORTH AMERICAN DATUM. (NAD83), U.S. SURVEY FEET.

VERTICAL DATUM ALL ELEVATIONS SHOWN ARE BASED ON THE NORTH AMERICAN VERTICAL DATUM OF 1988. (NAVD88)

SURVEY INFORMATION SURVEY BY GOURDIE-FRASER DATE OF SURVEY 05/29/2014

, I I J I J J

J I J I I I

I I : I .... J _,

/ f.11..---1 L(la I ,-1 ' 111/

I I I I I I I I I I I I I I I

' I I I

"" ,-' ' '

--- --

' ' ' ' ' '

--, I I I

'

845•3

I I I I I I I

' 64&, ................. ' , , ', ---....... , ,

i /'

843•3

, , '

' '

i !

' ' ' ' ' ' ' ' ' '

NICHOLAS ZAGER P.E.,CHIEF GEOTECH & STRUCTURES BRANCH

WILLIAM D. MERTE P.E., CHIEF COST & GENERAL ENGINEERING BRANCH

PHILLIP C. ROSSS P.E., CHIEF ENGINEERING & CONSTRUCTION OFFICE

MICHAEL K O'BRYAN P.E., CHIEF ENGINEERING & TECHNICAL SERVICES

'

THIS PROJECT WAS DESIGNED BY THE DETROIT DISTRICT OF

' '

THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS OR SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THIER EMPLOYMENT AS REQUIRED BY ER 1110-1-8152

US Anny Corps of Engineers" Detroit District

·:o cg d z ..

it. z>< z o.

~ w

v ii'~ .. . ij " §~ ::> w_ ... z

!;;: "' ~-z w

f;l ~ 8~ ~ cE; u:

~ ~ " g 0

l'l:! ~ .. ~ " cZ 0

~ w wW ~ t: l:! z ii!

!:! w z i~ g ffi ~ ~i ~ 0.: "'" ..

w < "

c .. W w-;}! ~

~~ w~ !ll ;\

SHEET IDENTIFICATION

GI001 SHEET 01 OF 06

Page 12: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

D

c

B

A

/ /

/

,'1 I I

' ' ' J

I I

I /

/ I

I

I

I I

I

I I

I

I I I I I I I I

~ I I I I I

' I I

1

/ I

I

I I

/ I

I

I

I I

I

--·8 ' ---

\ co \ . I If'--. C0 ! '<t i c.o f'--. / '<t r C.O I I

6 --

I

I

I

I I

/ I

I

I I

I

I I

I I

I I

I I

I I

I I

I I

I I

I I I I

I I

I

/ I

I

I

I

I I

I I

I I

I

I I

I

I I

I

I I

I

I I

I

1643 I I

' -, ; <.D

' ' I I I I I

'

I

I I

I

I I

I

I I

I

I I

I I

I

I I

I I

2_-, I

~- - -- --- -- ---,,

I

I I

I

/ I

I I

I I

I

I I

I I

I

I I

' \ I I I

I I

I

I I

I I I

I I

I I

I I I

I I

I I

I I

I I

I I

I

647·3

2 3 4

OVERALL PLAN VIEW SCALE: 3/16" 1'

/ I

I

,-

5

64 3,>-~ / I

I / I I

I I

/54'4. 8 I I I I f I I I f I I I I I I I f I

644·7 I f f I

6~4~· 3 ' ' ' ' /54'4. 4

I I

' ' --

2

LEGEND:

586· 6

587·32 GROUND SHOT

HARD SURFACE SHOT

CONCRETE SURFACE

CHAIN LINK FENCE

REQ'D MAJOR

REQ'D MINOR EXISTING MINOR

EXISTING MAJOR

us Anny Corps of Engineers• Detroit District

cli :::i

w < c g a.

w

< c

SHEET IDENTIFICATION

V-401 SHE:ET 02 OF OB

Page 13: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

2

V-101WINGWALL RELOCATION PLANSCALE: 1/4"=1'

CONCRETE SURFACE

CHAIN LINK FENCE

EXISTING MAJOR

EXISTING MINOR

REQ'D MINOR

REQ'D MAJOR

REQ'D PZ-22 SSP

EXISTING SSP

SLOPE.4'-10 1/2" EAST. REGRADE SURROUNDINGRELOCATE EXISTING WINGWALL

EXISTING SSPCONNECT REQ'D SSP TO

SHEETPILE

AU

GR

ES

RIV

ER

02

CG101

AB03

CG

101.d

gn

TR

UE

NO

RT

H

WIN

GW

ALL R

EL

OC

ATIO

N P

LA

N

SO

LICIT

ATIO

N N

O.:

FIL

E N

AM

E:

DW

N B

Y:

CK

D B

Y:

DE

SIG

NE

D B

Y:

DE

SC

RIP

TIO

N

1

D

2 3

C

4 5

A

B

MA

RK

AP

PR.

DA

TE:

FIL

E N

UM

BE

R:

SIZ

E:

SU

BMIT

TE

D B

Y:

PL

OT S

CA

LE:

PL

OT D

AT

E:

DA

TE

MA

RK

DE

SC

RIP

TIO

N

CO

NT

RA

CT N

O.:

IDENTIFICATION

SHEET

DA

TE

AP

PR.

SHEET OF

®

SA AF

E

Y

Y

T

PS

CO

RP

S

OF

EN

GIN

EE

RS

DE

TR

OIT

DIS

TRIC

T

Increase Profit...S

ub

mit V

EC

P'S

Valu

e

Engin

eerin

g

DE

TR

OIT,

MIC

HIG

AN

DE

TR

OIT DIS

TRIC

T

U.S.

AR

MY C

OR

PS O

F E

NGIN

EE

RS

34

X22

N/A

06

P.

RO

SS

MA

W911

XK-X

X-X-0

000

BM

07-3

1-2

014

Detroit District

of Engineers

US Army Corps

B.

GE

RK

EN

FE

ASIBILIT

Y S

TU

DY

10S

EP

T2014

SE

A L

AM

PR

EY T

RA

PA

U G

RE

S RIV

ER

NA

TIO

NA

L CIT

Y M

ICHIG

AN

IOS

CO C

OU

NT

Y

LEGEND:

GROUND SHOT

HARD SURFACE SHOT

586 6

587 32

627

628

628

629

630

630

630

631

631

631 1

631 1 631 5

4'-10 1/2 "

632

632

632 0

632 7

632 7

632 8

632 9

633

633

633 1

634

634

635

635

636

637

637

638

639

640

640

640

641

642 643

644

Page 14: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

D

c

B

A

REQ'D GRAVEL GRADE PATH

1

REQ'D HAND RA 11:

REQ'D 1~" GRATING

~ REQ'D W1 OX49 (TYP)

EXISTING SSP

~

1 PLAN V-401 SCALE: a"=1'

4'-0" 14'-1"

~--------------------------------------

I

I __.... '

I I -

I ~

! . '

-

6(29 1 641 61

' ' ' '

2

' '

' ,529 1 ~ ~41 62 629 1 §2-9' ',_----639--~~ 641 6:

TOP OF WATER 632

~ BOARD.:9', _________ .>

3'-11"

-

-..._ ______ _,. . -

REQ'D PZ22 SSP WALL

TOP W1 OX49 EL 638.69

REQ'D L4X4X1/2" ... v

~

.... ·--·-..K:.1.

:' y '· - L.

i.----

~

~ ,,.

(TYP)

TOP REQ'D SSP EL 636.55

REQ'D 4' X 4' TRAP

REQ'D 12" DIA PIPE

TOP REQ'D SSP EL 636.55

REQ'D GRAVEL GRADE PATH

3

REQ'D HAND RAii:

REQ'D 1~" GRATING

REQ'D 4' X 4' TRAP

,r•/ • J "·. REQ'D (2) 11'-10 1/2" X 5'-1" X 1/2" THICK PLATE

'~ ......

I

I - BOT SLAB EL 627.0

I I I

EXISTING SSP WALL

I I I

-I I

BOT SSP EL 620.0

I I I '

~w~-~.---------.m~1 ----.rrm-w w - BOT W1 OX49 EL 603.0

A SECTION ST10 SCALE: ~"=1'

• REQ'D SLUICE GATE NOT SHOWN

, __ _

lo

REQ'D PZ22 SSP WALL

REQ'D W10X4~

4

3'-11"

II ,,,., /I

5

REQ'D SLUICE GATE

REQ'D 12" DIA PIPE

R EQ'D (1) 6'-5 3/4" X 5'-1" X 1/2" THICK PLATE

-+-~ R I 7

~---- ~ ----- ~ -1---------------------------------------·-l--il-'I- EQ'D (2) 6'-5 3/4" X 5'-1" X 1/2" THICK PLATE

I/ I I I REQ'D PZ22 SSP~

EXISTING SSPWALL- "'

~

I I I I

I I I I I

-------t-1i....---------------- -----------'---------·M!-1' " , ______ \'._____ ~ !----------~~~~~~I--~~~-~==-~~i

r REQ'D CONCRETE

- - - / SLAB

4'-1" ~ ~ -----------------)~

_____________ m:! __ v ----------------~ I ,, ""'' I --..._, t---._ "--

REQ'D L4X4X1/2"---~: ,,--\ :- : ----- REQ'D 4.x4, EXISTING SSP WALL (TYP) I \ ., I SEA LAMPREY TRAP

I--+----_,~ ..... -------------_;_-_;_ _________ ..,.,_~~·~~-"-'-'•' ..... _ _._ '-II-I--------------------------------------------Hf------------- ------- I..'

4'-9" 18'-0" .

22'-5"

PLAN SCALE: i"=1'

10'-0"

4'-11" 4'-3"

B ST10

I I I I I I I I I I I I I I I I I I I I I

REQ'D 12" DIA PIPE - TOP REQ'D SSP EL 636.55

REQ'D (2) 11'-10 1/2" X 5'-1" X 1/2" THICK PLATE

REQ'D (1) 11'-10 1/2" X4'-10" X 1/2" THICK PLATE

- BOT SLAB EL 627 .0

L.JJ' ·w·~----H-+--- EXISTING ssp WALL

I I I I I I I I I I I I L.LI

I I I I I I I I I I I I L.LI

SECTION SCALE: !"=1'

- BOT W10X49 & SSP EL 620.0

- BOT W10X49 EL 603.0

• REQ'D SLUICE GATE NOT SHOWN

US Anny Corps of Engineers• Detroit District

·:o Oo zo

(j z9 ,;; o~ z

I- w .. ;:: ~ ~

ID - ~~ :; 0 :J

•. N ~~ z

~* I-

("j- z ~ "::; en$ 8~ u:

w !<

~ " b " "'< -' ;: ():;

~ a. ID

" w

oz -' w 1) wW ~ I= "' z"'

"' "' - "' en -W z :; 0 b en "' ;: :; ID 0: w. :J . -'

""' " "' "' a. a. Cl) c::

w !< "

"' !i :;

Ii a. a. <( ...

0 ~ w a. !< w " en 0 -

c "" n

··N UJ 0 :; -<( I-z en UJ 2! ~~

w~ ~~

w

J~! w z Ci f- z z (.) <C w -(!) LL. c:: -0 f- :i::: Cl)~(.) a. Cl :l' ~ t:: f--'"

~ u~o >- f- c:: ::;: w f-c:: Cl w <C 0

cli :::i

...J

a.~ ~w f-0 >-od wz c::o o.­::;:f-~1;3 en <C -wz Cl)~

a.

SHEET IDENTIFICATION

ST101 SHE:ET 03 OF OB

Page 15: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

g> an s G') 0 ....... ~o

5: I'\.)

0 m z Cll -I :::c :!! m s;~ -I 0 z

)>

m I ><

Cll I -I z :-::::1 G) n ~I ~ G)

)> ~ 0 ...lo.

v 0

Cll

~ I s; r

"'U m ~ -(") ~ - )> II ~ r

en m (") -I r, -0

;o I z m

Q I

~ ~

~"' r /;:'.I m m >< I Cll

-I I z G)

G)

~ 0 m

IOSCO COUNTY NATIONAL CITY MICHIGAN

AU GRES RIVER SEA LAMPREY TRAP

REQ'D ROAD REHABILITION PLAN

OJ

)>;o -um "UO ;o -oo xq °'-I ' -:::c a_ =n

:E;:i; -G)

~~ < m r ;o 0 )> 0

~ ;u F:: ~ ri:i ~

l~o 0)

"'U ~

r )> z < -m ~

HUIBll 3rnll

DESIGNED BY: RKEN

~ ~ SIZE: I FILE NAME: 34X22 AB05CG102.dgn

(')

FEASIBILITY STUDY 10SEPT2014

IARK DESCRIPTION DATE IAPPR.IMARK DESCRIPTION

0

DATE APPR

co c: CD ~ (/I ~m ... 0", -·IC :I --·::::1 c " "' -·CD Ill CD 0 -~o :::!. en ., n • .,, - .. 0

Page 16: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

D

c

B

A

.coll Rd

• • ! " •

WShermMI St

Duby Rd

turtle Rd

Keystone Rd

i

Plant Rd

Whr~i'} .::.h~•~ S<

• N I

Whittemore Rd

• ~ •

School SI Prescotl Rd

Leg 11 Rd

Alabaster Rd

• • . c • ~

ou rleith • Tw p Turtle Rd

• • . c • ! "

Keys.tone Rd

REAL ESTATE PLAN SCALE: 1" = 20'

• • • • ! = ~ ~ • ~

w111nemore Rd

• •,

• • ~ m

Ouarry Rd

\

Alaba11er Rd

Turtle Rd

;; • " Whittemore Rd Shoe-rm an

Nati onal Twp City

Wh1t1emore Rd___,...

Alabaslll!'r Rd Al.;ibasto::r Rd

Turtle Rd turue Rd

;; . . J A, ,,.. •• Keystone Rd . _ ~ _ ©

t PC NRCAN Esri Japan. METI, Esri China (Hong Kong ), Esn (Tha1lan'll), TomTom, Mapmylnd1a, Sources: Esri, HERE, Del orme, USGS, lntermap , incremen orp., , OpenStreetMap contributors. and the GIS User Community

VICINITY MAP SCALE: 1" = 3,000'

3

_ MDNR SEA LAMPREY BARRIER SITE LOCATION

- EXISTING ACCESS ROAD OFF OF GREENWOOD RD

4

ESTATE PLAN REAL ~ SCALE: 1" = 20' ~

Wda

Duluth Office

5

PERMANENT ACCESS APPROX 0.3013 ACRE

WORK AND STORAGE APPROX 0.0724 ACRE

PERMANENT EASEMENT APPROX 0.0736 ACRE

Location Map

Wisconsin

Illinois

Indiana Ohio

Project Location. . MDNR sea Lamprey Barrier, East Au Gres River Iosco County, Ml

US Army Corps of Engineers@ Detroit District

·:o Oo zo

d z~ z "' Q,

~ w

i= ~ "' .. "' 0 ~~ ::J

.. " -x I- z W' <,/ -I- - _, - z w < "? 0 "' 0 O!; _, "~ (I) ;;: Oz u:

w ~ ~ I-

" 0 "' < _, " ,. ~ "->' w "' " _,

oZ w 11 w!:<! >' I- (I)

z"' "' t: (I) (I) £1w z ,. 0 b (/) "' "' "' w. ;;: "' ::J . _, ""' " "' (I) "- "-

.,. 0 ~ "-w (I) 0 -

5

z 0

ii:

~ "

"' "' < "' .: "-"-<

w ~ "

::J z t;; 0

>- ~ t: "' :! " "' (I) - w

~ " "-

c

"' " .. N wo "' -< "' z"

"' wo _, "' u: "'

.. gj WX ~ .. (/) "'

SHEET IDENTIFICATION

RR101 SHEET 02 OF 06

Page 17: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

ATTACHMENT B

DESIGN COMPUTATIONS

Page 18: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROJECT TITLE: DATE:

E Au Gres Sea Lamprey Trap

4/14/2015COMPUTATION TITLE: DATE:

Access Road SSP Analysis4/19/2015

Note: This design procedure follows the guidelines set forth by EM 1110-2-2504, 1994, starting on pg. 6-1

allowable bending stress =

minimum section modulus =

Maximum Moment, M max = 18.92 k-ftAssumed Yield Strength, F y = 39 ksiAllowable Bending Stress, f b = 19.5 ksi

Minimum Section Modulus, S min = 11.6 in3

SSP Section = PZ22Section Modulus of Section, S = 18.1 in3

Applied bending stress, F b = 12.5 ksi

ACCEPTABLE

COMPUTED BY:

Maria Post-FitzgeraldCHECKED BY:

Blake Gerken

yb ff 5.0=

bfM

S maxmin =

Page 19: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9: 20: 33

I.--HEADING

**************** * INPUT DATA * ****************

G~EB SEA LAMPREY TMP ACCE:S.S J~.OAD SSJ?

