13
210 Химия гетероциклических соединений 2015, 51(3), 210–222 Indoles are unquestionably the most important hetero- cyclic systems present in numerous natural products, pharmaceuticals, plant protection agents, etc. Synthesis and transformations of the indole ring systems are therefore of continuous interest and subject of many original publications and reviews. In these papers new approaches to construction of the indole ring systems are presented, as well as new variants and modifications of the classical indole synthesis and numerous ways of introduction of substituents into indoles. Most of the modern methods of indole synthesis use transition metal -catalyzed reactions. 1–4 Although these methods are efficient and versatile they suffer substantial disadvantage – the products contain residual quantities of transition metals. These quantities are really minute, but cannot be accepted in pharmaceutical products and in compounds for biological investigation, thus laborious purification procedures are necessary. 5 Several years ago we have introduced a few methods of construction of indole ring system based on nucleophilic substitution of hydrogen in nitroarenes (S N ArH). 6–10 These simple, efficient, and versatile methods open a wide avenue for the synthesis of indoles bearing a variety of substituents in both aromatic and heteroaromatic rings, as well as for obtaining of azaindoles and indoles condensed with other ring systems. Moreover, the products do not contain residual transition metals, and thus do not need meticulous purification. Although great value and versatility of these methods were presented in many our original papers and reviews 11–14 they do not have found wide application they deserve. In this updated review we wish to present basic concepts and examples of the indole synthesis on the basis of S N ArH reactions. Nucleophilic substitution of hydrogen in nitroarenes (a short outline) Nucleophiles can react with nitroarenes in a variety of ways, the most important of them being addition to the electron- deficient rings at positions occupied by halogens or hydrogen to form σ X - and σ H -adducts, respectively. 15 Fast, spontaneous departure of halogen from the σ X -adducts results in formation of products of S N Ar reactions. However, the addition at positions occupied by hydrogen proceeds much faster, hence the σ H -adducts are the initially formed intermediates. Since hydride anions are unable to depart spontaneously from the σ H -adducts they dissociate to the educts; thus this addition mode is a reversible process, and, therefore, the slower formation of the σ X -adducts and the S N Ar reaction can proceed. Nevertheless under proper conditions the σ H -adducts can be converted further in a few ways into products of nucleophilic aromatic substitution of hydrogen. These reactions can proceed provided the conversion of σ H -adducts is a fast process. As a consequence, S N ArH proceeds faster than conventional S N Ar. Лaтвийcкий инcтитут opгaничecкoгo cинтeзa © 2015 Лaтвийcкий инcтитут opгaничecкoгo cинтeзa Application of nucleophilic substitution of hydrogen in nitroarenes to the chemistry of indoles Mieczysław Mąkosza 1 , Krzysztof Wojciechowski 1 1 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland; e-mail: icho-[email protected] Submitted February 16, 2015 Accepted March 3, 2015 NO 2 H X R Z Y Z R NO 2 X N H Z X N H X base/solvent R = H, Alk, Ar, Vinyl; X = Cl, Br, OMe, NH 2 , CF 3 , etc; Y = H, Cl, OPh, SPh; Z = CN, CO 2 Et, SO 2 Ph, etc; base = NaOH, t-BuOK, n-BuLi; solvent = DMSO, DMF, THF, NH 3 liq Application of nucleophilic substitution of hydrogen in nitroarenes to the synthesis and transformation of indoles is discussed. Keywords: indole, nitroarenes, nucleophiles, alkylation, nucleophilic aromatic substitution, oxidation, reduction. * Здесь и далее в номере фамилия автора, с которым следует вести переписку, отмечена звездочкой. ОБЗОР

