13
2003. 10 Byoung-Kee Kim Korea Institute of Machinery and Materials, Application of Nanostructured powders synthesized by new chemical processes Characteristics of Nanopowder Materials KIMM Korea Institute of Machinery and Materials - Enhanced catalytic properties - Enhanced absorption ability - Capilary Condensation Surface Effect - Appearance of New Phases - Decrease of Melting Point - Polycrystallization of Single Crystal - Enhanced Scattering Effect of Waves Bulk Effect - Electric and heat transfer - Compressability - Solid state reactivity Interaction between Nanopowders ~3As 6As 10 Ni Catalytic Property (As : standard Activity) 700~200~1000200 220 Ni W Sintering Temperature 20mK 2.0mK 100 Ag Heat Transfer 3.4K 5.3K 90 Al Transition Temperature of Superconductivity 2~5% 95% 100 Au Light Absorption (6~10) 1300K 430K 933K 370K 30 40 Au In Melting Point ~470Oe 1030Oe 50 Fe Magnetic Property Micro- materials Nano- materials Size() Materials Property

Application of Nanostructured powders synthesized by new ......Reduced powder (200C/1h+700C/1h) Mechano-thermochemical method(I) Burnt out powder, Two-reduction step KIMM Korea Institute

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    2003. 10

    Byoung-Kee Kim

    Korea Institute of Machinery and Materials,

    Application of Nanostructured powders synthesized by new chemical processes

    Characteristics of Nanopowder Materials

    KIMM Korea Institute of Machinery and Materials

    - Enhanced catalytic properties- Enhanced absorption ability- Capilary Condensation

    - Enhanced catalytic properties- Enhanced absorption ability- Capilary Condensation

    Surface Effect

    - Appearance of New Phases- Decrease of Melting Point- Polycrystallization of Single Crystal- Enhanced Scattering Effect of Waves

    - Appearance of New Phases- Decrease of Melting Point- Polycrystallization of Single Crystal- Enhanced Scattering Effect of Waves

    Bulk Effect

    - Electric and heat transfer - Compressability- Solid state reactivity

    - Electric and heat transfer - Compressability- Solid state reactivity

    Interaction between Nanopowders

    ~3As6As10NiCatalytic Property

    (As : standard Activity)

    700℃~200℃~1000℃200220

    NiW

    SinteringTemperature

    20mK2.0mK100AgHeat Transfer

    3.4K5.3K90AlTransition

    Temperature ofSuperconductivity

    2~5%95%100AuLight Absorption(6~10㎛)

    1300K430K

    933K370K

    3040

    AuIn

    MeltingPoint

    ~470Oe1030Oe50FeMagneticProperty

    Micro-materials

    Nano-materials

    Size(Å)MaterialsProperty

  • 2

    Application Field of Nanopowder Materials

    KIMM Korea Institute of Machinery and Materials

    ElectronicOptical

    ElectronicOptical MagneticMagnetic

    StructuralStructural OthersOthers

    ◆ Optoelectronic devices◆ Passive electronic

    devices◆ IC substrate◆ Thermistor and varistor◆ Piezoelectric actuators◆ CMP

    ◆ Advanced tones◆ Diagnostic contrast agents◆ Ferrofluids◆ Magnetic Recording◆ Magnetic Refrigerator

    ◆ Cutting tool ◆ Die

    ◆ Coating

    ◆ Abrasive components

    ◆ Catalysts◆ Chemical sensors◆ Energy storage devices◆ Pigments◆ Membranes

    Research of Nanopowders in KIMM

    KIMM Korea Institute of Machinery and Materials

    Chemical Sensor, Membranes, Filter, TiO2 photocatalystsChemical/Catalytic

    Materials

    Thermistor, Varistor, Piezoelectric actuator Cu-Al2O3 electrode, W-Cu heat sink

    Electric/Electrode Materials

    Ferrofluid, Magnetic refrigerator, Recording media, Hard/Soft Magnets, Fe/Co magnetic materials, Nd-Fe-B hard magnet

