24
APPLICATION OF ETHERNET POWERLINK FOR COMMUNICATION IN A LINUX RTAI OPEN CNC SYSTEM Krystian Erwi´nski, Marcin Paprocki, Lech M. Grzesiak, Senior Member, IEEE, Kazimierz Karwowski, and Andrzej Wawrzak 1 9933252 林林林

Application of Ethernet Powerlink for Communication in a Linux RTAI Open CNC system

  • Upload
    arden

  • View
    105

  • Download
    3

Embed Size (px)

DESCRIPTION

Krystian Erwi´nski , Marcin Paprocki , Lech M. Grzesiak , Senior Member, IEEE , Kazimierz Karwowski, and Andrzej Wawrzak. Application of Ethernet Powerlink for Communication in a Linux RTAI Open CNC system. 9933252 林煜翔. Introduction Multiaxis CNC System Proposed Solution - PowerPoint PPT Presentation

Citation preview

Page 1: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

APPLICATION OF ETHERNET POWERLINK FOR

COMMUNICATION IN A LINUX RTAIOPEN CNC SYSTEM

Krystian Erwi´nski, Marcin Paprocki, Lech M. Grzesiak, Senior Member, IEEE,Kazimierz Karwowski, and Andrzej Wawrzak

19933252林煜翔

Page 2: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

2

OUTLINE Introduction Multiaxis CNC System Proposed Solution Experimental Setup and Test Results Conclusion References

9933252林煜翔

Page 3: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

3

INTRODUCTION CNC : Computerized numerical control1. Standalone controllers2. Utilize PCs

Ethernet Powerlink(EPL) Ethernet fieldbus

9933252林煜翔

Page 4: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

4

REAL TIME : V X T = S Realtime

Nonrealtime

9933252林煜翔

Page 5: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

5

IN THIS PAPER PC-based open CNC mutiaxis machine

system with EPL

PC-RTOS CNC controller1. Low cost2. Flexibility3. Ease of implementation

9933252林煜翔

Page 6: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

6

MAIN GOAL Achieve the best possible time

determinism available to a purely software solution.

Linux Real Time Applocation Interface (RTAI) Enhanced machine controller 2

9933252林煜翔

Page 7: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

7

STRUCTURE

9933252林煜翔

Page 8: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

8

STRUCTURE - EPL A line network topology PC is the first node

9933252林煜翔

Page 9: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

9

PC-BASED CNC CONTROLLER Synchronously Priority

G Code Interpolation

9933252林煜翔

Page 10: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

10

PC-BASED CNC CONTROLLER

9933252林煜翔

Page 11: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

11

EPL COMMUNICATION MODULE Standard Ethernet: Packet collision

Object dictionary (OBD) EPL Data Link Layer Network management (NMT)

9933252林煜翔

Page 12: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

12

EPL COMMUNICATION MODULE One master managing node (MN) Slave controlled nodes (CN)

9933252林煜翔

Page 13: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

13

EPL COMMUNICATION MODULE Start of cycle Poll request Poll response Start of asynchronous cycle Asynchronous send

9933252林煜翔

Page 14: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

14

PROPOSED SOLUTION Shared memory buffers were replaced

by direct function calls to improve performance

Linux kernel functions were replaced by their RTAI counterparts

The network interface driver was modified to use RTAI interrupts

RTAI timers were utilized instead of Linux ones

9933252林煜翔

Page 15: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

15

PROPOSED SOLUTION Unnecessary devices and device

drivers were disabled. the network interface card was

assigned an interrupt with as high priority as possible.

network card interrupt was assigned only to the real-time core via the interrupt request affinity kernel system call.

9933252林煜翔

Page 16: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

16

TEST RESULTS

Page 17: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

17

TEST RESULTS

Page 18: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

18

TEST RESULTS Time-stamp counter (TSC)1. 64-bit counter2. Running at the processor frequency

(2.33 GHz)

Measuring EPL cycle jitter – 1ms

Page 19: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

19

TEST RESULTS

Page 20: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

20

CONCLUSION Low-cost Flexible Purely software CNC system that can

utilize various commercially available servo drives

Page 21: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

21

REFERENCES A. Malinowski and H. Yu, “Comparison of embedded system design for industrial

applications,” IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 244–254, May 2011. E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M. W. Naouar, “FPGAs in

industrial control applications,” IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 224–243, May 2011.

G. Y. Gu, L. M. Zhu, Z. H. Xiong, and H. Ding, “Design of a distributed multiaxis motion control system using the IEEE-1394 bus,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4209–4218, Dec. 2010.

J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber, “A proposal for a generic real-time Ethernet system,” IEEE Trans. Ind. Informat., vol. 5, no. 2, pp. 75–85, May 2009.

K. Kim, M. Sung, and H.-W. Jin, “Design and implementation of a delayguaranteed motor drive for precision motion control,” IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 351–356, May 2012.

H. Carlsson, B. Svensson, F. Danielsson, and B. Lennartson, “Methods for reliable simulation-based PLC code verification,” IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 267–278, May 2012.