Application of nucleophilic substitution of hydrogen in

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

210

Химия гетероциклических соединений 2015, 51(3), 210–222

Indoles are unquestionably the most important hetero-

cyclic systems present in numerous natural products,

pharmaceuticals, plant protection agents, etc. Synthesis and

transformations of the indole ring systems are therefore of

continuous interest and subject of many original

publications and reviews. In these papers new approaches

to construction of the indole ring systems are presented, as

well as new variants and modifications of the classical

indole synthesis and numerous ways of introduction of

substituents into indoles. Most of the modern methods of

indole synthesis use transition metal-catalyzed reactions.1–4

Although these methods are efficient and versatile they

suffer substantial disadvantage – the products contain

residual quantities of transition metals. These quantities are

really minute, but cannot be accepted in pharmaceutical

products and in compounds for biological investigation,

thus laborious purification procedures are necessary.5

Several years ago we have introduced a few methods of

construction of indole ring system based on nucleophilic

substitution of hydrogen in nitroarenes (SNArH).6–10 These

simple, efficient, and versatile methods open a wide avenue for

the synthesis of indoles bearing a variety of substituents in both

aromatic and heteroaromatic rings, as well as for obtaining of

azaindoles and indoles condensed with other ring systems.

Moreover, the products do not contain residual transition

metals, and thus do not need meticulous purification.

Although great value and versatility of these methods were

presented in many our original papers and reviews11–14 they do

not have found wide application they deserve. In this updated

review we wish to present basic concepts and examples of the

indole synthesis on the basis of SNArH reactions.

Nucleophilic substitution of hydrogen in nitroarenes

(a short outline)

Nucleophiles can react with nitroarenes in a variety of ways,

the most important of them being addition to the electron-

deficient rings at positions occupied by halogens or hydrogen

to form σX- and σH-adducts, respectively.15 Fast, spontaneous

departure of halogen from the σX-adducts results in formation

of products of SNAr reactions. However, the addition at

positions occupied by hydrogen proceeds much faster, hence

the σH-adducts are the initially formed intermediates. Since

hydride anions are unable to depart spontaneously from the

σH-adducts they dissociate to the educts; thus this addition

mode is a reversible process, and, therefore, the slower

formation of the σX-adducts and the SNAr reaction can proceed.

Nevertheless under proper conditions the σH-adducts can be

converted further in a few ways into products of nucleophilic

aromatic substitution of hydrogen. These reactions can proceed

provided the conversion of σH-adducts is a fast process. As a

consequence, SNArH proceeds faster than conventional SNAr.

Лaтвийcкий инcтитут opгaничecкoгo cинтeзa

© 2015 Лaтвийcкий инcтитут opгaничecкoгo cинтeзa

Application of nucleophilic substitution of hydrogen

in nitroarenes to the chemistry of indoles

Mieczysław Mąkosza1, Krzysztof Wojciechowski1

1 Institute of Organic Chemistry, Polish Academy of Sciences,

Kasprzaka 44/52, Warsaw 01-224, Poland; e-mail: [email protected]

Submitted February 16, 2015

Accepted March 3, 2015

NO2

H

X

R

Z

Y

Z

R

NO2

X

NH

Z

X

NH

X

base/solvent

R = H, Alk, Ar, Vinyl; X = Cl, Br, OMe, NH2, CF3, etc;

Y = H, Cl, OPh, SPh; Z = CN, CO2Et, SO2Ph, etc;

base = NaOH, t-BuOK, n-BuLi; solvent = DMSO, DMF, THF, NH3 liq

Application of nucleophilic substitution of hydrogen in nitroarenes to the synthesis and transformation of indoles is discussed.

Keywords: indole, nitroarenes, nucleophiles, alkylation, nucleophilic aromatic substitution, oxidation, reduction.

* Здесь и далее в номере фамилия автора, с которым следует

вести переписку, отмечена звездочкой.

О Б З О Р

211

Three most important ways of conversion of σH-adducts

into products of SNArH are (Scheme 1): oxidation

(oxidative nucleophilic substitution of hydrogen, ONSH)

(a),16 elimination of HL (for example HCl) when nucleo-

philes contain a nucleofugal group L (for example Cl) at

the nucleophilic center, the process known as vicarious

nucleophilic substitution (VNS) (b),17a and conversion to

nitrosoarenes upon protonation or action of Lewis acids

according to intramolecular redox stoichiometry (c).18

Detailed discussion of general character, many variants and

mechanisms of these reactions is presented in recent

reviews15,19,20 and monograph.21

Construction of indoles via nucleophilic substitution

of hydrogen in nitroarenes

Construction of the indole ring via SNArH reactions consists

in introduction of the functionalized carbon substituents into

nitroaromatic ring followed by intramolecular reactions to form

heterocyclic rings. When in nitroarene there is an amino or a

masked amino group as in meta-nitroaniline or its analogs, the

nitrogen of the amino group takes part in the formation of the

indole ring. In other cases the nitrogen of the nitro group

becomes the indole nitrogen.