II. --CONTROL CANTILEVER WALL DESIGN FACTOR OF SAFETY FOR ACTIVE PRESSURES 1.00 FACTOR OF SAFETY FOR PASSIVE PRESSURES

III. --WALL DATA

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135. 00 140.00 145.00

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135. 00 140.00 145.00

ELEVATION AT TOP OF WALL

IV.--SURFACE POINT DATA

IV.A.--RIGHTSIDE DIST. FROM WALL (FT)

0.00 10.00 15.00 20.00

IV.B.--LEFTSIDE DIST. FROM WALL (FT)

0.00 2.00 4.00 6.00 8.00

V.--SOIL LAYER DATA

V .A. --RIGHTS IDE

ELEVATION (FT)

642.00 643.00 645.00 647.00

ELEVATION (FT)

635.00 634.00 633.00 632.00 630.00

642.00 FT.

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1.00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.50

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

V. B. --LEFTSIDE LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1.00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.50

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

VI.--WATER DATA

Page 20: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

UNIT WEIGHT RIGHTSIDE ELEVATION LEFTSIDE ELEVATION NO SEEPAGE

62.40 (PCF) 628. 00 (FT) 628. 00 (FT)

VII.--VERTICAL SURCHARGE LOADS

VII.A.--VERTICAL LINE LOADS NONE

VII.B.--VERTICAL UNIFORM LOADS LEFTS IDE RIGHTS IDE

(PSF) (PSF) 0.00 250.00

VII.C.--VERTICAL STRIP LOADS NONE

VII.D.--VERTICAL RAMP LOADS NONE

VII.E.--VERTICAL TRIANGULAR LOADS NONE

VII.F.--VERTICAL VARIABLE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015

I.--HEADING

**************************

* SOIL PRESSURES FOR * * CANTILEVER WALL DESIGN * **************************

'E AU GRES SEA LAMPREY TRAP ACCESS ROAD SSP

II.--SOIL PRESSURES

TIME: 9:20:36

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

<------NET------> NET <---LEFTS IDE---> (SOIL + WATER) <--RIGHTS IDE--->

ELEV. WATER PASSIVE ACTIVE ACTIVE PASSIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) 642.0 0.0 0.0 0.0 86.0 885.5 86.0 885.5 641. 0 0.0 0.0 0.0 123.2 1132. 2 123.2 1132. 2 640.0 0.0 0.0 0.0 162.0 1488.9 162.0 1488.9 639.0 0.0 0.0 0.0 200.8 1845.6 200.8 1845.6 638.0 0.0 0.0 0.0 239.6 2202.3 239.6 2202.3 637.0 0.0 0.0 0.0 278.4 2605.2 278.4 2605.2 636.0 0.0 0.0 0.0 317.3 3265.5 317.3 3265.5 635.0 0.0 0.0 0.0 356.1 3999.0 356.1 3999.0 634.0 0.0 115. O* 27.6 279.9 4612.0 394.9 4639.6 633.0 0.0 230.0* 55.1 203.7 5234.5 433.7 5289.6

Page 21: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

632.0 0.0 345.0* 82.7 127.5 5792.6 472.5 5875.4 631. 0 0.0 460.0* 110. 3 51. 5 5974.9 511. 5 6085.2 630.0 0.0 572. 2* 137.2 0.0 5899.0 572.2 6036.2 630.0 0.0 575.0 137.9 -1.3 5897.1 573.7 6035.0 629. 0 0.0 699.0 165.4 -53.0 5981.3 645.9 6146.7 628.0 0.0 876.6 188.2 -178.9 6161.8 697.7 6350.0 627.0 0.0 959.0 201. 5 -217.5 62 96. 2 741. 5 6497.7 626. 0 0.0 1035.4 210.0 -264.5 6375.7 770.8 6585.6 625. 0 0.0 962.8 230.7 -178.8 4379.6 784.0 4610.3 624.0 0.0 1025.4 277. 5 -127.5 3874.0 897.9 4151.5 623.0 0.0 1088.0 314.8 -68. 4 5463.2 1019.6 5778. 0 622.0 0.0 1241.6 329.1 -195.4 5564.4 1046.2 5893.5 621. 0 0.0 1374.2 341.7 -301.4 5652.1 1072.8 5993.8 620.0 0.0 1503.2 352.8 -402.9 5750.5 1100. 3 6103.2 619.0 0.0 1637.0 364.9 -507.3 5868.4 112 9. 7 6233.3 618.0 0.0 1773.9 379.7 -612.9 5978.7 1161. 0 6358.4 617.0 0.0 1924.5 395.5 -729.8 6083.0 1194. 7 6478.5 616.0 0.0 2068.3 409.6 -840.7 6188.9 1227.6 6598.6 615.0 0.0 2204.8 423.4 -946.8 6295.4 1257.9 6718.B 614.0 0.0 2347.6 441. 4 -1059.4 6397.6 1288.2 6839.0 613.0 0.0 2496.5 467.8 -1177.8 6498.0 1318. 8 6965. 8 612.0 0.0 2645.5 494.5 -1295.0 6611. 6 1350.5 7106. 0 611. 0 0.0 2794.3 517.8 -1411.1 6735.4 1383. 2 7253.2 610.0 0.0 3504.9 570.8 -1946.6 9199.8 1558.3 9770.5 609.0 0.0 3942.8 550.0 -2449.6 9948.3 1493.2 10498.3 608.0 0.0 3820.9 502.0 -2537.1 8375.8 1283.9 8877.8 607.0 0.0 3966. 4 529.8 -2653.6 8538.9 1312.8 9068.8 606.0 0.0 4113. 3 557.6 -2771. 6 8702.1 1341.7 9259.8 605.0 0.0 4283.8 587.4 -2913.2 8864.2 1370. 7 9451. 5 604.0 0.0 4469.1 618.8 -3069.5 9030.6 1399.6 964 9. 4

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE FOR THIS ELEVATION.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9:20:37

**************************** * SUMMARY OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

I.--HEADING 'E AU GRES SEA LAMPREY TRAP ACCESS ROAD SSP

II. --SUMMARY

WALL

MAX.

MAX.

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

*****WARNING: STANDARD WEDGE SOLUTION DOES NOT EXIST AT ALL ELEVATIONS. SEE COMPLETE OUTPUT.

BOTTOM ELEV. (FT) 609.51 PENETRATION (FT) 25.49

BEND. MOMENT (LB-FT) 3.1697E+04 AT ELEVATION (FT) 618.73

SCALED DEFL. (LB-IN"3): l.8690E+l0 AT ELEVATION (FT) 642.00

Page 22: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHOREDOR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015

**************************** * COMPLETE OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

I.--HEADING 'E AU GRES SEA LAMPREY TRAP ACCESS ROAD SSP

II. --RESULTS

BENDING SCALED ELEVATION MOMENT SHEAR DEFLECTION

(FT) (LB-FT) (LB) (LB-INA3) 642.00 O.OOOOE+OO 0. l.8690E+l0 641.00 4.9198E+Ol 105. 1. 7771E+10 640.00 2.2185E+02 247. 1.6852E+l0 639.00 5.5651E+02 429. 1.5933E+10 638.00 l.0920E+03 649. 1.5016E+l0 637.00 1. 8 671E+03 908. 1.4101E+10 636.00 2.9206E+03 1206. 1.3188E+10 635.00 4.2914E+03 1542. 1. 2281E+10 634.00 5.9991E+03 1860. 1.1381E+l0 633.00 7.9867E+03 2102. 1. 0492E+10 632.00 l.0178E+04 2268. 9.6167E+09 631. 00 1.2497E+04 2357. 8.7589E+09 630.02 l.4814E+04 2382. 7.9424E+09 630.00 1. 4871E+04 2382. 7.9226E+09 629.00 1.7244E+04 2355. 7 .1121E+09 628.00 1.9552E+04 2239. 6.3313E+09 627.00 2.1695E+04 2041. 5.5843E+09 626.00 2.3619E+04 1800. 4.8748E+09 625.00 2.5302E+04 1578. 4.2060E+09 624.00 2.6799E+04 1425. 3.5810E+09 623.00 2.8170E+04 1327. 3.0022E+09 622.00 2.9442E+04 1195. 2. 4 721E+09 621. 00 3.0522E+04 947. 1.9928E+09 620.00 3.1302E+04 595. 1.5663E+09 619.00 3 .1678E+04 140. 1.1937E+09 618.00 3.1546E+04 -420. 8.7587E+08 617.00 3.0800E+04 -1092. 6.1243E+08 616.00 2.9325E+04 -1877. 4. 0211E+08 615.00 2.7010E+04 -2771. 2.4234E+08 614.00 2.3747E+04 -3774. 1. 2911E+08 613.00 1.9424E+04 -4892. 5.6760E+07 612.00 l.3923E+04 -6129. l.7805E+07 611. 25 8. 9772E+03 -7128. 4.8911E+06 611. 00 7.1447E+03 -7277. 2.7219E+06 610.00 1.0205E+03 -3925. 3.6827E+04 609.51 O.OOOOE+OO 0. O.OOOOE+OO

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

III. --WATER AND SOIL PRESSURES

TIME: 9:20:37

NET PRESSURE

(PSF) 86.00

123.19 162.00 200.81 239.63 278.44 317.25 356.06 279.88 203.69 127.50

51. 52 0.00

-1. 26 -53.01

-178.95 -217.46 -264.52 -178.78 -127.47 -68.39

-195.42 -301.44 -402.86 -507.28 -612.94 -729.77 -840.69 -946.85

-1059.36 -1177.80 -1294.98 -1381.69

209.79 6494.15 9565.62

Page 23: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

<-------------SOIL PRESSURES--------------> WATER <----LEFTS IDE-----> <---RIGHTSIDE---->

ELEVATION PRESSURE PASSIVE ACTIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF)

642.00 0. 0. 0. 86. 886. 641.00 0. 0. 0. 123. 1132. 640.00 0. 0. 0. 162. 1489. 639.00 0. 0. 0. 201. 1846. 638.00 0. 0. 0. 240. 2202. 637.00 0. 0. 0. 278. 2605. 636.00 0. 0. 0. 317. 3265. 635.00 0. 0. 0. 356. 3999. 634.00 0. * 115. 28. 395. 4640. 633.00 0. * 230. 55. 434. 5290. 632.00 0. * 345. 83. 473. 5875. 631. 00 0. * 460. 110. 512. 6085. 630.02 0. * 572. 137. 572. 6036. 630.00 0. 575. 138. 574. 6035. 629.00 0. 699. 165. 64 6. 6147. 628.00 0. 877. 188. 698. 6350. 627.00 0. 959. 201. 741. 6498. 626.00 0. 1035. 210. 771. 6586. 625.00 0. 963. 231. 784. 4610. 624.00 0. 1025. 277. 898. 4151. 623.00 0. 1088. 315. 1020. 5778. 622.00 0. 1242. 329. 1046. 5894. 621. 00 0. 1374. 342. 1073. 5994. 620.00 0. 1503. 353. 1100. 6103. 619.00 0. 1637. 365. 1130. 6233. 618.00 0. 1774. 380. 1161. 6358. 617.00 0. 1925. 395. 1195. 6478. 616.00 0. 2068. 410. 1228. 6599. 615.00 0. 2205. 423. 1258. 6719. 614.00 0. 2348. 441. 1288. 6839. 613.00 0. 2497. 468. 1319. 6966. 612.00 0. 2645. 494. 1350. 7106. 611. 25 0. 2757. 512. 1375. 7216. 611. 00 0. 2794. 518. 1383. 7253. 610.00 0. 3505. 571. 1558. 9771. 609.51 0. 3943. 550. 1493. 10498. 608.00 0. 3821. 502. 1284. 8878.

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE AT THIS ELEVATION.

Page 24: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9: 22: 22

I.--HEADING

**************** * INPUT DATA * ****************

~GRES. SEA LAMfREY TRAP ACCESSJ ROAD SSJ?;i

II. --CONTROL CANTILEVER WALL DESIGN FACTOR OF SAFETY FOR ACTIVE PRESSURES 00 FACTOR OF SAFETY FOR PASSIVE PRESSURES l.QO

III. --WALL DATA

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135.00 140.00 145.00

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135.00 140.00 145.00

ELEVATION AT TOP OF WALL 642.00 FT.

IV.--SURFACE POINT DATA

IV.A.--RIGHTSIDE DIST. FROM WALL (FT)

0.00 10.00 15.00 20.00

IV.B.--LEFTSIDE DIST. FROM WALL (FT)

0.00 2.00 4.00 6.00 8.00

V.--SOIL LAYER DATA

V.A.--RIGHTSIDE

ELEVATION (FT)

642.00 643.00 645.00 647.00

ELEVATION (FT)

635.00 634.00 633.00 632.00 630.00

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1. 00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1. 00

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

V. B. --LEFTS IDE LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1.00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.00

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26. 00 0.00 15.08 0.00 DEF DEF

VI.--WATER DATA

Page 25: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

UNIT WEIGHT RIGHTSIDE ELEVATION LEFTSIDE ELEVATION NO SEEPAGE

62.40 (PCF) 628. 00 (FT) 628. 00 (FT)

VII.--VERTICAL SURCHARGE LOADS

VII.A.--VERTICAL LINE LOADS NONE

VII.B.--VERTICAL UNIFORM LOADS LEFTS IDE

(PSF) 0.00

RIGHTSIDE (PSF) 250.00

VII.C.--VERTICAL STRIP LOADS NONE

VII.D.--VERTICAL RAMP LOADS NONE

VII.E.--VERTICAL TRIANGULAR LOADS NONE

VII.F.--VERTICAL VARIABLE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015

I.--HEADING

************************** * SOIL PRESSURES FOR * * CANTILEVER WALL DESIGN * **************************

'E AU GRES SEA LAMPREY TRAP ACCESS ROAD SSP

II.--SOIL PRESSURES

TIME: 9:22:25

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

ELEV. (FT) 642.0 641. 0 640.0 639.0 638.0 637.0 636.0 635.0 634.0 633.0

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

NET WATER (PSF)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<---LEFTS IDE---> PASSIVE ACTIVE

(PSF) (PSF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

115.0 27.6 230.0* 55.1

<------NET------> (SOIL + WATER)

ACTIVE PASSIVE (PSF) (PSF) 86.0 1381.7

123. 2 2061. 5 162.0 2711.0 200.8 3389.9 239.6 4534.3 278.4 6528.0 317.3 8470.0 356.1 8921.3 279.9 8403.0 203.7 8330.3

<--RIGHTS IDE---> ACTIVE PASSIVE

(PSF) ( PSF) 86.0 1381.7

123.2 2061.5 162.0 2711.0 200.8 3389.9 239.6 4534.3 278.4 6528.0 317.3 8470.0 356.1 8921.3 394.9 8430.5 433.7 8385.4

Page 26: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

632.0 0.0 392.2* 82.7 80.3 8698.1 472.5 8780.8 631. 6 0.0 489.6* 94.8 0.0 8901.2 489.6 8996.0 631. 0 0.0 614.8* 110. 3 -103.3 9162.4 511. 5 9272. 7 630.0 0.0 809.9 137.9 -236.2 9633.6 573.7 9771.4 629.0 0.0 1076.2 165.4 -430.2 10032.2 645.9 10197.7 628.0 0.0 1367.1 188.2 -669.4 10374.9 697.7 10563.1 627.0 0.0 1520.8 201. 5 -779.3 10659.4 741. 5 10860.9 626.0 0.0 1671. 8 210.0 -901.0 10880.6 770.8 11090. 5 625.0 0.0 1136. 6 230.7 -352.6 3522.3 784.0 3753.0 624.0 0.0 1025.4 277.5 -127.5 2100.8 897.9 2378.2 623.0 0.0 1547.6 314.8 -528.0 8226.2 1019. 6 8541. l 622.0 0.0 1823.6 329.1 -777.4 8382.4 1046.2 8711.5 621. 0 0.0 2016.6 341.7 -943.8 8538.4 107 2. 8 8880.l 620.0 0.0 2216.0 352.8 -1115. 7 8681.9 1100. 3 9034.7 619.0 0.0 2409.2 364.9 -1279.4 8813. 9 112 9. 7 9178.8 618.0 0.0 2611.8 379.7 -1450.8 8945.0 1161. 0 9324.8 617.0 0.0 2833.5 395.5 -1638.8 9075.2 1194. 7 9470.7 616.0 0.0 3054.8 409.6 -1827.2 9215.3 1227.6 9625. 0 615.0 0.0 3275.8 423.4 -2017.9 9390.6 1257.9 9813. 9 614.0 0.0 3482.6 441. 4 -2194.4 9589.5 1288.2 10030. 9 613.0 0.0 3681. 4 467.8 -2362.6 9781.8 1318.8 10249.5 612.0 0.0 3892.7 494.5 -2542.2 9973.3 1350.5 10467.8 611. 0 0.0 4110.3 517.8 -2727. 0 10168.0 1383.2 10685.8 610.0 0.0 6176.6 570.8 -4618.3 18808.2 1558.3 19379.0 609.0 0.0 7092.6 550.0 -5599.5 20535.7 1493.2 21085.7 608.0 0.0 6157.7 502.0 -4873.8 13865.5 1283.9 14367.5 607.0 0.0 6376.0 529.8 -5063.2 14156.5 1312.8 14686.4 606.0 0.0 6635.6 557.6 -5293.9 14453.3 1341.7 15010.9 605.0 0.0 6928.5 587.4 -5557.8 14767.6 1370.7 15355.0 604.0 0.0 7225. 3 618.8 -5825.7 15094.7 1399.6 15713.4

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE FOR THIS ELEVATION.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME : 9 : 2 2 : 2 6

**************************** * SUMMARY OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

I.--HEADING 'E AU GRES SEA LAMPREY TRAP ACCESS ROAD SSP

II. --SUMMARY

WALL

MAX.