    Magnetic Materials

    Abrasives, Cutting tools, CMP, Wear-resistant componentsWC-Co hard materials

    Tool Materials

    MaterialsArea

  • 3

    Mechanical Properties of WC/CoMechanical Properties of WC/Co

    Chemical compositions(contents of Co)Particle size of hard phase(WC)Homogeneity of WC/Co (mean free path)

    Chemical compositions(contents of Co)Particle size of hard phase(WC)Homogeneity of WC/Co (mean free path)

    Reduction of WC size Decrease of mean free pathReduction of WC size Decrease of mean free path

    Hardness Compressive StrengthTRS Strength Wear Resistance

    Hardness Compressive StrengthTRS Strength Wear Resistance

    Key for high mechanical properties Fabrication of very fine WC Higher homogeneity of WC and Co phases

    Key for high mechanical properties Fabrication of very fine WC Higher homogeneity of WC and Co phases

    KIMM Korea Institute of Machinery and Materials

    Manufacturing of WC/Co AlloysManufacturing of WC/Co Alloys

    APT powder

    Calcinations

    Reduction

    Carburization

    Milling(+C)

    Milling(+Co)

    W, Co metalorganics

    Evaporation/Carburization

    WC, WC-Co

    W,Co chlorides

    Spray drying

    Reduction/Carburization

    Reduction/Carburization

    Milling(+C)

    Removal of Chlorides

    Solid Phase Process Liquid Phase Process Gas Phase Process

    G.S. > 300nm G.S. > 100nm

    G.S. < 30nm

    Korea Institute of Machinery and MaterialsKIMM

  • 4

    Temperature(℃)400 800 1200

    W2(C,O)

    W

    W2C

    WC

    H2/He

    He

    HeH2/HeH2/CH4

    H2/CH4

    20nm

    10nm

    • low pressure(10-3atm)• size: 5nm• low pressure(10-3atm)• size: 5nm

    Tem

    pera

    ture

    (℃)

    Concentration of Methane

    WC

    WC+W2C

    W2C + W

    WC +W2C+ W

    Low C

    High C

    800

    1000

    1200

    1400

    sccm 20 40 60 80 100 120 140

    Total : 600sccm

    n-WC powder n-WC powder

    KIMM Korea Institute of Machinery and Materials

    Coating of n- WC,Co powder

    Carbon coating WC powder

    • WC powder: 4nm• WC powder: 4nm

    4nm

    Oxide coating Co, Fe powder

    • Core(metal)/Shell(Oxide) •Oxide shell : 3nm)• Core(metal)/Shell(Oxide) •Oxide shell : 3nm)

    5 nm

    Fe

    Fe oxide

    Co

    Co oxide

    0 200 400 600 800 1000100

    104

    108

    112

    116

    Co oxidationWei

    ght C

    hang

    e(%

    )

    Temperature(oC)

    WC(C:10.5%)/CVC WC(C:5.78%)/CVC WC-10Co/TCP Taegutech

    KIMM Korea Institute of Machinery and Materials

  • 5

    10 9 8 7 6 5

    0

    100

    200

    300

    400

    500

    600

    700

    Loa

    d(kg

    f)

    Displacement(mm)

    10nm-1.0% 10nm-2.0% 100nm-1.0% 100nm-2.0%

    2.23.09100nmC

    1.852.02100nm(granule)B

    0.7718.420nmA(NRL)

    A.D.(g/cm3)

    BET(m2/g)

    Power sizetype

    Compactabilityof n-WC powderCompactabilityof n-WC powder

    Compact desity 47%

    Rearrange of particles

    KIMM Korea Institute of Machinery and Materials

    Sinterbility of n-WC/Co powder

    Solid sintering temp.