Indoles from meta-nitroanilines

The synthesis of 4- and 6-nitroindoles via the direct

reaction of meta-nitroanilines with ketone enolates is

undoubtedly the simplest and the most efficient in terms of

simplicity and atom economy. This method of the indole

moiety construction, exemplified in Scheme 2, is of general

character, considering ketones and meta-nitroanilines,

which can bear a variety of substituents.7,22 A great variety

of substituted indoles, including cycloalkeno[b]indoles,

tetrahydrocarbazoles, and tetrahydrocarbolines, can be

synthesized by this very simple reaction (Scheme 2).22

The reaction proceeds via addition of the enolate anion

to the nitroaromatic ring in vicinity of the amino group and

oxidation of the σH-adducts by atmospheric oxygen.

Further Baeyer type condensation of the produced amino-

ketones gives indoles.

In spite of simplicity and versatility of the direct indole

synthesis from m-nitroanilines and alkyl ketones, there

have been only few reports on application of this reaction

to the synthesis of compounds of biological interest.23–25

For example, the starting 2-methyl-4-nitroindole was

obtained from meta-nitroaniline and acetone (Scheme 3) in

one of the variants of synthesis of AZD1981, a potential

therapeutic agent in respiratory diseases.23

Another example is the synthesis of 2-acetamino-6-nitro-

acetophenone, a starting material in the synthesis of homo-

camptothecin derivatives, potential inhibitors of DNA

topoisomerase I,25 via oxidation of 2,3-dimethyl-4-nitro-

indole, obtained from meta-nitroaniline and 2-butanone

(Scheme 4).22

Similarly carbanions generated from alkyl nitriles react

with meta-nitroanilines to produce 2-amino-4- or 2-amino-

6-nitroindoles. For example, the reaction of meta-

nitroaniline with acetonitrile leads to 2-amino-4-nitro-

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

Nu

NO2 Cl

NO2

CO2Et

Ph

Cl

SO2Ph

NO2

Cl

NHPh

NO

Cl

NO2

Nu Cl

NO2–

Cl–

Nu–

Cl

H

Nu

NO2

Nu = PhCHCO2Et– –

Nu = ClCHSO2Ph– –

Nu = PhNH– –

SNAr

kH

kCl

kH > kCl

(a)

(b)

(c)

+

+

VNS

Reductive

ONSH

– HCl

Scheme 1

Cl

NH2

NO2

N

N

Cl

Me

H

NO2

NO Me

N

Cl

NO2

H

COMe

t-BuOK, DMSO, air

t-BuOK, DMSO, air

55%

27%

Scheme 2

212

indole. Analogous reaction of phenylacetonitrile provides

6-nitroindole derivative (Scheme 5).26 In both reactions the

intermediate σH-adducts are oxidized by atmospheric

oxygen to form the corresponding 2-aminonitrophenyl-

acetonitriles which undergo intramolecular cyclization.