MAX.

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

*****WARNING: STANDARD WEDGE SOLUTION DOES NOT EXIST AT ALL ELEVATIONS. SEE COMPLETE OUTPUT.

BOTTOM ELEV. (FT) 618.07 PENETRATION (FT) 16.93

BEND. MOMENT (LB-FT) 1.8926E+04 AT ELEVATION (FT) 626.44

SCALED DEFL. (LB-IN"3): 5.6799E+09 AT ELEVATION (FT) 642.00

Page 27: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHOREDOR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9:22:26

I.--HEADING

**************************** * COMPLETE OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

'E AU GRES SEA LAMPREY TRAP ACCESS ROAD SSP

II.--RESULTS

BENDING SCALED NET ELEVATION MOMENT SHEAR DEFLECTION PRESSURE

(FT) (LB-FT) (LB) (LB-IW3) (PSF) 642.00 O.OOOOE+OO 0. 5.6799E+09 86.00 641.00 4.9198E+Ol 105. 5.3002E+09 123.19 640.00 2.2185E+02 247. 4.9205E+09 162.00 639.00 5.5651E+02 429. 4.5412E+09 200.81 638.00 l.0920E+03 649. 4.1629E+09 239.63 637.00 1. 8671E+03 908. 3.7865E+09 278.44 636.00 2.9206E+03 1206. 3.4134E+09 317.25 635.00 4.2914E+03 1542. 3.0454E+09 356.06 634.00 5.9991E+03 1860. 2.6849E+09 279.88 633.00 7.9867E+03 2102. 2.3348E+09 203.69 632.00 l.0170E+04 2244. 1.9985E+09 80.32 631. 56 l.1157E+04 2262. 1.8566E+09 0.00 631.00 l.2424E+04 2233. 1.6797E+09 -103.29 630.00 l.4583E+04 2063. l.3825E+09 -236.20 629.00 1. 6495E+04 1730. 1.1104E+09 -430.24 628.00 1. 7970E+04 1180. 8.6670E+08 -669.43 627.00 l.8796E+04 455. 6.5399E+08 -779.32 626.00 1.8842E+04 -385. 4.7365E+08 -900.97 625.00 l.8098E+04 -1011. 3.2575E+08 -352.60 624.00 1.6948E+04 -1252. 2.0907E+08 -127.47 623.00 1.5566E+04 -1579. 1.2165E+08 -527.98 622.00 1.3681E+04 -2232. 6.1052E+07 -777.38 621. 00 1.1033E+04 -3093. 2.3983E+07 -943.81 620.00 7.4397E+03 -4122. 5.8434E+06 -1115. 67 619.34 4.4694E+03 -4894. 1.2898E+06 -1223.71 619.00 2.7859E+03 -4847. 3.9932E+05 1499.96 618.07 O.OOOOE+OO 0. O.OOOOE+OO 8935.73

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

III.--WATER AND SOIL PRESSURES

ELEVATION (FT)

642.00 641.00 640.00 639.00 638.00

WATER PRESSURE

(PSF) 0. 0. 0. 0. 0.

<-------------SOIL PRESSURES--------------> <----LEFTSIDE-----> <---RIGHTS IDE----> PASSIVE ACTIVE ACTIVE PASSIVE

(PSF) (PSF) (PSF) (PSF) 0. 0. 86. 1382. 0. 0. 123. 2061. 0. 0. 162. 2711. 0. 0. 201. 3390. 0. 0. 240. 4534.

Page 28: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

637.00 0. 0. 0. 278. 6528. 636.00 0. 0. 0. 317. 8470. 635.00 0. 0. 0. 356. 8921. 634.00 0. 115. 28. 395. 8431. 633.00 0. * 230. 55. 434. 8385. 632.00 O.* 392. 83. 473. 8781. 631. 56 O.* 490. 95. 490. 8996. 631. 00 O.* 615. 110. 512. 9273. 630.00 0. 810. 138. 574. 9771. 629.00 0. 107 6. 165. 646. 10198. 628.00 0. 1367. 188. 698. 10563. 627.00 0. 1521. 201. 741. 10861. 626.00 0. 1672. 210. 771. 11091. 625.00 0. 1137. 231. 784. 3753. 624.00 0. 1025. 277. 898. 2378. 623.00 0. 1548. 315. 1020. 8541. 622.00 0. 1824. 329. 1046. 8712. 621. 00 0. 2017. 342. 1073. 8880. 620.00 0. 2216. 353. 1100. 9035. 619.34 0. 2343. 361. 1120. 9130. 619.00 0. 2409. 365. 1130. 9179. 618.07 0. 2612. 380. 1161. 9325. 617.00 0. 2834. 395. 1195. 94 71.

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE AT THIS ELEVATION.

Page 29: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROJECT TITLE: DATE:

E Au Gres Sea Lamprey Trap

4/14/2015COMPUTATION TITLE: DATE:

Barrier Addition SSP Analysis 4/29/2015

Note: This design procedure follows the guidelines set forth by EM 1110-2-2504, 1994, starting on pg. 6-1

allowable bending stress =

minimum section modulus =

Maximum Moment, M max = 2.34 k-ftAssumed Yield Strength, F y = 39 ksiAllowable Bending Stress, f b = 19.5 ksi

Minimum Section Modulus, S min = 1.4 in3

SSP Section = PZ22Section Modulus of Section, S = 18.1 in3

Applied bending stress, F b = 1.6 ksi

ACCEPTABLE

COMPUTED BY:

Maria Post-FitzgeraldCHECKED BY:

Blake Gerken

yb ff 5.0=

bfM

S maxmin =

Page 30: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL-2015 TIME: 7:58:05

I.--HEADING

**************** * INPUT DATA * ****************

'E AU GRES SLB SSP BARRIER

II. --CONTROL CANTILEVER WALL DESIGN FACTOR OF SAFETY FOR ACTIVE PRESSURES FACTOR OF SAFETY FOR PASSIVE PRESSURES

III.--WALL DATA

SAT. WGHT. (PCF)

115. 00 125.00 135.00 140.00 145.00

SAT. WGHT. (PCF)

115. 00 125.00 135.00 140.00 145.00

ELEVATION AT TOP OF WALL

IV.--SURFACE POINT DATA

IV.A.--RIGHTSIDE DIST. FROM WALL (FT)

0.00 5.00

10.00 15.00

IV.B.--LEFTSIDE DIST. FROM WALL (FT)

0.00 5.00

10.00 15.00

V.--SOIL LAYER DATA

V.A.--RIGHTSIDE

ELEVATION (FT)

627.90 627.90 627.90 627.90

ELEVATION (FT)

627.90 627.90 627.90 627.90

630.50 FT.

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1.00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.00

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTER:'.\JAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115.00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

V.B.--LEFTSIDE LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1.00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.00

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115.00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26. 00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26. 00 0.00 15.08 0.00 DEF DEF

VI.--WATER DATA UNIT WEIGHT 62.40 (PCF) RIGHTSIDE ELEVATION 631. 99 (FT) LEFTSIDE ELEVATION 627.90 (FT)

Page 31: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

NO SEEPAGE

VII.--VERTICAL SURCHARGE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL.:::2015 TIME: 7:58:10

************************** * SOIL PRESSURES FOR * * CANTILEVER WALL DESIGN * **************************

I.--HEADING 'E AU GRES SLB SSP BARRIER

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

<------NET------> NET <---LEFTSIDE---> (SOIL + WATER) <--RIGHTS IDE--->

ELEV. WATER PASSIVE ACTIVE ACTIVE PASSIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) 630.5 93.0 0.0 0.0 93.0 93.0 0.0 0.0 629.5 155.4 0.0 0.0 155.4 155.4 0.0 0.0 628.5 217.8 0.0 0.0 217.8 217. 8 0.0 0.0 627.9 255.2 0.0 0.0 255.2 255.2 0.0 0.0 627.5 255.2 91. 5 6.6 170.3 340.1 6.6 91. 5 626.9 255.2 228.7 16.5 43.0 467.4 16.5 228.7 626.7 255.2 275.1 19.8 0.0 510.4 19.8 275.1 626. 5 255.2 320.2 23.1 -41. 9 552.3 23.1 320.2 625.5 255.2 548.9 39.6 -254.1 764.6 39.6 548.9 625.0 255.2 480.5 52.7 -172.7 683.1 52.7 480.5 624.5 255.2 455.9 69.5 -131. 2 641. 6 69.5 455.9 623.5 255.2 751. 9 97.9 -398.8 909.3 97.9 751. 9 622.5 255.2 938.4 123.1 -560.1 1070.6 123.1 938.4 621. 5 255.2 1124. 0 148.2 -720. 5 1230.9 148.2 1124. 0 620.5 255.2 1310. 3 173.4 -881.7 1392 .1 173.4 1310.3 620.0 255.2 1407.3 186.5 -965. 6 1476.0 186.5 1407.3 619.5 255.2 1511. 8 200.6 -1056.0 1566.4 200.6 1511. 8 618.5 255.2 1728. 2 229.7 -1243.3 1753.7 229.7 1728.2 617.5 255.2 1944.4 258.9 -1430.3 1940.7 258.9 1944.4 616.5 255.2 2160.4 288.1 -1617.1 2127.6 288.1 2160.4 615.5 255.2 2376.4 317.3 -1803.9 2314.3 317.3 2376.4 614.5 255.2 2592.3 346.5 -1990.6 2501. 0 346.5 2592.3 613.5 255.2 2808.1 375.7 -2177.2 2687.6 375.7 2808.l 612.5 255.2 3023.8 404.8 -2363.8 2874.2 404.8 3023.8 611. 5 255.2 3239.6 434.0 -2550.3 3060.8 434.0 3239.6 610.5 255.2 3455.3 463.2 -2736.9 3247.3 463.2 3455.3 610.0 255.2 5477.4 513.2 -4709.0 5219.4 513.2 5477.4 609.5 255.2 6551.0 514.8 -5780.9 6291. 3 514.8 6551.0 608.5 255.2 4913.7 445.8 -4212.7 4723.1 445.8 4913.7 607.5 255.2 5218.1 472 .1 -4490.8 5001.2 472.1 5218.1 606.5 255.2 5522.5 498.4 -4768.9 5279.4 498.4 5522.5 605.5 255.2 5827.0 524.6 -5047 .1 5557.5 524.6 5827.0

Page 32: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

604.5 255.2 6131. 5 550.9 -5325.3 5835.8 550.9 6131. 5 603.5 255.2 6436.0 577.2 -5603.6 6114 .1 577.2 6436.0 602.5 255.2 6740.5 603.4 -5881.9 6392.4 603.4 6740.5 601. 5 255.2 7045.1 629.6 -6160.3 6670.7 629.6 7045.1 600.5 255.2 7349.7 655.9 -6438.6 6949.1 655.9 7349.7 600.0 255.2 7504.4 669.2 -6579.9 7090.4 669.2 7504.4 599.5 255.2 7 663. 7 683.0 -6725.5 7235. 9 683.0 7663.7 598.5 255.2 7987.1 710. 9 -7020.9 7 531. 4 710. 9 7987.1 597.5 255.2 8310.5 738.9 -7316.5 7826.9 738.9 8310.5

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL-2015

I.--HEADING

**************************** * SUMMARY OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

'E AU GRES SLB SSP BARRIER

II.--SUMMARY

TIME: 7:58:12

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

WALL

MAX.

MAX.

BOTTOM ELEV. (FT) 619.78 PENETRATION (FT) 8.12

BEND. MOMENT (LB-FT) 2.3429E+03 AT ELEVATION (FT) 623.48

SCALED DEFL. (LB-IN"3): 1.3614E+08 AT ELEVATION (FT) 630.50

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN"4 TO OBTAIN DEFLECTION IN INCHES.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHOREDOR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL-2015

I. --HEADING

**************************** * COMPLETE OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

'E AU GRES SLB SSP BARRIER

II. --RESULTS

ELEVATION BENDING MOMENT SHEAR

SCALED DEFLECTION

TIME: 7:58:12

NET PRESSURE

Page 33: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

(FT) (LB-FT) (LB) (LB-IN"3) (PSF) 630.50 O.OOOOE+OO 0. 1.3614E+08 92.98 629.50 5.6888E+Ol 124. 1.1463E+08 155.38 628.50 2.6915E+02 311. 9.3237E+07 217.78 627.90 4.9705E+02 453. 8.0603E+07 255.22 627.50 6.9626E+02 538. 7.2343E+07 170.32 626.90 1. 0419E+03 602. 6.0334E+07 42.99 626.70 1.1644E+03 606. 5.6416E+07 0.00 626.50 1.2838E+03 602. 5.2675E+07 -41.91 625.50 1.8295E+03 454. 3.5221E+07 -254.14 625.00 2.0281E+03 347. 2.7621E+07 -172.67 624.50 2.1818E+03 271. 2. 0896E+07 -131.19 623.50 2.3429E+03 6. 1. 0317E+07 -398.82 622.50 2.1229E+03 -473. 3.7311E+06 -560 .13 621.84 1. 6809E+03 -878. 1. 4116E+06 -665.98 621. 50 1. 3509E+03 -1043. 7.3289E+05 -306.50 620.50 3.3070E+02 -821. 2.6991E+04 750.86 620.00 3.6105E+Ol -313. 2.6677E+02 1279.54 619.78 0.0000E+OO 0. 0.0000E+OO 1516.53

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN"4 TO OBTAIN DEFLECTION IN INCHES.

III. --WATER AND SOIL PRESSURES

<-------------SOIL PRESSURES--------------> WATER <----LEFTSIDE-----> <---RIGHTS IDE---->

ELEVATION PRESSURE PASSIVE ACTIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF)

630.50 93. 0. 0. 0. 0. 629.50 155. 0. 0. 0. 0. 628.50 218. 0. 0. 0. 0. 627.90 255. 0. 0. 0. 0. 627.50 255. 91. 7. 7. 91. 626.90 255. 229. 16. 16. 229. 626. 70 255. 275. 20. 20. 275. 626.50 255. 320. 23. 23. 320. 625.50 255. 549. 40. 40. 549. 625.00 255. 481. 53. 53. 481. 624.50 255. 456. 69. 69. 456. 623.50 255. 752. 98. 98. 752. 622.50 255. 938. 123. 123. 938. 621. 84 255. 1061. 140. 140. 1061. 621. 50 255. 1124. 148. 148. 1124. 620.50 255. 1310. 173. 173. 1310. 620.00 255. 1407. 186. 186. 1407. 619.78 255. 1512. 201. 201. 1512. 618.50 255. 1728. 230. 230. 1728.