    • WC(20nm)+Co(20nm) : 835oC• WC(20nm)+Co(100nm) : 890oC• WC/Co(100nm) : 1010oC• WC/Co(200nm) : 1070oC

    • WC(20nm)+Co(20nm) : 835oC• WC(20nm)+Co(100nm) : 890oC• WC/Co(100nm) : 1010oC• WC/Co(200nm) : 1070oC

    835oC

    890oC

    1010oC1070oC

    835oC

    890oC

    1010oC1070oC

    20nm→2㎛( x 100)

    100nm→1㎛( x 10)

    WC/Co(20nm)

    WC(20nm)/Co(100nm)

    WC/Co(200nm)

    WC/Co(100nm)

    • sintering temp: WC size(1070→835oC)Co size (890→835oC)

    • abnormal grain growth (100 times,)Grain growth inhibitors

    KIMM Korea Institute of Machinery and Materials

  • 6

    Plasma sintering/grain growth inhibitorPlasma sintering/grain growth inhibitor

    WC-10Co-0.6VCround, 70nm( x 4)

    WC-10Co-0.6VCround, 70nm( x 4)

    WC-10Cofacetted shape 1㎛ (x 50)

    WC-10Cofacetted shape 1㎛ (x 50)

    Conventional WC-10Co

    Nano. WC-10Co

    • High Dislocation Density• Stacking Faults

    • Dislocation free WC grains• Twins in WC grains

    Plasma sintering

    KIMM Korea Institute of Machinery and Materials

    Properties of Nanostructured WC-Co Alloy

    >1.0㎛

  • 7

    Nano sized Fe and Co Magnetic Materials

    KIMM Korea Institute of Machinery and Materials

    Magnetic Fluid : Magnetite(Fe3O4)

    Saturation Magnetization of Fe = 2 times of that of Fe3O4Coercivity ; proportional to inverse of particle size (Hc = a+b/D)

    Synthesis of nano-sized Fe ⇒ High performance magnetic fluid materials( Saturation Magnetization : 1500emu/cm3, Coercivity : 3000Oe)

    Development of Fe based nanopowder for magnetic fluidsby Chemical Vapor Condensation

    Development of Fe based nanopowder for magnetic fluidsby Chemical Vapor Condensation

    KIMM Korea Institute of Machinery and Materials

    KIMM30 35 40 45 50 55 60 65 70 75 80Co nanoparticles (fcc-type)

    Fe nanoparticles (bcc-type)

    Inte

    nsity

    (arb

    . uni

    t)

    2 θ

    CoFe

    CoreCrystalline Fe

    CoreCrystalline Fe Shell

    Crystalline Fe oxides

    ShellCrystalline Fe oxides

    Microstructures of Fe Nanoparticles

    5 nm

  • 8

    KIMM Korea Institute of Machinery and Materials

    KIMM-10 -8 -6 -4 -2 0 2 4 6 8 10

    (d)

    (c)

    (b)

    (a)

    Rel

    ativ

    e Tr

    ansm

    issi

    on

    Velocity (mm/s)

    Samplesα -Fe(%)

    Bulk Middle

    Super-paramagnetism

    (%)Fe3O4(%)

    Mean size(nm)

    (a) 2 0 98 0 5.39(b) 20 5 75 0 ~7.0(c) 34 24 21 21 10.32(d) 70 0 10 20 ~12.0

    Superpara- Ferro-Ferro-Superpara-

    (a) (b) (c) (d)

    Superpara-

    Ferro-

    Mössbauer spectroscopy of Fe nanoparticles

    KIMM Korea Institute of Machinery and Materials

    KIMMCoreCrystalline Fe-Co

    CoreCrystalline Fe-Co

    ShellCrystalline Fe and Co oxides

    ShellCrystalline Fe and Co oxides

    Twin structureTwin structure

    Microstructures of Fe-Co nanoparticles

  • 9

    KIMM Korea Institute of Machinery and Materials

    KIMM30 35 40 45 50 55 60 65 70 75 80

    Carrier gas: Ar + 6%O2

    Carrier gas: He

    Carrier gas: Ar

    2 θ

    BCC Co+ HCP CoBCC CoBCC Co

    ++ HCP CoHCP Co

    BCC CoBCC CoBCC Co

    Co oxideCo oxideCo oxide

    Phases of Co nanoparticles with carrier gases

    KIMM Korea Institute of Machinery and Materials

    KIMMDifferent phases with different Co contentDifferent phases with different Co content Saturation magnetization reaches

    highest value near 40 wt% CoSaturation magnetization reaches

    highest value near 40 wt% Co

    10 15 20 25 30 35 40 45 50 55 6020

    40

    60

    80

    100

    120

    M

    s (e

    mu/

    g)