sulfones and cyanides in the form of carbanions. Under the

reaction conditions, the carbanions add to the isocyano

group to form substituted indoles (Scheme 6).8

Intramolecular ONSH of carbanions of alkanoic acid

meta-nitroanilides leads to 1,3-dialkyl-4-nitrooxindoles.27

These oxindoles can be also obtained from nitroanilides of

α-chloroalkanoic acids via intramolecular VNS reaction

(Scheme 7).28

Direct synthesis of indoles

from nitroarenes and carbanions

Bicyclic nitroarenes – nitronaphthalenes29,30 and nitro-

quinolines30 – react with some allylic carbanions to form

condensed N-hydroxyindoles. For instance, phosphonium

ylide, generated from allyl triphenylphosphonium chloride

in the presence of 1,8-diazabicyclo[5.4.0]undec-8-ene (DBU)

and titanium tetraisopropoxide, adds to 1-nitronaphthalene

or 5-nitro-8-methoxyquinoline to form N-hydroxyindole

derivative (Scheme 8).30

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

NH2

NO2

NH

Me

NO2

N

S

Me

NHAcCl

CO2H

t-BuOK, DMSO, air

AZD1981

Me2CO

Scheme 3

NH2

NO2

NH

Me

Me

NO2

Me

O

NHAc

NO2

N

N

O

O

OOH

Et

N Me

Ar

MeMe

O

CrO3, AcOHt-BuOK, DMSO, air

Scheme 4

NH2

NO2 N

H

NH2

NO2

NH

NH2

O2N

Ph

KOH, DMSO, air

t-BuOK, DMSO, air

50%

69%

MeCN

PhCH2CN

Scheme 5

meta-Nitroanilines can be readily transformed into meta-

nitrobenzoisonitriles. Upon treatment with carbanions of

sulfones and nitriles bearing good leaving groups these

isonitriles enter VNS reaction to give ortho-isocyanobenzyl

Me

O2N NC

Me

O2N NC

C

CN

H

NH

Me

O2N

CN

PhSCH2CN

50%NaOH, NH3 (liq.)

N

R

O

NO2

Me

N

O

Me

R

NO2

N

R

O

Me

NO2

Clt-BuOK, DMSO, O2 t-BuOK, DMF

R = Me, 64% R = n-Pr, 69%

Scheme 6

Scheme 8

N

NO2

OMeN

NOH

OMe

Me

CH2

PPh3Cl

+

N

NO2

OMe

CH2

H

PPh3

+

DBU, HMPA Ti(OPr-i)4

36%– HCl

Scheme 7

213

A peculiar example of synthesis of N-hydroxyindole in the

VNS of hydrogen, proceeding via a cyclopropane ring opening,

is the reaction of carbanion of dimethyl 2-cyanocyclopropane-

1,1-dicarboxylate with 1-nitro-4-(trifluoromethyl)benzene.

Quenching of the reaction mixture at low temperature provides

4-aryl-4-cyanobutyric acid derivative. But when the reaction

mixture is allowed to warm up to 0°C further cyclization to

1-hydroxyindole takes place via an intramolecular addition of

the carbanion to the nitro group (Scheme 9).31

DBU reacts as a C-nucleophile with 1,3,5-trinitrobenzene

to form an σH-adduct that is oxidized to 2,4,6-trinitrophenyl-

amidine. Further step is the replacement of the nitro group

leading to a condensed tetracyclic indole derivative

(Scheme 10).32 In a similar manner DBU reacts with ethyl

3,5-dinitrobenzoate.

Indoles via introduction of functionalized substituents

in the ortho position to the nitro group

ONSH and, particularly, VNS are efficient tools for

introduction of cyanomethyl,33–35 arenesulfonyl-

methyl,17,36,37 and alkoxycarbonylmethyl38–40 substituents in

the ortho position to the nitro group of nitroarenes.

Introduction of such functionalized carbon substituents

provides wide possibilities for the synthesis of indoles.

These ortho-substituted nitroarenes can be converted into

indoles via cyclization that directly involves the nitro group

or its initial reduction followed by an intramolecular

condensation that engages the produced amino group.