Page 34: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL-2015 TIME: 8:02:51

I.--HEADING

**************** * INPUT DATA * ****************

'E AU GRES SLB SSP BARRIER

II. --CONTROL CANTILEVER WALL DESIGN FACTOR OF SAFETY FOR ACTIVE PRESSURES FACTOR OF SAFETY FOR PASSIVE PRESSURES

III. --WALL DATA

SAT. WGHT. (PCF)

115. 00 125.00 135. 00 140.00 145. 00

SAT. WGHT. (PCF)

115. 00 125.00 135.00 140.00 145.00

ELEVATION AT TOP OF WALL

IV.--SURFACE POINT DATA

IV.A.--RIGHTSIDE DIST. FROM WALL (FT)

0.00 5.00

10.00 15.00

IV.B.--LEFTSIDE DIST. FROM WALL (FT)

0.00 5.00

10.00 15.00

V.--SOIL LAYER DATA

V.A.--RIGHTSIDE

ELEVATION (FT)

627.90 627.90 627.90 627.90

ELEVATION (FT)

627.90 627.90 627.90 627.90

630.50 FT.

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1.00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.50

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135. 00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

V.B.--LEFTSIDE LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE 1. 00 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE 1.50

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

VI. --WATER DATA UNIT WEIGHT 62. 40 (PCF) RIGHTSIDE ELEVATION 631. 99 (FT) LEFTSIDE ELEVATION 627.90 (FT)

Page 35: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

NO SEEPAGE

VII.--VERTICAL SURCHARGE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL-2015 TIME: 8:02:55

************************** * SOIL PRESSURES FOR * * CANTILEVER WALL DESIGN * **************************

I.--HEADING 'E AU GRES SLB SSP BARRIER

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

<------NET------> NET <---LEFTS IDE---> (SOIL + WATER) <--RIGHTS IDE--->

ELEV. WATER PASSIVE ACTIVE ACTIVE PASSIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) 630.5 93.0 0.0 0.0 93.0 93.0 0.0 0.0 629.5 155.4 0.0 0.0 155.4 155.4 0.0 0.0 628.5 217.8 0.0 0.0 217.8 217.8 0.0 0.0 627.9 255.2 0.0 0.0 255.2 255.2 0.0 0.0 627.5 255.2 53.8 6.6 208.1 302.4 6.6 53.8 626.9 255.2 134.4 16.5 137 .3 373.1 16.5 134.4 626. 5 255.2 188.1 23.1 90.2 420.3 23.1 188.1 625.7 255.2 290.9 35.7 0.0 510.4 35.7 290.9 625.5 255.2 322.5 39.6 -27.7 538.1 39.6 322.5 625.0 255.2 332.6 52.7 -24.7 535.1 52.7 332.6 624.5 255.2 353.2 69.5 -28.5 539.0 69.5 353.2 623.5 255.2 505.1 97.9 -152.0 662.4 97.9 505.1 622.5 255.2 632.0 123.1 -253.7 764.2 123.l 632.0 621. 5 255.2 758.8 148.2 -355.3 865.8 148.2 758.8 620.5 255.2 885.4 173.4 -456.8 967. 3 173.4 885.4 620.0 255.2 951. 3 186.5 -509.6 1020.1 186.5 951. 3 619.5 255.2 1022.3 200.6 -566.5 1077. 0 200.6 1022.3 618.5 255.2 1169.3 229.7 -684.4 1194. 8 229.7 1169. 3 617.5 255.2 1316.3 258.9 -802.2 1312.6 258.9 1316. 3 616.5 255.2 1463.2 288.1 -919.9 1430.3 288.1 1463.2 615.5 255.2 1610.0 317. 3 -1037.5 1548.0 317.3 1610.0 614.5 255.2 1756.9 346.5 -1155.2 1665.6 346.5 1756.9 613.5 255.2 1903.7 375.7 -1272.8 1783.2 375.7 1903.7 612.5 255.2 2050.5 404.8 -1390.4 1900.9 404.8 2050.5 611. 5 255.2 2197.3 434.0 -1508.0 2018.5 434.0 2197.3 610.5 255.2 2344.0 463.2 -1625.6 2136 .1 463.2 2344.0 610.0 255.2 2980.4 513.2 -2212.0 2722.4 513.2 2980.4 609.5 255.2 3377.1 514.8 -2607.1 3117. 5 514.8 3377.1 608.5 255.2 3064.3 445.8 -2363.3 2873.8 445.8 3064.3 607.5 255.2 3250.2 472 .1 -2522.9 3033.3 472 .1 3250.2 606.5 255.2 3436.1 498.4 -2682.5 3192.9 498.4 3436.1 605.5 255.2 3622.0 524.6 -2842.1 3352.6 524.6 3622.0

Page 36: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

604.5 255.2 3807.9 550.9 -3001.8 3512.2 550.9 3807.9 603.5 255.2 3993.8 577.2 -3161. 5 3671. 9 577.2 3993.8 602.5 255.2 4179.8 603.4 -3321.2 3831.6 603.4 4179.8 601. 5 255.2 4365.8 629.6 -3480.9 3991.3 629. 6 4365.8 600.5 255.2 4551.7 655.9 -3640.6 4151.1 655.9 4551.7 600.0 255.2 4646.2 669.2 -3721. 7 4232.2 669.2 4646.2 599.5 255.2 4743.5 683.0 -3805.3 4315.8 683.0 4743.5 598.5 255.2 4941. 2 710. 9 -3975.1 4485.5 710.9 4941.2 597.5 255.2 5138. 9 738.9 -4144.8 4655.3 738.9 5138.9

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS

DATE: 14-APRIL-2015

I.--HEADING

BY CLASSICAL METHODS

**************************** * SUMMARY OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

'E AU GRES SLB SSP BARRIER

II. --SUMMARY

TIME: 8:02:56

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

WALL

MAX.

MAX.

BOTTOM ELEV. (FT) 616.13 PENETRATION (FT) 11. 77

BEND. MOMENT (LB-FT) 4.2163E+03 AT ELEVATION (FT) 621. 22

SCALED DEFL. (LB-IN"3): 4.3687E+08 AT ELEVATION (FT) 630.50

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN"4 TO OBTAIN DEFLECTION IN INCHES.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHOREDOR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 14-APRIL-2015

I.--HEADING

**************************** * COMPLETE OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

'E AU GRES SLB SSP BARRIER

II.--RESULTS

ELEVATION BENDING MOMENT SHEAR

SCALED DEFLECTION

TIME: 8:02:56

NET PRESSURE

Page 37: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

(FT) 630.50 629.50 628.50 627.90 627.50 626.90 626.50 625.73 625.50 625.00 624.50 623.50 622.50 621. 50 620.50 620.00 619.50 618.92 618.50 617.50 616.50 616 .13

(:::,B-FT) (LB) (LB-IN"3) O.OOOOE+OO 0. 4.3687E+08 5.6888E+Ol 124. 3.8505E+08 2.6915E+02 311. 3.3335E+08 4.9705E+02 453. 3.0253E+08 6. 9727E+02 545. 2.8214E+08 1.0577E+03 649. 2.5195E+08 l.3270E+03 694. 2.3218E+08 1.8758E+03 729. 1.9544E+08 2.0468E+03 726. l.8451E+08 2.4063E+03 713. 1. 6193E+08 2.7594E+03 699. l.4038E+08 3.4238E+03 609. 1. 0102E+08 3.9398E+03 406. 6.7547E+07 4.2021E+03 102. 4.0847E+07 4.1091E+03 -304. 2.1358E+07 3.8976E+03 -546. l.4291E+07 3.5584E+03 -815. 8.9026E+06 2.9823E+03 -1166. 4.5378E+06 2.4509E+03 -1365. 2.5150E+06 1.0526E+03 -1306. 3.1742E+05 9. 24 71E+Ol -488. 1.8303E+03 O.OOOOE+OO 0. O.OOOOE+OO

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN"4 TO OBTAIN DEFLECTION IN INCHES.

(PSF) 92.98

155.38 217.78 255.22 208.06 137. 33

90.18 0.00

-27.70 -24. 71 -28.53

-152.01 -253.74 -355.33 -456.82 -509.62 -566.53 -635.33 -319.76

438.12 1195. 99 1473.36

III.--WATER AND SOIL PRESSURES

<-------------SOIL PRESSURES--------------> WATER <----LEFTS IDE-----> <---RIGHTSIDE---->

ELEVATION PRESSURE PASSIVE ACTIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF)

630.50 93. 0. 0. 0. 0. 629.50 155. 0. 0. 0. 0. 628.50 218. 0. 0. 0. 0. 627.90 255. 0. 0. 0. 0. 627.50 255. 54. 7. 7. 54. 626.90 255. 134. 16. 16. 134. 626.50 255. 188. 23. 23. 188. 625.73 255. 291. 36. 36. 291. 625.50 255. 323. 40. 40. 323. 625.00 255. 333. 53. 53. 333. 624.50 255. 353. 69. 69. 353. 623.50 255. 505. 98. 98. 505. 622.50 255. 632. 123. 123. 632. 621.50 255. 759. 148. 148. 759. 620.50 255. 885. 173. 173. 885. 620.00 255. 951. 186. 186. 951. 619.50 255. 1022. 201. 201. 1022. 618.92 255. 1108. 218. 218. 1108. 618.50 255. 1169. 230. 230. 1169. 617.50 255. 1316. 259. 259. 1316. 616.50 255. 1463. 288. 288. 1463. 616.13 255. 1610. 317. 317. 1610. 6'14. 50 255. 1757. 346. 346. 1757.

Page 38: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROJECT TITLE: DATE:

E Au Gres Sea Lamprey Trap

4/14/2015COMPUTATION TITLE: DATE:

East Bank Rehab SSP 4/29/2015

Note: This design procedure follows the guidelines set forth by EM 1110-2-2504, 1994, starting on pg. 6-1

allowable bending stress =

minimum section modulus =

Maximum Moment, M max = 21.42 k-ftAssumed Yield Strength, F y = 39 ksiAllowable Bending Stress, f b = 19.5 ksi

Minimum Section Modulus, S min = 13.2 in3

SSP Section = PZ22Section Modulus of Section, S = 18.1 in3

Applied bending stress, F b = 14.2 ksi

ACCEPTABLE

COMPUTED BY:

Maria Post-FitzgeraldCHECKED BY:

Blake Gerken

yb ff 5.0=

bfM

S maxmin =

Page 39: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9 : 0 2 : 0 9

I.--HEADING

**************** * INPUT DATA * ****************

~RE1)< S.E~.;Lp.MPREY TRAP SSP WALL EAST BANK. REHAB

II. --CONTROL CANTILEVER WALL DESIGN FACTOR OF SAFETY FOR ACTIVE PRESSURES FACTOR OF SAFETY FOR PASSIVE PRESSURES

III. --WALL DATA

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135. 00 140.00 145.00

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135.00 140.00 145.00

ELEVATION AT TOP OF WALL

IV.--SURFACE POINT DATA

IV.A.--RIGHTSIDE DIST. FROM WALL (FT)

0.00 10.00 15.00 20.00

IV.B.--LEFTSIDE DIST. FROM WALL (FT)

0.00 2.00 4.00 6.00 8.00

V.--SOIL LAYER DATA

V.A.--RIGHTSIDE

ELEVATION (FT)

642.00 646.00 647.00 649.00

ELEVATION (FT)

635.00 634.00 633.00 632.00 630.00

642.00 FT.

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE

DEFAULT DEFAULT

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115.00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

V. B. --LEFTS IDE LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE

DEFAULT DEFAULT

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115.00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

VI.--WATER DATA

Page 40: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

UNIT WEIGHT RIGHTSIDE ELEVATION LEFTSIDE ELEVATION NO SEEPAGE

62.40 (PCF) 628. 00 (FT) 628. 00 (FT)

VII.--VERTICAL SURCHARGE LOADS

VII.A.--VERTICAL LINE LOADS NONE

VII.B.--VERTICAL UNIFORM LOADS LEFTS IDE

(PSF) 0.00

RIGHTS IDE (PSF) 90.00

VII.C.--VERTICAL STRIP LOADS NONE

VII.D.--VERTICAL RAMP LOADS NONE

VII.E.--VERTICAL TRIANGULAR LOADS NONE

VII.F.--VERTICAL VARIABLE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015

I.--HEADING

**************************

* SOIL PRESSURES FOR * * CANTILEVER WALL DESIGN * **************************

TIME: 9:02:13

'E AU GRES SEA LAMPREY TRAP SSP WALL EAST BANK REHAB

II.--SOIL PRESSURES

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

<------NET------> NET <---LEFTS IDE---> (SOIL + WATER) <--RIGHTS IDE--->

ELEV. WATER PASSIVE ACTIVE ACTIVE PASSIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) (PSF) 642.0 0.0 0.0 0.0 32.3 359.9 32.3 359.9 641. 0 0.0 0.0 0.0 96. 5 1132 .1 96. 5 1132 .1 640.0 0.0 0.0 0.0 150.6 1767.2 150.6 1767.2 639.0 0.0 0.0 0.0 204.7 2402.3 204.7 2402.3 638.0 0.0 0.0 0.0 258.9 3018.5 258.9 3018.5 637.0 0.0 0.0 0.0 313.0 3482.1 313.0 3482.1 636.0 0.0 0.0 0.0 361. 8 3848.6 361. 8 3848.6 635.0 0.0 0.0 0.0 405.3 4378.1 405.3 4378.l 634.0 0.0 115. O* 27.6 333.2 4 965. 9 448.2 4993.5 633.0 0.0 230.0* 55.1 263.1 5494.3 493.1 5549.4

Page 41: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

632.0 0.0 345.0* 82.7 193.0 5734.7 538.0 5817.4 631. 0 0.0 460.0* 110. 3 120.0 5777.3 580.0 5887.6 630.0 0.0 575.0* 137.9 51. 9 5939.6 626.9 6077.5 629.2 0.0 671. 6 159.4 0.0 6099.4 671. 6 6258.8 629.0 0.0 699.0 165.4 -14.7 6144.7 684.2 6310.2 628.0 0.0 876.6 188.2 -144.5 6345.5 732.1 6533.8 627.0 0.0 959.0 201. 5 -193.7 6464.9 765.3 6666.4 626.0 0.0 1035.4 210.0 -245.8 6543.0 789.6 6753.0 625.0 0.0 962. 8 230.7 -188.5 4492.3 774.3 4723.1 624.0 0.0 1025.4 277.5 -141.6 3991.9 883.8 4269.4 623.0 0.0 1088.0 314.8 -56.9 5645.0 1031.1 5959.8 622.0 0.0 1241.6 329.l -181.0 5712. 5 1060.6 6041. 6 621. 0 0.0 1374.2 341.7 -284.1 5777.8 1090.1 6119. 5 620.0 0.0 1503.2 352.8 -382.7 5867.9 1120. 5 6220.7 619.0 0.0 1637.0 364.9 -484.2 5974.2 1152. 8 6339.1 618.0 0.0 1773.9 379.7 -586.5 6089.9 1187. 4 6469.6 617.0 0.0 1924.5 395.5 -701.2 6208.0 1223.3 6603.5 616.0 0.0 2068.3 409.6 -810.6 6324.5 1257.7 6734.1 615.0 0.0 2204.8 423.4 -914.2 6434.6 1290.6 6857.9 614.0 0.0 2347.6 441. 4 -1024.1 6536.9 1323. 5 6978.3 613.0 0.0 2496.5 467.8 -1140. 4 6637.5 1356.1 7105. 3 612.0 0.0 2645.5 494.5 -1257.5 6751.2 1388.0 7245.7 611. 0 0.0 2794.3 517.8 -1375.2 6875.2 1419.1 7393.0 610.0 0.0 3504.9 570.8 -1899.6 9401.4 1605.3 9972 .1 609.0 0.0 3942.8 550.0 -2400.6 10148.7 1542.2 10698.7 608.0 0.0 3820.9 502.0 -2499.8 8520.3 1321.1 9022.3 607.0 0.0 3966. 4 529.8 -2619.8 8697.6 1346.6 9227.5 606.0 0.0 4113. 3 557.6 -2740.5 8875.0 1372. 8 9432.7 605.0 0.0 4283.8 587.4 -2883.9 9050.0 1399.9 9637.4 604.0 0.0 4469.l 618.8 -3042.1 9219.3 1427.0 9838.l

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE FOR THIS ELEVATION.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9:02:14

**************************** * SUMMARY OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

I.--HEADING 'E AU GRES SEA LAMPREY TRAP SSP WALL EAST BANK REHAB

II.:--SUMMARY

WALL

MAX.

MAX.