    Co content3 0 4 0 5 0 6 0 7 0 8 0

    Inte

    nsity

    (arb

    . uni

    t)

    F e -4 7 C o

    F e -5 0 C o

    F e -4 0 C o

    F e -3 4 C o

    F e -1 0 C o

    F C C -F e (C o )

    B C C -F e (C o )

    Phases and saturation magnetization

  • 10

    Nanostructured TiO2 photocatalytic materials

    KIMM Korea Institute of Machinery and Materials

    Decrease of particle size- Improved UV scattering- Enhanced photocatalytic activity- Improved gas sensing property- Enhanced opto-electronic property

    Synthesis of nano sized TiO2 powders by Chemical Vapor Condensation process (Non-Agglomerated 10nm powder)

    KIMM Korea Institute of Machinery and Materials

    KIMMMicrostructure of Nano-sized TiO2 Powder

    Anatase Rutile

    20 25 30 35 40 45 50 55 60

    Inte

    nsity

    size : 10nmloose agglomeratesphases : Anatase + Rutile (

  • 11

    KIMM Korea Institute of Machinery and Materials

    KIMMPhase Change Depending on Powder Size

    [100] zone axis(110) type planes

    Anatasea=3.75Å, c=9.51Å

    Anatasea=3.75Å, c=9.51Å Rutile~60nm

    Rutile~60nm

    Nanostructured W-Cu heat sink materials

    KIMM Korea Institute of Machinery and Materials

    Poor sinterability due to the negligible solid solubility between W and Cu

    Conventional Process- Infilteration : Low thermal & electric conductivity

    due to the addition of sintering activator- Liquid phase sintering : Low properties due to larger W sizeDevelopment of new process to achieve high density nanostructured W/Cu materials, using nanostructuredpowder (W : 60nm)

  • 12

    Microstructures of W/Cu Alloys

    Mixing methodW:0.51%, Cu:20%

    Thermochemical method(W-20wt%-0.5wt%Co)

    Mechano-thermochemical method(II)Reduced powder (200C/1h+700C/1h)

    Mechano-thermochemical method(I)Burnt out powder, Two-reduction step

    KIMM Korea Institute of Machinery and Materials

    Sinterabilty of Nanostructured W/Cu Powders

    1000 1100 1200 130020

    30

    40

    50

    60

    70

    80

    90

    100

    Green density

    Sintering density Burnt out powder (process I) Reduced powder (process II) Metal mixed powderGreen density Burnt out powder Reduced powder Metal mixed powder

    Cu melting pointGreen density

    Rel

    ativ

    e de

    nsity

    (%)

    Sintering temperature (oC)

    KIMM Korea Institute of Machinery and Materials

  • 13

    Comparison of Thermal Properties

    7.257.887.806.5

    (6.8-7.6)5.4

    (6.0-7.0)8.0(8.1-8.9)6.5 (7.2-8.0)

    ThermalExpansionCoefficient(ppm/K)

    221.3245.8233.0170

    (180-210141

    (180-210242

    (180-210207

    (180-210)

    ThermalConductivity

    (W/mK)

    223.2223.2223.2300.0294.5240.1223.2Specific

    Heat(J/Kg·K)

    15.16-L14.85-T

    15.43-L15.17-T

    15.48-L15.17-T

    9.819.8914.6315.94Density(g/㎠)

    W-20CuKIMM750-4

    W-20CuKIMM700-8

    W-20CuKIMM700-8

    Mo-20CuThermkon

    -70M

    Mo-15CuThermkon

    -65M

    W-20CuThermkon

    -83

    W-20CuThermkon

    -76

    KIMM Korea Institute of Machinery and Materials

    Prospect of Nanopowder Materials

    KIMM Korea Institute of Machinery and Materials

    Thin Films

    Electro-opticalDevice and

    Ferroelectrics

    SuperhardMaterials

    Drilling, Miningand Machine

    Tools

    ProtectiveCoatings

    TransportationEnergy, Chemical

    Industries

    AdvancedNanocomposites

    EnergyAnd Aerospace

    Industries

    Ceramics Cermet Metals

    5 10 15Years