Non-reductive transformations of the ortho-substituted

nitroarenes into indoles

The methylene group in the ortho-nitroarylacetonitriles and

ortho-nitrobenzyl(aryl)sulfones are readily alkylated with allyl

and benzyl halides under mild liquid–solid phase-transfer

catalysis conditions. The products are converted into

substituted N-hydroxyindoles upon treatment with basic agents

under various conditions. Examples of these reactions and the

hypothetical mechanisms are presented in Schemes 11, 12. By

this approach 5-methoxy-2-nitrobenzyl aryl sulfones are

transformed into 2-substituted 1-hydroxy-3-(arenesulfonyl)-

indoles in good yields (Scheme 11).41 Similar reactions of

2-nitroarylacetonitriles lead to the corresponding 2-phenyl- or

2-vinyl-substituted 3-cyano-1-hydroxyindoles (Scheme 12).41

Alkylation of ortho-nitroarylacetonitriles with allyl or

benzyl halides followed by treatment of the obtained

compounds with a base and silylating agents in aprotic

medium or with a base in protic solvent results in 3-cyano-

1-hydroxy-2-vinylindoles. For example, alkylation of ortho-

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

CF3

NO2

NC CO2Me

CO2Me

CF3

NO2

C

CN

CO2Me

CO2Me

H

N

OH

CO2Me

CO2Me

CNCF

3

+t-BuOK, DMF

–50°C to 0°C

31%

–50°C

Scheme 9

NN

NO2

O2N

N

N

NO2

NO2

O2NNO

2

NO2

O2N

N

NH

NO2

NO2

O2N

DBU, CHCl3

11%

[O]

Scheme 10

MeO

NO2

SO2Ar MeO

NO2

SO2Ar

R

N

OH

SO2Ar

R

MeORCH2Cl NaOH, DMSO

Ar = 4-MeC6H4; R = CH=CH2 (69%);

Ar = Ph; R = Ph (94%)

K2CO3, Bu4NBr

Cl

NO2

CN

Cl

NO2

CN

Ph

N

Cl

OH

Ph

CN

Cl

CN

PhN

O

– OH–

N

Cl

OHO

CN

Ph+ –

N

O

HCl

CN

Ph

+

Bu4NBr, MeCN NaOH, DMSO

85%

94%

PhCH2Cl, K2CO3

Scheme 11

Scheme 12

214

nitroarylacetonitrile with 3-phenylallyl bromide gives an

adduct that in the presence of chlorotrimethylsilane and

triethylamine undergo cyclization into 3-cyano-1-hydroxy-

2-vinylindole as exemplified in Scheme 13.42

Similar transformations as a way to indoles were later

reported for 2-nitrophenyl cyanoacetates and malonates. They

are, however, less convenient because the starting materials

were obtained by SNAr of fluorine in ortho-fluoronitroarenes.43

Alkyl ortho-nitroarylacetates, ortho-nitroarylacetonitriles, and

ortho-nitrobenzyl sulfones enter condensation with aliphatic

aldehydes to give the corresponding alkylidene derivatives.44–47

Treatment of these alkylidene nitriles with a base results in

cyclization to indoles (Scheme 14).48

Vilsmeier reagent prepared from N-methylpyrrolidinone

was employed as a precursor of pyrrole ring in pyrrolo[3,2-b]-

quinoline system. The reaction of ortho-nitroarylaceto-

nitriles with this reagent led to alkylidene derivative that

cyclized in the presence of diazabicycloundecene and bis-tri-

methylsilylacetamide (BSA) (Scheme 15).49

Synthesis of indoles via reduction of the nitro group

in ortho-substituted nitroarenes

Indoles from 2-nitroarylacetonitriles

Synthesis of indoles via catalytic hydrogenation of 2-nitro-

arylacetonitriles has been well known for many years.50

It was, however, of a limited value, because ortho-nitro-

arylacetonitriles were not easily available. Facile synthesis

of ortho-nitroarylacetonitriles via the VNS methodology

has opened a wide avenue to synthesis of substituted

indoles. There is practically no limitation of this reaction in

terms of substituents present in the nitroarene moiety.