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE"METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

*****WARNING: STANDARD WEDGE SOLUTION DOES NOT EXIST AT ALL ELEVATIONS. SEE COMPLETE OUTPUT.

BOTTOM ELEV'. (FT) 607.99 PENETRATION (FT) 27.01

BEND. MOMENT (LB-FT) 3.8232E+04 AT ELEVATION (FT) 617.74

SCALED DEFL. (LB-IN"3): 2.4247E+l0 AT ELEVATION (FT) 642.00

Page 42: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHOREDOR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015

I.--HEADING

**************************** * COMPLETE OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

'E AU GRES SEA LAMPREY TRAP SSP WALL EAST BANK REHAB

II. --RESULTS

BENDING SCALED ELEVATION MOMENT SHEAR DEFLECTION

(FT) (LB-FT) (LB) (LB-INA3) 642.00 O.OOOOE+OO 0. 2.4247E+l0 641. 00 2.6863E+Ol 64. 2.3112E+10 640.00 1.4854E+02 188. 2 .1977E+l0 639.00 4.2084E+02 366. 2.0842E+10 638.00 8.9788E+02 597. 1.9708E+l0 637.00 1.6338E+03 883. l.8576E+10 636.00 2.6818E+03 1221. 1. 7446E+l0 635.00 4.0908E+03 1604. 1.6321E+10 634.00 5.8858E+03 1974. 1.5204E+10 633.00 8.0144E+03 2272. 1.4096E+10 632.00 1.0406E+04 2500. 1.3002E+l0 631. 00 1.2990E+04 2656. 1.1927E+10 630.00 l.5695E+04 2742. 1.0873E+l0 629.22 1.7842E+04 2763. 1.0072E+10 629.00 1.8452E+04 2761. 9.8474E+09 628.00 2 .1184E+04 2681. 8.8532E+09 627.00 2.3785E+04 2512. 7.8956E+09 626.00 2.6192E+04 2292. 6.9791E+09 625.00 2. 8371E+04 2075. 6.1078E+09 624.00 3.0360E+04 1910. 5.2855E+09 623.00 3.2213E+04 1811. 4.5156E+09 622.00 3.3975E+04 1692. 3.8014E+09 621. 00 3.5559E+04 1459. 3.1459E+09 620.00 3.6860E+04 1126. 2.5518E+09 619.00 3.7778E+04 693. 2.0213E+09 618.00 3. 8211E+04 157. 1.5560E+09 617.00 3.8056E+04 -487. 1.1567E+09 616.00 3.7201E+04 -1242. 8.2305E+08 615.00 3.5536E+04 -2105. 5.5356E+08 614.00 3.2956E+04 -3074. 3.4534E+08 613.00 2.9350E+04 -4156. 1.9391E+08 612.00 2.4604E+04 -5355. 9.3046E+07 611. 00 1.8600E+04 -6672. 3. 4511E+07 610.29 1.3467E+04 -7784. l.2994E+07 610.00 1.117 4E+04 -8102. 7.9144E+06 609.00 3.5842E+03 -6332. 5.7214E+05 608.00 -2.2278E-01 -92. -6.5345E-02 607.99 O.OOOOE+OO 0. O.OOOOE+OO

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

TIME: 9: 02: 14

NET PRESSURE

(PSF) 32.34 96. 49

150.61 204.74 258.87 313.00 361. 85 405.32 333.19 263.14 192.95 120.04

51. 94 0.00

-14.74 -144.53 -193.69 -245.81 -188.55 -141.62 -56.94

-180.97 -284.12 -382.66 -484.18 -586.49 -701.20 -810.63 -914.19

-1024 .11 -1140. 41 -1257.47 -1375.18 -1748.77

-463.52 4005.08 8473.67 8522.21

Page 43: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

III.--WATER AND SOIL PRESSURES

<-------------SOIL PRESSURES--------------> WATER <----LEFTS IDE-----> <---RIGHTS IDE---->

ELEVATION PRESSURE PASSIVE ACTIVE ACTIVE PASSIVE (FT) (PSF) (PSF) (PSF) (PSF) (PSF)

642.00 0. 0. 0. 32. 360. 641.00 0. 0. 0. 96. 1132. 640.00 0. 0. 0. 151. 17 67. 639.00 0. 0. 0. 205. 2402. 638.00 0. 0. 0. 259. 3019. 637.00 0. 0. 0. 313. 3482. 636.00 D. D. 0. 362. 3849. 635.00 D. 0. 0. 405. 4378. 634.DO D. * 115. 28. 448. 4993. 633.00 D. * 230. 55. 493. 5549. 632.00 D. * 345. 83. 538. 5817. 631.00 0. * 460. 110. 580. 5888. 630.00 Cl. * 575. 138. 627. 6078. 629.22 0. 672. 159. 672. 6259. 629.00 0. 699. 165. 684. 6310. 628.00 D. 877. 188. 732. 6534. 627.00 D. 959. 201. 765. 6666. 626.00 D. 1035. 210. 790. 6753. 625.00 D. 963. 231. 774. 4723. 624.00 D. 1025. 277. 884. 4269. 623.00 D. 1088. 315. 1031. 5960. 622.00 D. 1242. 329. 1061. 6042. 621. OD D. 1374. 342. 1090. 6119. 620.00 0. 1503. 353. 1121. 6221. 619.0D 0. 1637. 365. 1153. 6339. 618.00 0. 1774. 380. 1187. 6470. 617.00 0. 1925. 395. 1223. 6604. 616.00 0. 2D68. 41D. 1258. 6734. 615.00 0. 2205. 423. 1291. 6858. 614.00 0. 2348. 441. 1323. 6978. 613.00 0. 2497. 468. 1356. 7105. 612.00 0. 2645. 494. 1388. 7246. 611. DO 0. 2794. 518. 1419. 7393. 610.29 0. 3301. 556. 1552. 923D. 610.0D D. 35D5. 571. 1605. 9972. 609.00 0. 3943. 550. 1542. 10699. 608.00 0. 3821. 5D2. 1321. 9022. 607.99 0. 3966. 530. 1347. 9227. 606.00 0. 4113. 558. 1373. 9433.

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE AT THIS ELEVATION.

Page 44: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9: 05: 00

I.--HEADING

**************** * INPUT DATA * ****************

'E'AU GRES SEA LAMPREY TRAP .SSP WALL EAST BANK REHAB

II. --CONTROL CANTILEVER WALL DESIGN FACTOR OF SAFETY FOR ACTIVE PRESSURES FACTOR OF SAFETY FOR PASSIVE PRESSURES

III.--WALL DATA

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135. 00 140.00 145.00

SAT. WGHT. (PCF)

115. 00 115. 00 125.00 135.00 140.00 145.00

ELEVATION AT TOP OF WALL 642.00 FT.

IV.--SURFACE POINT DATA

IV.A.--RIGHTSIDE DIST. FROM WALL (FT)

0.00 10.00 15.00 20.00

IV.B.--LEFTSIDE DIST. FROM WALL (FT)

0.00 2.00 4.00 6.00 8.00

V.--SOIL LAYER DATA

V .A. --RIGHTSIDE

ELEVATION (FT)

642.00 646.00 647.00 649.00

ELEVATION (FT)

635.00 634.00 633.00 632.00 630.00

LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE DEFAULT LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE DEFAULT

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115.00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

V. B. --LEFTS IDE LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURE LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURE

DEFAULT DEFAULT

ANGLE OF ANGLE OF <-SAFETY-> MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <-FACTOR-> WGHT. FRICTION ES ION FRICTION ES ION ELEV. SLOPE ACT. PASS. (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)

115. 00 28.00 0.00 15.12 0.00 628.00 0.00 DEF DEF 115. 00 28.00 0.00 15.12 0.00 625.00 0.00 DEF DEF 125.00 22.00 0.00 11. 88 0.00 620.00 0.00 DEF DEF 135.00 22.00 0.00 11. 88 0.00 610.00 0.00 DEF DEF 140.00 26.00 0.00 15.08 0.00 600.00 0.00 DEF DEF 145.00 26.00 0.00 15.08 0.00 DEF DEF

VI.--WATER DATA

Page 45: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

UNIT WEIGHT RIGHTSIDE ELEVATION LEFTSIDE ELEVATION NO SEEPAGE

62.40 (PCF) 628.00 (FT) 628. 00 (FT)

VII.--VERTICAL SURCHARGE LOADS

VII.A.--VERTICAL LINE LOADS NONE

VII.B.--VERTICAL UNIFORM LOADS LEFTS IDE

(PSF) 0.00

RIGHTS IDE (PSF) 90.00

VII.C.--VERTICAL STRIP LOADS NONE

VII.D.--VERTICAL RAMP LOADS NONE

VII.E.--VERTICAL TRIANGULAR LOADS NONE

VII.F.--VERTICAL VARIABLE LOADS NONE

VIII.--HORIZONTAL LOADS NONE

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015

I.--HEADING

************************** * SOIL PRESSURES FOR * * CANTILEVER WALL DESIGN * **************************

TIME: 9:05:06

'E AU GRES SEA LAMPREY TRAP SSP WALL EAST BANK REHAB

II.--SOIL PRESSURES

ELEV. (FT) 642.0 641. 0 640.0 639.0 638.0 637.0 636.0 635.0 634.0 633.0

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

NET WATER (PSF)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<---LEFTS IDE---> PASSIVE ACTIVE

(PSF) (PSF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

115.0 27.6 230.0* 55.1

<------NET------> (SOIL + WATER)

ACTIVE PASSIVE (PSF) (PSF) 32.3 576.1 96.5 2853.2

150. 6 4341.1 204.7 5253.2 258.9 6194.2 313.0 7555.0 361. 8 8006. 4 405.3 7917.4 333.2 8223.0 263.1 8593.7

<--RIGHTS IDE---> ACTIVE PASSIVE

(PSF) (PSF) 32.3 576.1 96.5 2853.2

150. 6 4341.1 204.7 5253.2 258.9 6194.2 313.0 7555.0 361. 8 8006. 4 405.3 7917.4 448.2 8250.5 493.1 8648.8

Page 46: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

632.0 0.0 392.2* 82.7 145.8 8990.3 538.0 9073.0 631. 2 0.0 571.9* 105.0 0.0 9380.0 571. 9 9485.0 631. 0 0.0 614.8* 110 .3 -34.8 94 72. 9 580.0 9583.2 630.0 0.0 809.9 137.9 -183.0 9916.1 626.9 10054.0 629.0 0.0 107 6. 2 165.4 -392.0 10312.3 684.2 10477.7 628.0 0.0 1367.1 188.2 -635.0 10680.5 732.1 10868.8 627.0 0.0 1520.8 201. 5 -755.6 10965. 0 765.3 11166. 5 626. 0 0.0 1671. 8 210.0 -882.3 11186.2 789.6 11396.2 625.0 0.0 1136. 6 230.7 -362.4 3490.9 774.3 3721. 6 624.0 0.0 1025.4 277.5 -141.6 2057.0 883.8 2334.5 623.0 0.0 1547.6 314.8 -516.5 8479.6 1031.1 8794.5 622.0 0.0 1823.6 329.1 -762.9 8581.1 1060.6 8910.2 621. 0 0.0 2016.6 341.7 -926.5 8685.4 1090.1 9027.1 620.0 0.0 2216.0 352.8 -1095.5 8813.7 1120. 5 9166.4 619.0 0.0 2409.2 364.9 -1256.3 8974.0 1152. 8 9338.9 618.0 0.0 2611.8 379.7 -1424.4 9133.8 1187. 4 9513.6 617.0 0.0 2833.5 395.5 -1610.2 9274.0 1223.3 9669. 5 616.0 0.0 3054.8 409.6 -1797.1 9414.9 1257.7 9824.5 615.0 0.0 3275.8 423.4 -1985.3 9590.7 1290.6 10014.1 614.0 0.0 3482.6 441. 4 -2159.1 9790.2 1323.5 10231.7 613.0 0.0 3681.4 467.8 -2325.2 9983.0 1356.1 10450.8 612.0 0.0 3892.7 494.5 -2504.7 10175.1 1388.0 10669.5 611. 0 0.0 4110. 3 517.8 -2691.1 10370.1 1419.1 10887.9 610.0 0.0 6176.6 570.8 -4571. 3 19277.7 1605.3 19848.5 609.0 0.0 7092.6 550.0 -5550.5 21016.1 1542.2 21566.l 608.0 0.0 6157.7 502.0 -4836.6 14109.6 1321.1 14611.6 607.0 0.0 6376.0 529.8 -5029.4 14440.5 134 6. 6 14970.3 606.0 0.0 6635.6 557.6 -5262.8 14767.7 1372. 8 15325.3 605.0 0.0 6928.5 587.4 -5528.6 15080.1 1399. 9 15667.5 604.0 0.0 7225.3 618.8 -5798.3 15384.0 1427.0 16002.8

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE FOR THIS E~EVATION.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9:05:07

**************************** * SUMMARY OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

I.--HEADING 'E AU GRES SEA LAMPREY TRAP SSP WALL EAST BANK REHAB

II.--SUMMARY

WALL

MAX.

MAX.

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

*****WARNING: STANDARD WEDGE SOLUTION DOES NOT EXIST AT ALL ELEVATIONS. SEE COMPLETE OUTPUT.

BOTTOM ELEV. (FT) 616.98 PENETRATION (FT) 18.02

BEND. MOMENT (LB-FT) 2.1421E+04 AT ELEVATION (FT) 625.87

SCALED DEFL. (LB-IN"'3): 7.1637E+09 AT ELEVATION (FT) 642.00

Page 47: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

NOTE: DIVIDE SCALED DEFLECTION MODULUS OF ELLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHOREDOR CANTILEVER SHEET PILE WALLS BY CLASSICAL METHODS

DATE: 15-APRIL-2015 TIME: 9: 05: 07

**************************** * COMPLETE OF RESULTS FOR * * CANTILEVER WALL DESIGN * ****************************

I.--HEADING 'E AU GRES SEA LAMPREY TRAP SSP WALL EAST BANK REHAB

II. --RESULTS

ELEVATION (FT)

642.00 641. 00 640.00 639.00 638.00 637.00 636.00 635_. 00 634.00 633.00 632.00 631.19 631. 00 630.00 629.00 628.00 627.00 626.00 625.00 624.00 623.00 622.00 621. 00 620.00 619.00 618.39 618.00 617.00 616.98

BENDING SCALED MOMENT SHEAR DEFLECTION (LB-FT) (LB) (LB-INA3)

0.0000E+OO 0. 7.1637E+09 2.6863E+Ol 64. 6.7091E+09 l.4854E+02 188. 6.2547E+09 4.2084E+02 366. 5.8005E+09 8.9788E+02 597. 5.3470E+09 l.6338E+03 883. 4.8952E+09 2.6818E+03 1221. 4.4462E+09 4.0908E+03 ·1604. 4.0019E+09 5.8858E+03 1974. 3.5647E+09 8.0144E+03 2272. 3.1377E+09 1.0398E+04 24 76. 2.7247E+09 l.2429E+04 2535. 2.4041E+09 1.2917E+04 2532. 2. 3296E+09 l.5407E+04 2423. l.9568E+09 l.7703E+04 2135. 1.6106E+09 l.9602E+04 1622. 1. 2950E+09 2.0887E+04 927. l.0131E+09 2.1414E+04 108. 7. 6726E+08 2 .1168E+04 -515. 5.5828E+08 2.0509E+04 -767. 3.8581E+08 1. 9609E+04 -1096. 2.4876E+08 l.8214E+04 -1735. 1.4552E+08 1. 6070E+04 -2580. 7.3639E+07 1. 2998E+04 -3591. 2.9397E+07 8.8325E+03 -4767. 7.4574E+06 5.6691E+03 -5568. 2.0136E+06 3.4842E+03 -5528. 6.0061E+05 8.2674E-01 -179. -2.0167E-01 O.OOOOE+OO 0. O.OOOOE+OO

NOTE: ~IVIDE SCALED DEFLECTION MODULUS OF ~LLASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN INA4 TO OBTAIN DEFLECTION IN INCHES.

NET PRESSURE

(PSF) 32.34 96. 49

150.61 204.74 258.87 313. 00 361. 85 405.32 333.19 263.14 145.77

0.00 -34.77

-182.99 -391.97 -635.01 -755.55 -882.26 -362.36 -141.62 -516.53 -762.93 -926.49

-1095.47 -1256.33 -1359.31

1568.59 9130.04 9276.75

III.--WATER AND SOIL PRESSURES

ELEVATION (FT)

642.00 641. 00 640.00

WATER PRESSURE

(PSF) 0. 0. 0.

<-------------SOIL PRESSURES--------------> <----LEFTS IDE-----> <---RIGHTS IDE----> PASSIVE ACTIVE ACTIVE PASSIVE

(PSF) (PSF) (PSF) (PSF) 0. 0. 32. 576. 0. 0. 96. 2853. 0. 0. 151. 4341.

Page 48: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

639.00 0. 0. 0. 205. 5253. 638.00 0. 0. 0. 259. 6194. 637.00 0. 0. 0. 313. 7555. 636.00 0. 0. 0. 362. 8006. 635.00 0. 0. 0. 405. 7917. 634.00 0. 115. 28. 448. 8251. 633.00 O.* 230. 55. 493. 8649. 632.00 0. * 392. 83. 538. 9073. 631.19 O.* 572. 105. 572. 9485. 631. 00 O.* 615. 110. 580. 9583. 630.00 0. 810. 138. 627. 10054. 629.00 0. 107 6. 165. 684. 10478. 628.00 0. 1367. 188. 732. 10869. 627.00 0. 1521. 201. 765. 11167. 626.00 0. 1672. 210. 790. 11396. 625.00 0. 1137. 231. 774. 3722. 624.00 0. 1025. 277. 884. 2334. 623.00 0. 1548. 315. 1031. 87 94. 622.00 0. 1824. 329. 1061. 8910. 621. 00 0. 2017. 342. 1090. 9027. 620.00 '.l. 2216. 353. 1121. 9166. 619.00 0. 2409. 365. 1153. 9339. 618.39 0. 2533. 374. 1174. 9446. 618.00 0. 2612. 380. 1187. 9514. 617.00 0. 2834. 395. 1223. 9669. 616.98 0. 3055. 410. 1258. 9825. 615.00 0. 327 6. 423. 1291. 10014.

* STANDARD WEDGE SOLUTION DOES NOT EXIST FOR INDICATED PRESSURE AT THIS ELEVATION.

Page 49: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 1 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

References1. LRFD Guide Specification for the Design of Pedestrian Bridges, December 20092. AASHTO LRFD 2012

Determine Design LoadingsNote: Loadings will be placed into STAAD to determine design bending moments and shears.