T. Harmon, M. Schoeberl, R. Kirner, R. Klefstad, K. H. K. Kim, and M. R. Lowry, “Fast, interactive worst-case execution time analysis with back-annotation,”

IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 366–377, May 2012

Page 22: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

22

REFERENCES C. Shuxin and A. Bin, “Time performance research on field bus based CNC system,” in Proc. 2nd

ICMEE, Beijing, China, Aug. 1–3, 2010, vol. 2, pp. 56–59. H. Chaobin, L. Wanli, and X. Wuquan, “Study on the CNC system interpolation based on windows

CE.NET and its real-time,” in Proc. Int. Conf. CMCE, Aug. 24–26, 2010, vol. 2, pp. 110–112. D. Yashiro and K. Ohnishi, “Performance analysis of bilateral control system with communication

bandwidth constraint,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 436–443, Feb. 2011. M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Transparent synchronization protocols for

compositional real-time systems,” IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 322–336, May 2012. T. Gao, D. Yu, D. Vue, and Y. Hu, “Design and implementation of communication platform in CNC

system,” in Proc. IEEE/ASME Int. Conf. MESA, Qingdao, China, Jul. 15–17, 2010, pp. 355–360. A. Onat, T. Naskali, E. Parlakay, and O. Mutluer, “Control over imperfect networks: Model-based

predictive networked control systems,” IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 905–913, Mar. 2011.

P. Martí, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid, “Runtime allocation of optional control jobs to a set of CAN-based networked control systems,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 503–520, Nov. 2010.

Á. Cuenca, J. Salt, A. Sala, and R. Pizá, “A delay-dependent dual-rate PID controller over an Ethernet network,” IEEE Trans. Ind. Informat., vol. 7, no. 1, pp. 18–29, Feb. 2011.

G. Cena, L. Seno, A. Valenzano, and C. Zunino, “On the performance of IEEE 802.11e wireless infrastructures for soft-real-time industrial applications,” IEEE Trans. Ind. Informat., vol. 6, no. 3, pp. 425–437, Aug. 2010.

Page 23: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

23

REFERENCES A. Mifdaoui, F. Frances, and C. Fraboul, “Performance analysis of a master/slave switched Ethernet

for military embedded applications,”IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 534–547, Nov. 2010.

P. Ferrari, A. Flammini, S. Rinaldi, and E. Sisinni, “On the seamless interconnection of IEEE1588-based devices using a PROFINET IO infrastructure,”IEEE Trans. Ind. Informat., vol. 6, no. 3, pp. 381–392, Aug. 2010.

Z. Hanzálek, P. Burget, and P. Šucha, “Profinet IO IRT message scheduling with temporal constraints,” IEEE Trans. Ind. Informat., vol. 6, no. 3, pp. 369–380, Aug. 2010.

Industrial Communication Networks—Profiles—Part 2: Additional Fieldbus Profiles for Real-Time Networks Based on ISO/IEC 8802-3, IEC Std. 61784-2, 2007.

L. Dozio and P. Mantegazza, “Linux Real Time Application Interface (RTAI) in low cost high performance motion control,” in Proc. Motion Control, Conf. ANIPLA, Milano, Italy, Mar. 27–28, 2003.

EMC2 User Manual V2.4, EMC Team, Boston, MA, 2011. [Online].Available: www.linuxcnc.org/docs/2.4/EMC2_User_Manual.pdf

Adjustable Speed Electrical Power Drive Systems—Part 7-201: Generic Interface and Use of Profiles for Power Drive Systems—Profile Type 1 Specification, IEC Std. 61800-7-201, 2007.

M. Cereia, I. C. Bertolotti, and S. Scanzio, “Performance of a real-time EtherCAT master under Linux,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 679–687, Nov. 2011.

G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino, “Evaluation of EtherCAT distributed clock performance,” IEEE Trans. Ind. Informat., vol. 8, no. 1, pp. 20–29, Feb. 2012.

Page 24: Application of Ethernet  Powerlink  for Communication in a Linux RTAI Open CNC system

24

REFERENCES Numerical Control of Machines—Program Format and Definition of Address Words—Part 1:

Data Format for Positioning, Line Motion and Contouring Control Systems, ISO Std. 6983-1, 1982.

IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE Std. 802.3-2008, 2008.

Information Technology—Open Systems Interconnection—Basic Reference Model: The Basic Model, IEC Std. 7498-1, 1996.

Adjustable Speed Electrical Power Drive Systems—Part 7-301: Generic Interface and Use of Profiles for Power Drive Systems—Mapping of Profile Type 1 to Network Technologies, IEC Std. 61800-7-301, 2007.

Introduction into openPOWERLINK Software Manual, SYS TEC Electronic GmbH, Greiz, Germany, 2008. [Online]. Available: www.systecelectronic.com/en/products/industrial-communication/ethernetpowerlink/openpowerlink-source-code/openpowerlink-source-coderelated-documents/introduction-into-openpowerlink-software-manual