Moreover, chlorine or bromine substituents in the

nitroaromatic ring not only increase electrophilicity of

nitroarenes,51 thus improving effectiveness of the VNS

reactions, but also prevent introduction of cyanomethyl

substituent into undesired positions.6,52 These auxilary

substituents can be subsequently removed during

hydrogenation. To show versatility of this approach to

indoles we performed the synthesis of all isomeric 4-, 5-, 6-,

and 7-methoxy-substituted indoles via the VNS cyano-

methylation of isomeric nitroanisoles and their halogenated

derivatives (Scheme 16).6

Similarly, VNS cyanomethylation of benzyl nitro-

phenyl ethers, eventually containing halogens in the nitro-

phenyl ring followed by hydrogenation and simultaneous

removal of the benzyl group and halogens provided

hydroxyindoles.6,52 Recently the VNS cyanomethylation

followed by hydrogenation has been used for synthesis of

indoles containing pentafluorosulfanyl substituents

(Scheme 17).53

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

NO2

Cl

CN

NO2

CN

PhCl

Br Ph

N

Ph

CN

OH

ClK2CO3, Bu4NBr, MeCN

66% 91%

Me3SiCl, Et3N, DMF

X

CN

NO2

X

CN

NO2

Me

N

OH

OH

XCN1) MeCHO, K2CO3, DMF

2) MeSO2Cl, Py

63–74%

K2CO3, MeOH

67–74%

X = F, Cl, Br

F

NO2

CN

N

Me

O

F

NO2

CN

N Me

N

N

MeCN

FPOCl, Et3N BSA, DBU

51%

NO2

X

MeO

NO2

CNX

MeO

NH

MeOYCH2CN

base, solvent H2, Pd/C

X = H, Cl, Br; Y = p-ClC6H4O, R2NCS2; base: NaOH, t-BuOK; solvent: DMSO, DMF

Scheme 13

Scheme 14

Scheme 15

Scheme 16

NO2

F5S

NO2

CNF

5S

NH

F5SPhOCH2CN

t-BuOK, DMF H2, Pd/C

5-SF5 (69%)

6-SF5 (50%)

50–74%

Scheme 17

215

Cyanomethylation of nitronaphthalenes34,54 and nitro-

quinolines55–57 offers an access to cyanomethyl derivatives

that upon reduction provide benzoindoles41,58 and pyrrolo-

quinolines,57 respectively, as exemplified in Scheme 18.

Eudistomins C and E, antiviral alkaloids of marine

origin, contain 5-methoxyindole fragment. Most conve-

niently these indole units were prepared from appropriate

bromonitroanisols via vicarious nucleophilic substitution

with aryloxyacetonitriles followed by catalytic reduction

(Scheme 19).59

The VNS reaction of 3-nitroanisole and 1-benzyloxy-

3-nitrobenzene with 4-chlorophenoxyacetonitrile proceeds

in the most hindered position 2.6,60 6-Methoxy-2-nitro-

phenylacetonitrile thus obtained was then reduced and

converted into 4-methoxyindole, which was then trans-

formed in three steps into rapalexin A, an unusual

isothiocyanate alkaloid derived from Brassica rapa

(Scheme 20).61

On the other hand, 2-benzyloxy-6-nitrophenylacetonitrile

upon catalytic hydrogenation gives 4-hydroxyindole.6 When

the cyano group in 4-chlorophenoxyacetonitrile was labeled

with 14C 4-hydroxyindole labeled at position 2 was obtained

and used as intermediate for the synthesis of a labeled pindolol

analog LY3688242 (Scheme 21).62

1-Methoxybrassanin is one of natural defence

compounds produced by plants of the family Cruciferae. In

studies of metabolic pathways of these alkaloids the

required 4,5,6,7-tetradeutero-1-methoxybrassanin was

synthesized from 4,5,6,7-tetradeuteroindole. This labelled

indole was obtained via VNS in perdeuteronitrobenzene

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

N

NO2

N

NO2

CN

NH

N

p-ClC6H4OCH2CN

t-BuOK, THF

58%

H2, Pd/C

82%

NH

Br

MeO

X

NH

Br

MeO N O

S

H

NH2

Br NO2

MeO

X

Br NO2

MeOCN

X

NH

MeO N O

S

H

NH2

Br

Eudistomin C

H2, Pd/C)