Dead Load

Beam Self Weight See STAAD Analysis

Steel Grating 45.5 lb/ft

Handrailing & Toe Plate 20 lb/ft

Live Load

Live Load Pressure= 90 psf (Ref 1)

Platform Width, w= 7 feetLoad Applied At Girder= 315.000 lb/ft

Wind Loading

Lateral Wind Loading - Transverse Direction

(AASHTO Signs Articles 3.8 and 3.9)

Design Wind Speed, V= 90 mphKz= 0.86 (H=16 feet above Channel bottom, Eq. C3-1)G= 1.14Ir= 1.15 (Ref 1 Section 3.4)

Cd= 1.7 (Flat Shape)

Design Wind Pressure, Pz= 39.74 psf

Area Impacted by Wind:Toe Plate Area = 72 in2/ft (Assume 6" High Toe Plate)

Girder Area = 120 in2/ftHandrail Area Impacted by Wind = 54 in2/ft

TOTAL 1.7 ft2

Lateral Wind Loading = 0.068 k/ft*** Assumed Transverse Lateral Wind Load is acting on the centroid of the girder in the Staad Model.

Vertical Wind Loading

(Ref 2 Section 3.8.2)

Upward Wind Force = 0.02 ksfWidth of deck, wdeck = 7.00 ft (Conservative since actual span is 5 feet)

Vertical Wind Load @ windward quarterpoint of deck = 0.14 k/ft

Vertical Wind Load on Windward Girder = 0.105 k/ftVertical Wind Load on Opposite Girder = 0.035 k/ft

Seismic Load

Seismic Load DeterminationPeak Ground Accerlation Coeff, PGA = 1.9 % Fig 3.10.2.1-1

Long-period spectral acceleration coeff, S1 = 2.3 % g Fig 3.10.2.1-3

COMPUTED BY:

M.P.F

The load on the deck is to be distributed to the girders. Assuming a simply supported beam, 75% of the load is distributed to the windward girder and 25% of the load to the leeward girder.

(Assumed W-19 Steel 1-3/4 x 3/16 w=13 psf)(1 1/2 Diameter Steel Pipe (2.72 lb/ft) 3 Rail with 6"x1/4" Toe Plate (5.10 lb/ft) rounded to 20 lb/ft to allow for hardware)

(To Outer Edge Of Girder), (Conservative since actual span is 5 feet)

dRzz CIGVKP 200256.0=

Page 50: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 2 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Short-period spectral acceleration coeff, Ss = 4 % g Fig 3.10.2.1-2

Assume Site Class D

Determine Seismic ZoneEq 3.10.4.2-6

Site Factor, Fv = 3.5 Table 3.10.3.2-3

Accerlation Coeff, SD1 = 0.0805

Seismic Zone = 1 Table 3.10.6-1

Determine Minimum Design Connection Force

Eq 3.10.4.2-2

Site Factor, Fpga = 2.5 Table 3.10.3.2-1

Accerlation Coeff, As = 0.0475

Determine Dead LoadDead Load Reaction 2.034 kips (STAAD Analysis)

Total Horizontal Force Per SupportPlaform 0.305 kips

Ice Accretion/Snow Loading

Ground Snow Load, pg = 40 psf (ASCE 7 Figure 7-1)Width of deck, wdeck = 7.00 ft

Ice Accretion/Snow Load on Girder = 140 lb/ft

Thermal Loading

Per Reference 2 3.12.2, use Procedure A to determine the design thermal movement associated with a uniform temperature change.

(Reference 2 3.12.2.3-1)

TMinDesign= -30 °FTMaxDesign= 120 °F

Coefficient of Thermal Expansion, α= 0.0000065 in/in/°F (AISC Table 17-11)Expansion Length of Girder, L= 168 in

Design Thermal Movement Range, ΔT= 0.1638 in

Hydrostatic Loading (WAstatic)

Per 4.7.41 because the bridge is in seismic zone 1, seismic analysis is not required. However, Section 3.10.9 requires a minimum design connection force for all seismic zones.

ASCE 7 Figure 7-1 recommends a ground snow load of 40 psf be used in National City, MI.

The average daily temperature is below 32°F for over 14 days per year. Therefore, National City, MI is considered a Cold Climate region and the Temperature Ranges for Steel will be -30° to 120°F (Reference 2 Table3.12.2.1-1.)

Therefore, horizontal design connection force in retrained directions shall not be less than .15 times vertical reaction due to tributary permanent load and tributary live loads assumed to exist during an earthquake. It is assumed no live load will exist during an earthquake. Ref: Section 3.10.9.2

Because the lamprey trap platform will be considered a flow through structure and that, due to the platforms location, there will not be any anticipated hydrostatic pressure differential, the hydrostatic loading will not be considered.

(Conservative since actual span is 5 feet)

11 SFS vD =

PGAFA pgaS =

Page 51: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 3 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Stream Pressure (WAstream)

Drag coefficient, CD = 1.4 Ref 2, Table 3.7.3.1-1, debris lodged against pier

River

Event Velocity (fps)Pressure (ksf/ft of wall) Pressure (kips )

Extreme 500 3.56 0.01774304 0.014785867Usual 25 3.31 0.01533854 0.012782117Ice Condition 2 2.66 0.00990584 0.008254867

Load Cases

Notes:

- Extreme 1 includes earthquake loads.- Extreme 2 (check flood) relates to the extreme hydraulic event.- Extreme 2 (ice) relates to ice loading.

Strength 1 (25-year event): 1.25DL+1.75LL+1.0WAstream,25

Strength 3 (Wind parallel to flow in u/s direction): 1.25DL+1.0WAstream,25+1.4W

Strength 3 (Wind parallel to flow in d/s direction): 1.25DL+1.0WAstream,25+1.4W

Strength 3 (Wind perpendicular to flow): 1.25DL+1.0WAstream,25+1.4W

Extreme 1: 1.25DL+0.5LL+1.0WAstream,25+1.0EQ

Extreme 2 (Check Flood): 1.0DL+0.5LL+1.0I+1.0WAstream,500

Service 1 (Wind parallel to flow in d/s direction): 1.0DL+1.0LL+WAstream,25+.3W

Service 1 (Wind parallel to flow in u/s direction): 1.0DL+1.0LL+WAstream,25+.3W

Service 1 (Wind perpendicular to flow): 1.0DL+1.0LL+WAstream,25+.3W

Service 2: 1.0DL+1.3LL+1.0WAstream,25

Fatigue 1: 1.0LL+1.0W

STAAD RESULTS

Primary Girder

A STAAD Model Was Developed - Refer To: E. Au Gres Platform.stdVMAX: 5.336 KIPS Vertical Shearing Load

Load Cond: Strength 1 (Beam 33)

MZ: 11.76 K-FT Strong Axis BendingLoad Cond: Strength 1 (Beam 34)

MY: 0.88 K-FT Weak Axis BendingLoad Cond: Strength 1 (Beam 37)

Design Primary Girder

Design Beam Section: W10x49

Beam PropertiesTotal Span, L= 14.00 ft

Flange Width, bf= 10 inFlange Thickness, tf= 0.56 in

- Strength 3 (wind) is the load combination relating the bridge exposed to high wind velocities. The load combination will be considered for winds parallel to flow in the d/s direction), winds parallel to flow in the u/s direction and winds perpendicular to flow. These wind conditions will cover the worst loading conditions for the upstream walkway columns, platform columns and biaxial bending in the walkway columns.

- Service 1 is the load combination relating to the normal operation use of the bridge with high winds. Similar to the Strength 3 load combination winds parallel to flow in both the u/s and d/s directions as well as winds perpendicular to flow will be considered.

Stream pressure will be applied as a uniform load on the walkway columns and girders. Based on data from H&H office, the platform will be submerged at the 25 year event

1000

2VCp D=

Page 52: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 4 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Beam Depth, d= 10 inWeb Depth for Shear, D= 8.88 in

Web Thickness, tw= 0.34 inSection Modulus, Sx= 54.6 in3

Section Modulus, Sy= 18.7 in4

Moment of Inertia (x-axis), Ix= 272 in4

Plastic Section Modulus, Zx= 60.4 in3

(Ref 2 Eqn 6.10.8.2.3-4)

Distance Between Flange Centroids, h= 9.44 inDepth of the Web in Compression, Dc= 4.44 in

rt= 2.859628217 inSteel Yield Strength, Fy = 50 ksiModulus of Elasticity, E= 29000 ksi

Lower Unbraced Limit, Lp= 5.74 ft

(Reference 2 6.10.8.2.3-5)

rt= 2.86 inUpper Unbraced Length Limit, Lr= 18.03 ft

Unbraced Length, Lb= 14.00 fth/tw= 27.76470588

Check Cross Section Proportion Limits (REF 2 Section 6.10.2)

Web Proportion Limits

(Ref 2 Eqn 6.10.2.1.1-1)(No Longitudinal Web Stiffeners)

D/tw= 26.11764706 OK

Flange Proportion Limits(Ref 2 Eqn 6.10.2.1.2-1)

λf=bf/2tf= 8.928571429 OK

(Ref 2 Eqn 6.10.2.1.2-2)

bf= 10 inD/6= 1.48 in OK

(Ref 2 Eqn 6.10.2.1.2-3)

tf= 0.561.1tw= 0.374 OK

(Ref 2 Eqn 6.10.2.2.2-4)

Iyc= 272 in4

Iyt= 272 in4

Iyc/Iyt= 1 OK

150≤wt

D

0.122

≤f

f

tb

6Db f ≥

wf tt 1.1≥

101.0 ≤≤yt

yc

II

yrtr F

ErL π=

ytp F

ErL 0.1=

Page 53: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 5 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Size W-Shape BeamYield Stress, Fy= 50 ksi

Maximum Bending Moment, Mu= 11.76 ft-kipsφ= 1.00 (Ref 2 Section 6.5.4.2)

Required Section Modulus, Sreq= 2.82 in3

Calculate Applied Bending Stresses

Strong Axis BendingMaximum Bending Moment, Mu= 11.76 ft-kips

Beam Strong Axis Section Modulus, Sx= 54.60 in3

Steel Yield Strength, Fy = 50.00 ksiApplied Bending Stress, Fb= 2.59 ksi

Weak Axis Bending Maximum Bending Moment, Mu= 0.88 ft-kips

Beam Weak Axis Section Modulus, Sy= 18.7 in3

Steel Yield Strength, Fy = 50 ksiApplied Bending Stress, Fb= 0.56 ksi

Checks

Check if shape is compact

Shape must satisfy both of the following criteria

1) (Ref 2 Section 6.10.8.2.2-4)

Flange Width, bf= 10 inFlange Thickness, tf= 0.56 in

Steel Yield Strength, Fy = 50 ksiModulus of Elasticity, E= 29000 ksi

bf/2tf= 8.93

0.38√(E/Fy) 9.152bf/tf < 0.38(E/Fy)^0.5 Therefore Shape Meets Compact Criteria

2) (Ref 2 Section 6.10.1.10.2-4 and 6.10.1.10.2-2)

Steel Yield Strength, Fy = 50 ksiModulus of Elasticity, E= 29000 ksi

2Dc/tw= 26.125.7*E/√Fy= 137.27

Shape Meets Non Compact Criteria

Both Criteria are satisfied, therefore shape is compact, Rb=1

req

uy S

MFφ

=

yf

f

FE

tb

38.02

yw

c

FE

tD 7.52

Page 54: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 6 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Check Local Buckling of Compression Flange

λf=bf/2tf= 8.929λpf= 9.152λrf= 13.487

Hybrid Factor, Rh= 1 (Ref 2 Section 6.10.1.10.1)Web Load Shedding Factor, Rb= 1 (Ref 2 Section 6.10.1.10.2)

Steel Yield Strength, Fyc = 50 ksiFyr=0.7Fyc= 35 ksi

λf<=λpf Therefore Use Eqn 6.10.8.2.2-1 OKLocal Buckling Resistance, Fnc= 50 ksi Eqn 6.10.8.2.2-1Local Buckling Resistance, Fnc= 50.77 ksi Eqn 6.10.8.2.2-2

Governing Local Buckling Resistance, Fnc= 50 ksi

Check Lateral Torsional Buckling

Unbraced Length, Lb= 14.00 ftLower Unbraced Limit, Lp= 5.74 ftUpper Unbraced Limit, Lr= 18.03 ft

Lp<Lb<=Lr

Moment Gradient Modifier, Cb= 1 ConservativeCompression Flange Yield Stress incl Residual Stress Effects,

Fyr= 35 ksi Taken as 0.7Fyc

Hybrid Factor, Rh= 1 (Ref 2 Section 6.10.1.10.1)Web Load Shedding Factor, Rb= 1 (Ref 2 Section 6.10.1.10.2)

Compression Flange Yield Strength, Fyc= 50 ksi

Lateral Torsional Buckling Resistance, Fnc= 39.92 ksiLateral Torsional Buckling Resistance, Mn=FncSx= 181.628 kip-ft

Page 55: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 7 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Check DeflectionDeflections as determined from the STAAD Model

Maximum LL Deflection, δmax= 0.0140 inL/360= 0.4667 in

Deflection Less than L/360, OK

Maximum DL Deflection, δmax= 0.005 in

Check Shear

Fyw= 50 ksiD= 8.88 intw= 0.34 in

D/tw= 26.117647061.12√(Ek/Fyw)= 60.31 (6.10.9.3.2-4 Applies, k=5) (Assuming No Stiffeners)

C= 1

Nominal Shear Capacity of Girder, Vn= 87.56 kipsΦ= 1.00

Factored Shear Capacity, ΦVn= 87.56 kips

Page 56: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 8 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Check Web Yielding

Depth of beam, d= 10 inMaximum load applied to beam web, Ru= 5.336 kipsDistance of Load from End of Member, l= 0 ft

USE D6.5.2-3

k= 4.1875 in Bf/2-K1N= 10 in (Assume Beam Flange Width)Fy= 50 ksitw= 0.34 inΦ= 1

Web Capacity, ΦRn= 347.96875 kipsMaximum load applied to beam web, Ru= 5.336 kips

Web Has Sufficient Capacity, OK

Check Web Crippling

Depth of beam, d= 10 inMaximum load applied to beam web, Ru= 5.336 kipsDistance of Load from End of Member, l= 0 ft

USE D6.5.3-3 or 3-4

N= 10 inFy= 50 ksitw= 0.34 intf= 0.56 in

Modulus of Elasiticity, E= 29000 ksiN/d= 1

Φ= 0.8Web Capacity, ΦRn= 159.9371139 kips

Page 57: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 9 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Maximum load applied to beam web, Ru= 5.336 kipsWeb Has Sufficient Capacity, OK

Check Net Section Fracture

Diameter of Holes in Flange,D=d+1/16= 0.8125 in 3/4" boltNumber of holes in Flange, n= 2

Flange Width, bf= 10 inFlange Thickness, tf= 0.56 in

Fu= 65 ksi A572Net Area, An=(bf-nD)tf= 4.69 in2

Gross Area, Ag=bftf= 5.6 in2

Yield Stress, Fy= 50 ksi

0.84(An/Ag)Fu= 45.73 ksiBending Stress, ft= 2.59 ksi

Flange Has Sufficient Capacity, OK

Check Web Bend Buckling Resistance

Page 58: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 10 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Modulus of Elasiticity, E= 29000 ksi

Bend-Buckling Coefficient, k= 36Beam Depth, d= 10 in

Web Thickness, tw= 0.34 inHybrid Factor, Rh= 1

Fy= 50 ksiRhFy= 50 ksi

Fy/0.7= 71.429 ksiCalculated Fcrw= 1086.18 ksi

Applied Fcrw= 50.00 ksiWeb Bend-Buckling Resistance, Mn=FcrwSx= 227.50 kip-ft

Φ= 1Web Bend-Buckling Capacity, ΦMn=ΦFcrwSx= 227.5 kip-ft

Maximum Bending Moment, Mu= 11.8 kip-ftWeb Has Sufficient Capacity, OK

Check Tension Flange Flexural Resistance

Hybrid Factor, Rh= 1.0 (Ref 2 Section 6.10.1.10.1)Flange Capacity, Fyt= 50 ksi

Fnt= 50 ksiΦ= 1 (6.5.4.2)

ΦFnt= 50 ksiApplied Bending Stress, Fb= 2.59 ksi Strong and Weak Direction

Tension Flange Has Sufficient Capacity, OK

Check Permanent Deformation at Sevice Limit State

Maximum Strong Axis Bending Moment for Service II, MII = 0.322 ft-kipsMaximum Weak Axis Bending Moment for Service II, MII = 0.010 ft-kips

Beam Strong Axis Section Modulus, Sx= 54.60 in3

Beam Weak Axis Section Modulus, Sy= 18.7 in3

Flange Yield Stress, Fyf= 50.00 ksiHybrid Factor, Rh= 1.0 (Ref 2 Section 6.10.1.10.1)

Strong Axis Flange Stress, ff= 0.070659341 ksiWeak Axis Flange Stress, fl= 0.006363636 ksi

(Per 6.10.1.9.1-2 k=36.0 for doubly symmetric I-Shaped Members, from

Page 59: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 11 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

= 0.073841159 ksi

= 40 ksi

Flange Has Sufficient Capacity, OK

Check Combined Bending Stresses

Flange Bending Stress, fbu= 2.59 ksiFlange Lateral Bending Stress, fl= 0.56 ksi

Φ= 1 (6.5.4.2)Flange Capacity, Fnc= 39.92 ksi (Flange is Compact)

fbu+1/3fl= 2.773103955 ksiFlange Has Sufficient Capacity, OK

Flange Lateral Bending Stress, fl= 0.56 ksiFlange Bending Stress, fbu= 2.59 ksi

Φ= 1 (6.5.4.2)Flange Capacity, Fnt= 50.00 ksi

fbu+1/3fl= 2.773103955 ksiFlange Has Sufficient Capacity, OK

Check:

Flange Capacity, Fyc= 50 ksifbu+fl= 3.15 ksi

Hybrid Factor, Rh= 1.00Φ= 1 (6.5.4.2)

ΦRhFyc= 50 ksiFlange Has Sufficient Capacity, OK

Page 60: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 12 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Girder Design Summary

Failure Mode Capacity Required CheckFlexure (Section Modulus) 54.60 2.82 OKLateral Torsional Buckling (Bending Moment ft-kips) 181.628 11.76 OKShear (Kips) 87.56 5.336 OKWeak Axis Flexure (Bending Moment ft-kips) 77.92 0.88 OK

Beam Size: W10x49Beam Material: FCM A572 Grade 50 w/ Charpy Requirement

Design Horizontal Beam Clip Angle Connection

Angle PropertiesSteel Yield Strength, Fy= 50 ksi A572

Steel Ultimate Strength, Fu= 65 ksi A572Modulus of Elasticity, E= 29000 ksi

Beam PropertiesSteel Yield Strength, Fy= 50 ksi A572

Steel Ultimate Strength, Fu= 65 ksi A572Modulus of Elasticity, E= 29000 ksi

Bolt Diameter, d= 0.75 inBolt Edge Distance,Le= 1.5 in

Bolt Spacing, s= 3 inHole Diameter=d+1/16=h= 0.8125 in

Bolt Area, Ab= 0.4418 in2

The beam to Angle connection will be checked based on the following failure modes:1) Bolt Shear2) Bolt Bearing3) Shear Yielding 4) Shear Rupture 5) Block Shear Rupture of Angle6) Slip Critical Strength

1) Bolt Shear (A325 Bolt with threads in Shear Plane)

(Reference 2 6.13.2.7-2)

Bolt Shear Strength, Fub = 120 ksi

Bolt Area, Ab = 0.4418 in2

Number of Shear Planes, Ns = 1φs = 0.8 (Ref 2 Section 6.5.4.2)

Shear Strength Per Bolt, φRn= 16.12 kips/boltNumber of Bolts, n= 2

Connection Capacity, Rr = φRn= 32.23 kips

2)Bolt Bearing

Angle Thickness, t= 0.375 inAngle Fu= 65 ksi A572 Gr 50

Girder Web Thickness, tw= 0.34 inGirder Fu= 65 ksi

(Reference 2 6.4.3.1)

The bearing stresses in the Clip Angle connection will be governed by the thinnest steel portion.

sbubn NAFR 38.0=

Page 61: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 13 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Use Equation 6.13.2.9-1 since bolts are spaced at greater than 2.0d for both clear distance between holes and end distance.

(Reference 2 6.13.2.9-1)

Material Thickness, t= 0.375 inFu= 65 ksi

Bolt Diameter, d= 0.75 inφ= 0.8 (Ref 2 Section 6.5.4.2)

2.4dtFu= 43.875 kips (Angle)

Material Thickness, t= 0.34 inFu= 65 ksi

Bolt Diameter, d= 0.75 inφ= 0.8 (Ref 2 Section 6.5.4.2)

2.4dtFu= 39.78 kips (Girder)

Bolt Capacity, φRn= 31.824 kipsConnection Capacity For Bearing, Rr = 63.648 kips

3) Shear YieldRef 2 6.10.9.2-2

φ= 1 (Ref 2 Section 6.5.4.2)Girder Yield Stress, Fy= 50 ksi

Web Depth at Connection, d= 7.5 in (Coped Beam, Assume T dimension)Web Thickness, tw= 0.34 in

Girder Gross Area, =dtwAg= 2.55 in2

Girder, FyAg= 127.5 kips

Angle Yield Stress, Fy= 50 ksiAngle Length, l= 7.5 in

Angle Web Thickness, t= 0.375 inAngle Gross Area, Ag=lt= 2.8125 in2

Angle FyAg= 140.625 kips

Governing FyAg= 127.5 kips

Shear Yield Capacity, φRn= 73.95 kips

4) Shear Rupture

Ref 2 6.10.9.2-2 Adapted for Rupture

φ= 0.8 (Ref 2 Section 6.5.4.2)

Girder Ult. Stress, Fu= 65 ksiWeb Depth at Connection, d= 7.5 in

Web Thickness, tw= 0.34 in

Girder Gross Area, =dtw=Ag= 2.55 in2

Number of Bolts in Shear Plane=n= 2Hole Diameter, h= 0.8125 in

Hole Area=Ah= 0.2763 in2

Girder Net Shear Area, Anv=Ag-nAh= 1.998 in2

Girder, FuAnv= 129.84 kips

Angle Ultimate Stress, Fu= 65 ksiAngle Length, l= 7.5 in

Angle Web Thickness, t= 0.375 in

un dtFR 4.2=

gyn AFR 58.0φφ =

nvun AFR 58.0φφ =

Page 62: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 14 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Angle Gross Area, Ag=lt= 2.8125 in2

Number of Bolts in Shear Plane=n= 2Hole Diameter, h= 0.8125 in

Hole Area=Ah= 0.3047 in2

Angle Net Shear Area, Anv=Ag-nAh= 2.203 in2

Angle, FuAnv= 143.203125 kips

Governing, FuAnv= 129.84 kips

Shear Rupture Capacity, φRn= 60.245 kips

5) Block Shear Rupture

Angle

(Reference 2 6.13.4-1)

φ= 0.8 (Ref 2 Section 6.5.4.2)Angle Ultimate Stress, Fu= 65 ksi

Angle Yield Stress, Fy= 50 ksiRp= 0.9 Punched Holes

Ubs= 1 (Uniform Stress)Angle Thickness, t= 0.375 inEdge Distance, Le= 1.5 in

Bolt Spacing, s= 3 inHole Diameter, h= 0.8125 in

Net Shear Area=(s+Le-1.5(h))t=Anv= 2.35546875 in2

Gross Shear Area=(s+Le)t=Agv= 1.6875 in2

Net Tension Area=(Le-0.5h)t=Ant= 0.41015625 in2

0.6FuAnv+UbsFuAnt= 118.52 kips

0.6FyAgv+UbsFuAnt= 77.29 kips

Governing Strength= 77.29 kips

Block Shear Capacity, φRn= 55.65 kips

Girder

(Reference 2 6.13.4-1)

φ= 0.8 (Ref 2 Section 6.5.4.2)Rp= 0.9 Punched Holes

Girder Ultimate Stress, Fu= 65 ksi

Girder Yield Stress, Fy= 50 ksi

Ubs= 1 (Uniform Stress)Web Thickness, t= 0.34 inEdge Distance, Le= 1.5 in

Bolt Spacing, s= 3 inHole Diameter, h= 0.8125 in

Net Shear Area=(s+Le-1.5(h))t=Anv= 1.115625 in2

Gross Shear Area=(s+Le)t=Agv= 1.53 in2

Net Tension Area=(Le-0.5h)t=Ant= 0.371875 in2

0.58FuAnv+UbsFuAnt= 66.23 kips

0.58FyAgv+UbsFuAnt= 68.54 kips

Governing Strength= 66.23 kips

Page 63: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 15 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Block Shear Capacity, φRnRp= 47.69 kips

6)Slip-critical Strength

(Reference 2 6.13.2.8-1)

Hole Size Factor for Standard Hole, kh = 1.000 Standard (Reference 2 6.13.2.8-2)Class C Surface Condition Factor, ks = 0.330 Class A (Reference 2 6.13.2.8-3)

Number of Shear Planes, Ns = 1.000Minimum Required Bolt Tension, Pt = 28.000 kips (Reference 2 6.13.2.8-1)

Nominal Slip Resistance, Rn = 9.240 kips/boltFactored Resistance, Rr = 27.720 kips

Girder Connection Summary (Vertical Shear)

Failure Mode Connection Capacity 1) Bolt Shear 32.23 kips2) Bolt Bearing 63.65 kips3) Shear Yielding 73.95 kips4) Shear Rupture 60.24 kips5) Block Shear Rupture of Angles 47.69 kips6) Slip Critical Strength 27.72 kips

Connection Vertical Shear Capacity, φRn= 27.72 kips

Applied Vertical Shear, Vu= 5.336 kipsConnection OK for Vertical Shear

Column End Plate

Determine Plate Thickness

(AISC 14th Ed Eqn 14-2)

(AISC 14th Ed Eqn 14-3)

(AISC 14th Ed Eqn 14-4)

Beam Depth, d= 10 inBeam Flange Width, bf= 10 in

Plate Width, N = 10.25 in. 10" + .25" for weldPlate Length, B = 10.25 in. 10" + .25" for weld

λ = 1 (Conservative) m = 0.375 in n = 1.125 in n' = 2.5 in l = 2.5 in

(AISC 14th Ed Eqn 14-7a)

Plate Width, N = 10.25 in.Plate Length, B = 10.25 in.

( )',,max nnml λ=

295.0 dNm −

=

y

a

BNFPlt

9.02

min =

28.0 fbB

n−

=

fdbn41'=

tsshn PNkkR =

Page 64: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 16 of 16

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 4/14/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Trap Platform Girder DesignBJG 4/29/2015

COMPUTED BY:

M.P.F

Applied Load, P a = 5.34 kipsYield Strength, F y = 36 ksi

Minimum plate thickness, t min = 0.17 inDesign Plate thickness, t d = 0.38 in

Use 3/8" Plate

Design Grating

Check Loading ChartFrom ANSI/NAAMM Standard Metal Bar Grating 531-09 for W-19 (1 3/4" x 3/16") Grating

Recommended max span = 87 in (Based on 1/4" Deflection under 100 psf)Max Uniform Load, U = 237 psf

Maximum Concentrated Load, C = 829 lb

Page 65: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 1 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

References1. LRFD Guide Specification for the Design of Pedestrian Bridges, December 20092. AASHTO LRFD 20123. AASHTO Standard Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, Fifth Edition 20094. FHWA Equestrian Design Guidebook for Trails, Trailheads and Campgrounds (Bridge and Overpass Design)

Determine Design Loadings

Dead Load

Beam Self Weight Calculated in STAADNote: See Platform girder caclulations for other applied dead loads.

Wind Loading

Design Wind Pressure, Pz= 39.74 psf (Walkway Design Calculations)

Pier column width, b= 10 inLateral Wind Loading, WLcolumn= 33.12 lb/ft

Crane Live LoadNote: A jib crane will be secured to a pile to allow for the removal of the lamprey traps. It will be modeled as a concentrated moment on the end of the pile.

Crane Capacity = 1000.00 lbsMoment Arm = 5.50 ft

Concentrated Crane Live Load Moment = 5.50 ft-kips

Ice/Debris Loading

Design Ice Pressure, P= 5000.00 lb/ft

Pier column width, b= 10 inLateral Ice Loading, WLcolumn= 4166.67 lb/ft

Note: Winter flows at the project site are low. Therefore it will be assumed that the ice will act at 2yr flow level.

Hydrostatic Loading (WAstatic)

Stream Pressure (WAstream)Stream pressure will be applied as a uniform load on the walkway columns.

Drag coefficient, CD = 1.4 Ref 2, Table 3.7.3.1-1, debris lodged against pier

River

Event Velocity (fps)Pressure (ksf/ft of wall) Pressure (kips/ft )

Extreme 500 3.56 0.01774304 0.014785867Usual 25 3.31 0.01533854 0.012782117Ice Condition 2 2.66 0.00990584 0.008254867

Load Cases

Notes:

- Extreme 1 includes earthquake loads.- Extreme 2 (check flood) relates to the extreme hydraulic event.- Extreme 2 (ice) relates to ice loading.

Strength 1 (25-year event): 1.25DL+1.75LL+1.0WAstatic,25+1.0WAstream,25+0.5T

Strength 3 (Wind parallel to flow in u/s direction): 1.25DL+1.0WAstatic,25+1.0WAstream,25+1.4W+0.5T

Strength 3 (Wind parallel to flow in d/s direction): 1.25DL+1.0WAstatic,25+1.0WAstream,25+1.4W+0.5T

Strength 3 (Wind perpendicular to flow): 1.25DL+1.0WAstatic,25+1.0WAstream,25+1.4W+0.5T

Extreme 1: 1.25DL+0.5LL+1.0WAstatic,25+1.0WAstream,25+1.0EQ+1.0S

Extreme 2 (Check Flood): 1.0DL+0.5LL+1.0I+1.0WAstatic,500+1.0WAstream,500

Service 1 (Wind parallel to flow in d/s direction): 1.0DL+1.0LL+1.0WAstatic,25+WAstream,25+.3W+1.0T

Service 1 (Wind parallel to flow in u/s direction): 1.0DL+1.0LL+1.0WAstatic,25+WAstream,25+.3W+1.0T

Service 1 (Wind perpendicular to flow): 1.0DL+1.0LL+1.0WAstatic,25+WAstream,25+.3W+1.0T

Service 2: 1.0DL+1.3LL+1.0WAstatic,25+1.0WAstream,25+1.0TFatigue 1: 1.0LL+1.0W

COMPUTED BY:

Maria Post-Fitzgerald

Note: Loadings will be placed into STAAD to determine design bending moments and shear. The loads shown below will be in addition to loads placed on the platform and transferred to the columns through the girders.

- Strength 3 (wind) is the load combination relating the bridge exposed to high wind velocities. The load combination will considered for winds parallel to flow in the d/s direction), winds parallel to flow in the u/s direction and winds perpendicular to flow. These wind conditions will cover the worst loading conditions for the upstream walkway columns, platform columns and biaxial bending in the walkway columns.

Because the lamprey trap platform will be considered a flow through structure and that, due to the platforms location, there will not be any anticipated hydrostatic pressure differential, the hydrostatic loading will not be considered.

- Service 1 is the load combination relating to the normal operation use of the bridge with high winds. Similar to the Strength 3 load combination winds parallel to flow in both the u/s and d/s directions as well as winds perpendicular to flow will be considered.

1000

2VCp D=1000

2VCp D=

Page 66: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 2 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

STAAD RESULTS

A STAAD Model Was Developed - Refer To E. Au Gres Platform.std

VMAX: 2.910 KIPS (Strong Axis)Load Cond: Beam 56, Extreme 2 (Used to be conservative)

VMAX: 0.575 KIPS (Weak Axis)Load Cond: Beam 58, Strength 1

MZ: 13.19 K-FT Strong Axis BendingLoad Cond: Beam 56, Extreme 2

MY: 4.25 K-FT Weak Axis BendingLoad Cond: Beam 58, Strength 1

PMAX = 9.906 KIPS Axial LoadLoad Cond: Beam 48, Strength 1

Design Primary Girder

Design Beam Section: W10x49

Beam PropertiesSpan, L= 13.00 ft (Actual Height above grade is 11 ft, 2 ft has been allowed for scour.)

Flange Width, bf= 10 inFlange Thickness, tf= 0.56 in

Beam Depth, d= 10 inWeb Depth for Shear, D= 8.88 in

Web Thickness, tw= 0.34 inMoment of Inertia, Iy= 93.4 in4

Section Modulus, Sx= 54.6 in3

Section Modulus, Sy= 18.7 in4

Moment of Inertia (x-axis), Ix= 272 in4

(Ref 2 Eqn 6.10.8.2.3-4)

Distance Between Flange Centroids, h= 9.44 inDepth of the Web in Compression, Dc= 4.44

rt= 2.859628217 inSteel Yield Strength, Fy = 50 ksiModulus of Elasticity, E= 29000 ksi

Lower Unbraced Limit, Lp= 5.74 ft

(Reference 2, 6.10.8.2.3-5)

rt= 2.86 inUpper Unbraced Length Limit, Lr= 18.03 ft

Unbraced Length, Lb= 13.00 ft (Actual Height above grade is 8 ft, 2 ft has been allowed for scour.)h/tw= 27.76470588

Check Cross Section Proportion Limits (REF 2 Section 6.10.2)

Web Proportion Limits

(Ref 2 Eqn 6.10.2.1.1-1)(No Longitudinal Web Stiffeners)

D/tw= 29.41176471 OK

Flange Proportion Limits(Ref 2 Eqn 6.10.2.1.2-1)

λf=bf/2tf= 8.928571429 OK

(Ref 2 Eqn 6.10.2.1.2-2)

bf= 10 inD/6= 1.666666667 in OK

(Ref 2 Eqn 6.10.2.1.2-3)

tf= 0.561.1tw= 0.374 OK

ytp F

ErL 0.1=

150≤wt

D

0.122

≤f

f

tb

6Db f ≥

wf tt 1.1≥

yrtr F

ErL π=

Page 67: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 3 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

(Ref 2 Eqn 6.10.2.2.2-4)

Iyc= 272 in4

Iyt= 272 in4

Iyc/Iyt= 1 OK

Size W-Shape BeamYield Stress, Fy= 50 ksi

Maximum Bending Moment, Mu= 13.2 ft-kipsφ= 1.00 (Ref 2 Section 6.5.4.2)

Required Section Modulus, Sreq= 3.17 in3

Calculate Applied Bending Stresses

Strong Axis BendingMaximum Bending Moment, Mu= 13.19 ft-kips

Beam Strong Axis Section Modulus, Sx= 54.60 in3

Steel Yield Strength, Fy = 50.00 ksiApplied Bending Stress, Fb= 2.90 ksi

Weak Axis Bending Maximum Bending Moment, Mu= 4.25 ft-kips

Beam Weak Axis Section Modulus, Sy= 18.7 in3

Steel Yield Strength, Fy = 50 ksiApplied Bending Stress, Fb= 2.73 ksi

Checks

Check if shape is compact

Shape must satisfy both of the following criteria to be considered compact.