ArOCH2CN

t-BuOK, DMF

X = H

Eudistomin E

X = Br

OMe

NO2

NH

OMe

NH

OMe NCSOMe

NO2

CN

t-BuOK, DMF

Rapalexin A

H2, Pd/Cp-ClC6H4OCH2CN

O

Cl

Cl

O2N

O

PhO

Cl

CN*

O

NO2

Ph

CN*

NH

OH

*

NH O

OH

NH

Me MeO

CONH2

*

K14CN

t-BuOK, DMF

H2, Pd/C

77%

LY3688242 (14C)

Scheme 18

Scheme 19

Scheme 21

Scheme 20

216

with chloroacetonitrile followed by catalytic reduction of

the deuterated 2-nitrophenylacetonitrile (Scheme 22).63

Ortho-nitroaryl-substituted acetonitriles are relatively

strong C–H acids, and their C-alkylation followed by

hydrogenation leads to 3-substituted indoles.6 3,6-Dimethyl-

5-methoxyindole prepared via the VNS cyanomethylation

of 4-methoxy-3-methylnitrobenzene has been used as

starting material for the synthesis of cyclopropano-

annelated quinone methide (Scheme 23).64

It has been shown earlier, that VNS in 2,4-dinitrophenol

proceeds regioselectively at the most hindered position 3

due to electronic configuration of the dinitrophenolate

anion.65 This orientation pattern has been employed for the

synthesis of the precursor of damirone B from dinitro-

guaiacol, in which cyanomethylation proceeds exclusively

at position 5 to form upon O-methylation 3,4-dimethoxy-

2,6-dinitrophenylacetonitrile. Further alkylation of the

nitrile carbanion with ethyl bromoacetate and hydro-

genation provides the skeleton of damirone tricyclic system

(Scheme 24).66,67

The VNS cyanomethylation of 3-nitropyridines and sub-

sequent hydrogenation of the so formed ortho-nitro-

pyridylacetonitriles is a convenient way of the synthesis of

4- and 6-azaindoles, which have found numerous applica-

tions in the synthesis of potentially biologically active

compounds.68–75 The VNS of hydrogen in 2-chloro-5-nitro-

pyridine using chlorophenoxyacetonitrile provides a nitro-

pyridylacetonitrile which upon catalytic reduction cyclized

to 5-chloro-6-azaindole (Scheme 25), a key starting material

for the synthesis of a potential Xa factor inhibitor.76

Methoxynitropyridylacetonitrile, the key intermediate in

the synthesis of 5-azamelatonine, was obtained by the VNS

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

D

D

D

D

D

NO2

D

D

D

D

CN

NO2

NH

D

D

D

DN

D

D

D

D

NH

MeS

OMe

ClCH2CN

KOH,DMSO H2,Pd/C

1-Methoxybrassanin-d4

Me

MeO

NO2 Me

MeO

NO2

CN

NH

Me

MeMeO

Me

MeMeO

N

O

OH

1) MeI, K2CO3,

18-crown-62) H2, Pd/Cp-ClC6H4OCH2CN

t-BuOK, DMF

OH

NO2

MeO

NO2

OH

NO2

MeO

NO2

CN

OMe

NO2

MeO

NO2

CN

CO2Et

NH

NH

O

OMe

MeO NH

N

O

O

Me

O

Damirone B

PhOCH2CN,

t-BuOK, DMF

80%

1) Me2SO4, NaHCO3, Me2CO (83%)

H2, PdCl2-Fe

48%

2) BrCH2CO2Et, K2CO3, MeCN (69%)