1) (Ref 2 Section 6.10.8.2.2-4)

Flange Width, bf= 10 inFlange Thickness, tf= 0.56 in

Steel Yield Strength, Fy = 50 ksiModulus of Elasticity, E= 29000 ksi

bf/2tf= 8.930.38√(E/Fy) 9.152

bf/tf < 0.38(E/Fy)^0.5 Therefore Shape Meets Compact Criteria

2) (Ref 2 Section 6.10.1.10.2-4)

Steel Yield Strength, Fy = 50 ksiModulus of Elasticity, E= 29000 ksi

2D/tw= 26.125.7*E/√Fy= 137.27

Shape Meets Non-Compact Criteria

Both Criteria are satisfied, therefore, Rb=1

Check Lateral Torsional Buckling

101.0 ≤≤yt

yc

II

req

uy S

MFφ

=

yf

f

FE

tb

38.02

yw

c

FE

tD 7.52

Page 68: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 4 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

Unbraced Length, Lb= 13.00 ftLower Unbraced Limit, Lp= 5.74 ftUpper Unbraced Limit, Lr= 18.03 ft

Lp<Lb<Lr

Moment Gradient Modifier, Cb= 1 ConservativeCompression Flange Yield Stress incl Residual Stress Effects,

Fyr= 35 ksi Taken as 0.7Fyc

Hybrid Factor, Rh= 1 (Ref 2 Section 6.10.1.10.1)Web Load Shedding Factor, Rb= 1 (Ref 2 Section 6.10.1.10.2)

Compression Flange Yield Strength, Fyc= 50 ksi

Lateral Torsional Buckling Resistance, Fnc= 41.14 ksiLateral Torsional Buckling Resistance, Mn=FncSx= 187.181 kip-ft

Check DeflectionDeflections as determined from the STAAD ModelFor the column, because LL listed in the load combinations is vertical, the maximum deflection that is reported is the maximum from Service Load Combinations.

Maximum Service Deflection, δmax= 0.0150 inL/360= 0.4333 in

Deflection Less than L/360, OK

Entire Beam Cross SectionCheck Strong Axis Shear

Fyw= 50 ksiD= 8.88 intw= 0.34 in

D/tw= 26.117647061.12√(Ek/Fyw)= 60.31

1.4√(Ek/Fyw)= 75.39C= 1 (6.10.9.3.2-6) (k=5 assume no stiffeners are present)

Nominal Shear Capacity of Girder, Vn= 87.56 kipsΦ= 1.00

Factored Shear Capacity, ΦVn= 87.56 kips

Page 69: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 5 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

Check Weak Axis ShearNote: For weak axis shear D=bf and tw=tf.

Fyw= 50 ksiD= 10.00 intw= 0.56 in

D/tw= 17.857142861.12√(Ek/Fyw)= 60.31

1.4√(Ek/Fyw)= 75.39C= 1 (6.10.9.3.2-6) (k=5 assume no stiffeners are present)

Nominal Shear Capacity of Girder, Vn= 162.40 kipsΦ= 1.00

Factored Shear Capacity, ΦVn= 162.40 kips

Check Web Bend Buckling Resistance

Modulus of Elasiticity, E= 29000 ksiBend-Buckling Coefficient, k= 36 (doubly symetric I-shaped section)

Beam Depth, d= 10 inWeb Thickness, tw= 0.34 inHybrid Factor, Rh= 1

Fy= 50 ksiRhFy= 50 ksi

Fy/0.7= 71.429 ksiFcrw= 1086.18 ksi

Web Bend-Buckling Resistance, Mn=FcrwSx= 227.50 kip-ft

Page 70: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 6 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

Φ= 1Web Bend-Buckling Capacity, ΦMn=ΦFcrwSx= 227.5 kip-ft

Maximum Bending Moment, Mu= 13.2 kip-ftWeb Has Sufficient Capacity, OK

Check Permanent Deformation at Sevice Limit State

Maximum Strong Axis Bending Moment for Service II, MII = 5.763 ft-kipsMaximum Weak Axis Bending Moment for Service II, MII = 1.355 ft-kips

Beam Strong Axis Section Modulus, Sx= 54.60 in3

Beam Weak Axis Section Modulus, Sy= 18.7 in3

Flange Yield Stress, Fyf= 50.00 ksiHybrid Factor, Rh= 1.0 (Ref 2 Section 6.10.1.10.1)

Strong Axis Flange Stress, ff= 1.266575092 ksiWeak Axis Flange Stress, fl= 0.869679144 ksi

= 1.701414664 ksi

= 40 ksi

Flange Has Sufficient Capacity, OK

Check Combined Bending Stresses

Flange Bending Stress, fbu= 2.90 ksiFlange Lateral Bending Stress, fl= 2.73 ksi

Φ= 1 (6.5.4.2)Flange Capacity, Fnc= 41.14 ksi (Flange is Compact)

fbu+1/3fl= 3.808381031 ksiFlange Has Sufficient Capacity, OK

Check:

Flange Capacity, Fyc= 50 ksifbu+fl= 5.63 ksi

Hybrid Factor, Rh= 1.00Φ= 1 (6.5.4.2)

ΦRhFyc= 50 ksiFlange Has Sufficient Capacity, OK

Girder Design Summary

Failure Mode Capacity Required CheckFlexure (Section Modulus) 54.60 3.17 OKLateral Torsional Buckling (Bending Moment ft-kips) 187.181 13.19 OKShear (Kips) 87.56 2.910 OKWeak Axis Flexure (Bending Moment ft-kips) 77.92 4.25 OK

Beam Size: W10x49Beam Material: A572 Grade 50

Page 71: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 7 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

Compression Members

Check Limiting Slenderness Ratio for Bracing Member

Effective Length Factor, K = 1.2 (Ref 2 Section 4.6.2.5-1)Unbraced Length, L 13 ftGoverning Radius of Gyration, rs 2.54 in Z-Axis Governs

(Ref 2 Section 6.9.3)

KL/rs= 73.7 OKKL/rs ≤ 120 Therefore, shape meets limiting slenderness requirement

Check for Slender Elements

Check Flange

Half of Width of Flange, b = 5 inFlange Thickness, t = 0.56 in

Plate Buckling Coefficient, k = 0.56 (Ref 2 Section 6.9.4.2.1-1)Modulus of Elasticity, E = 29000 ksi

Yield Strength, Fy = 50 ksi

(Ref 2 Section 6.9.4.2.1-1)

b/t = 8.9k√(E/Fy) 13.5

Flange is non-slender

Check Web

T-Dimension of Beam, b = 7.5 inWeb Thickness, t = 0.34 in

Plate Buckling Coefficient, k = 1.4 (Ref 2 Section 6.9.4.2.1-1)Modulus of Elasticity, E = 29000 ksi

Yield Strength, Fy = 50 ksi

(Ref 2 Section 6.9.4.2.1-1)

b/t = 22.1k√(E/Fy) 33.7

Web is non-slender

Determine Axial Compression

For non-slender, noncomposite, I Shaped flexural buckling must be checked. Kzlz=Kyly therefore torsional buckling is not applicable

Flexural Buckling

Gross cross-sectional area, Ag = 14.4 in2

(Reference 2 6.9.4.1.2-1)

Elastic Critical Buckling Resistance, Pe = 758.8 kips

For compression member cross-sections that consists entirely of non-slender elements take Q=1.0 (Reference 2 6.9.4.2.1)

Equivalent Nominal Yield Resistance, Po = QFyAg = 720.00 kipsPe/Po = 1.05 OK

Since Pe/Po > 0.44 use equation 6.9.4.1.1-1 from reference 2.

(Reference 2 6.9.4.1.1-1)

Pn = 484.00 kips

Available Strength, Pr = ΦcPn 338.8 kipsUltimate Load, PMAX = 9.91 kips

PMAX < Pr OK

(Ref 2 Section 6.9.4.2.1-1)

(Φc = 0.7 for undamaged piles subjected to axial compression)

(Ref 2 Section 6.9.4.2.1-1)

120L≤

srK

yFEk

tb≤

g

s

e A

rKL

EP 2

2

=

π

0658.0 PP e

oPP

n

=

yFEk

tb≤

Page 72: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 8 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

Calculate Moment MagnifierBecause the columns are subject to both axial loads and bending, they will be analyzed as a Beam Column.

Modulus of Elasticity, E = 29000.00 ksiMoment of Inertia (x-axis), Ix= 272.00 in4

Moment of Inertia, Iy= 93.40 in4

Effective Length Factor, K = 1.20 (Ref 2 Section 4.6.2.5)Unbraced Length, lu= 13.00 ft

Euler Buckling Load (Strong Axis), Pe= 2221.54 KipsEuler Buckling Load (Weak Axis), Pe= 762.84 Kips

Maximum Axial Load, Pu = 9.91 Kips

Cm= 1.00 (Ref 2 Section 4.5.3.2.2b)Stiffness Reduction Factor, φK= 1.00 (Steel Member)

Strong Axis δb= 1.00Weak Axis δb= 1.01

Strong Axis δs= 1.00Weak Axis δs= 1.01

M2b= 0 ft-kips

Moment due to lateral applied loads, M2s= 13.2 ft-kips (Strong Axis)Moment due to lateral applied loads, M2s= 4.25 ft-kips (Weak Axis)

Magnified Moment due to lateral applied loads, δsM2s= 13.25 ft-kips (Strong Axis)Magnified Moment due to lateral applied loads, δsM2s= 4.31 ft-kips (Weak Axis)

Check Combined Axial and Bending Capacity

Applied Axial Force, Pu = 9.91 kipsFactored Compressive Resistance, Pr= 338.8 kips

Pu/Pr = 0.02923827Use Eqn. 6.9.2.2-1

Factored Strong Axis Flexural Resistance, Mrx = 187.18 kip-ftFactored Weak Axis Flexural Resistance, Mry = 77.92 kip-ft

Factored Flexural Strong Axis Applied Amplified Moment, Mux = 13.25 kip-ftFactored Flexural Weak Axis Applied Amplified Moment, Muy = 4.31 kip-ft

The connections from the primary load carrying girders to the columns apply the gravity loads to the center of the column resulting in no moment in the column and no defelection at the midpoint of the member, therefore for both the strong and weak axis,

For the combined axial and bending capacity check, the maximum axial capacity will be combined with the maximum bending moments from different load cases. This will be done due to the fact that the stress driving the high extreme load case for bending moments is ice forces. The extent of ice and debris along with its elevation is not known, therefore by including the extreme bending moment, the overall result will be conservative. Once additional data is obtained regarding the ice/debris loading, the analysis will be modified.

Page 73: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 9 of 9

PROJECT TITLE: DATE:

East Au Gres River Sea Lamprey Trap 2/19/2015

COMPUTATION TITLE: CHECKED BY: DATE:

Platform Column Design BJG 4/29/2015

COMPUTED BY:

Maria Post-Fitzgerald

= 0.140668246 (6.9.2.2-1)

= 0.141281924 (6.9.2.2-2)

Combined Force Ratio = 0.140668246

Column Has Sufficient Capacity, OK

Page 74: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 1 of 2

COMPUTED BY: DATE:

Post-Fitzgerald 4/22/2015CHECKED BY: DATE:

Gerken 4/30/2015

Beams - W10x49, Gr 50

Length of girder = 78 ftWeight of girder = 49 plf

Total weight of girders = 1.911 ton

Columns - W10x49, Gr 50

Length of girder = 322 ftWeight of girder = 49 plf

Total weight of girders = 7.889 ton

Column Base Plates

Base Plate Width = 10.25 inBase Plate Length = 10.25 in

Base Plate Thickness = 0.375 inBase Plate Unit Weight = 15.3 psf

Quantity = 9Total weight of girders = 0.050233008 ton

Solid Plates For Trap Inlet

Plate Height = 5.0833 ft Plate Length = 6.4792 ft

Plate Thickness = 0.5 in Plate Unit Weight = 20.4192 psf Grade A36

Quantity = 3Total weight of plates = 1.0087815 ton

Steel Angle For Trap (L4x4x3/8)

Length of Angle = 44 ftWeight of angle = 9.8 plf

Total weight of angle = 0.2156 ton

3/4" A325 Bolts w/ Nuts and Washers

Number of Bolts 64 EA

Welds

1/4" Fillet WeldsLength of Weld For Angles = 88 ft

Length of Weld for Plate = 0 ftLength of Weld for Base Plates = 30.75 ft

Length of Weld for Trap Inlet Plates= 4.319466667 ft 8 welds @ 5' each

Total Length of 1/4" Fillet Weld = 123.07 ft

Primary Frame Members (L2x2x1/4)Length of Angle = 78 ftWeight of angle = 3.19 plf

Total weight of angles = 0.12441 ton

Lifting Bar (WT4x6.5)Length of WT = 4 ft

Weight of WT = 6.5 plfTotal weight of WT = 0.013 ton

Steel Mesh (Approximate Opening Size 1/4")

Mesh Area = 80 sfConcrete Slab For Trap

Total Slab Area = 50.38 sfEstimated Slab Thickness = 10.00 in

Total Slab Volume = 1.55 CY

Concrete Slab Reinforcement (Assume #4 Bars in Both Directions in Each Face of Slab)

Length of Bar Per SF= 8.00 ftArea of Slab = 50.38 sf

Total Length of Bar = 403.03 ftUnit Weight of Bar = 0.67 lb/ft

PROJECT TITLE:

E Au Gres Sea Lamprey TrapCOMPUTATION TITLE:

Quantity Takeoffs - Alternative 3

(The Lamprey Traps will be fully designed during the next phase of the project, however, based on photos of existing structures the following quantities were developed. The traps will measure 4' W x 4' D x 5' H)

(Welds will be used to secure the steel plates and angles for the traps and to secure the base plates to the column.)

Page 75: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Page 2 of 2

COMPUTED BY: DATE:

Post-Fitzgerald 4/22/2015CHECKED BY: DATE:

Gerken 4/30/2015

PROJECT TITLE:

E Au Gres Sea Lamprey TrapCOMPUTATION TITLE:

Quantity Takeoffs - Alternative 3Total Weight = 0.134610684 Ton

Steel Grating

Total Grating Area = 225.00 sf (Scaled From MS)

Jib Crane (1/2 Ton Capacity)Total Number of Cranes 1.00 EA

Galvanized Steel Hand RailTotal Length of Handrail 55.00 ft

SSP for Access Road Stabilization (Assume PZ 22)

Length of SSP = 78.572 ft (From Microstation)Height of SSP = 32.5 ft (CWALSHT)Weight of SSP = 22 psf

Total weight of SSP = 28.08949 ton

SSP for Barrier (Assume PZ 22)

Length of SSP = 8.3 ft (From Microstation)Height of SSP = 16.5 ft (CWALSHT)Weight of SSP = 22 psf

Total weight of SSP = 1.50645 ton

SSP for East Bank SSP Wall Rehab (Assume PZ 22) (Length of Wall Equivalent For Demolition Section)

Length of SSP = 47 ft (From Microstation)Height of SSP = 34 ft (CWALSHT)Weight of SSP = 22 psf

Total weight of SSP = 17.578 ton

12" Sluice Gate12" Wide x 3', Quantity= 1

Access Road and Ramp Gravel Quantity, .30 mile Access Road= 234.67 cy

Gravel Quantity, Access Ramp= 7.14 cy

Access Road GeotextileArea of Geotextile Required = 1408.00 SY

Page 76: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

ATTACHMENT C

SOIL PROFILE

Page 77: APPENDIX A ENGINEERING APPENDIX FOR DETAILED PROJECT

Project Title: £. Au csra:~ s.cr Computation Title: Sa1" f'l<l::;>-f!LL Date: 6(9., \rA~ 1;; Calculated By: t-Y Checked By: Page: ·;L of -:1..

us Army Corps of Engineers ~ Detroit District