NCl

NO2

NCl

NO2

CN

N NH

Cl

O NMe2

NH

NH

O

NH

N

ClO

S

NNMe

NaH, DMF

H2, Pdp-ClC6H4OCH2CN

Scheme 22

Scheme 23

Scheme 24

Scheme 25

217

N

NO2

MeO N

NO2

MeOCN N

NO2

MeOCN

CN

N

NH

CN

MeO N

NH

MeO NHAc

p-ClC6H4OCH2CN

t-BuOK, DMF

BrCH2CN

K2CO3, DMF H2, Pd/C

H2, RaNi

Ac2O

95% 54% 46%

72%

of hydrogen in 2-methoxy-5-nitropyridine with the carb-

anion of aryloxyacetonitrile. Further steps included alkyla-

tion of the obtained pyridylacetonitrile with bromo-

acetonitrile followed by a two-step reduction and acylation

(Scheme 26).77

Indoles from 2-nitrobenzyl sulfones

VNS reactions of nitroarenes with the carbanions of

chloromethyl aryl sulfones lead to ortho-nitrobenzyl aryl

sulfones.17b,36,56,78 This procedure is particularly useful due

to the possibility to direct the VNS reaction selectively in

ortho position to the nitro group when the reaction is

carried out in t-BuOK/THF (Scheme 29).17b Contrary to

what is the case with ortho-nitroarylacetonitriles, the

reduction of the nitro group in ortho-nitrobenzyl aryl

sulfones proceeds without cyclization, and the ortho-

aminobenzyl sulfones can be isolated and converted into

indoles in separate operations. These sulfones upon

conversion of the amino group into imine,10 imidate,9,79,80

or isonitrile81 functionality undergo cyclization into

substituted indoles.

ortho-Aminobenzyl sulfones react with aromatic

aldehydes furnishing Schiff bases. These imines upon

treatment with a base cyclize to 3-arenesulfonylindolines

that eliminate toluenesulfinate to form 2-areneindoles. This

approach gives access to arene- and heteroarene indoles

difficult to obtain by other methods as exemplified in

Scheme 27.10

Conversion of such aminobenzyl sulfones into imidates

in an acid-catalyzed reaction with orthoesters followed by

base-induced intramolecular addition–elimination produces

3-arenesulfonylindoles.9 This approach was used for the

synthesis of 5- and 7-bromo-3-sulfonylindoles that were

subsequently used in the synthesis of compounds for

biological testing (Scheme 28).79

Alternatively, N-substituted 3-phenylsulfonylindoles

have been synthesized via a reductive N-alkylation of ortho-

aminobenzyl sulfones with ketones followed by conden-

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

N

NH2

SO2Tol

MeO

O CHO

N

N

O

SO2Tol

MeO

N

NH

O

MeON

NH

SO2Tol

O

MeO

+H+ NaOH, DMSO

52%

– TolSO2H

Br

NO2

SO2Ph

Br

NO2

NH

SO2Ph

Br

SO2Ph

Br

N OEt

CH2

SnBu3

NH

SO2Ph

CH2

NH

SO2Ph

Me2N

1) H2, RaNi

2) HC(OEt)3, TsOH t-BuOK, THF

PdCl2(PPh3)2

1) BH3

2) H2O2

3) TsCl, Py4) Me2NH

ClCH2SO2Ph

t-BuOK, THF

Scheme 26

Scheme 27

Scheme 28

218

sation with dimethyl formamide dimethylacetal (DMF-

DMA) and cyclization (Scheme 29).80

Indoles can be also obtained via simple transformation

of an amino group into an isocyano group followed by a

base-induced addition of a carbanion, stabilized by a

sulfonyl group, to the isocyano group81 in a way analogous

to the reaction shown in Scheme 6.

Other reductive cyclizations leading to indoles

In the synthesis of physostigmine, the required pyrrolo-

indole skeleton was obtained in a few steps starting from

oxidative substitution of hydrogen in para-nitroanisole by

N-methylpyrrolidinone carbanion (Scheme 30).82

meta-Dinitrobenzene reacts with carbanions of α-halo

ketones following the VNS mechanism to form 2,4-dinitro-

benzyl ketones, which can be reduced with tin(II) chloride

to give 1-hydroxy-6-nitroindoles (Scheme 31).83

Oxindoles and azaoxindoles

2-Nitroarylacetates are convenient precursors to the

synthesis of oxindoles via simple reduction of the nitro

group and intramolecular formation of amide. VNS with

alkyl α-chloroalkanoates solves the problem of availability

of these starting materials.38 The VNS reaction of 3-nitro-

pyridine with methyl chloroacetate under basic conditions

furnishes ethyl nitropyridyl acetates which upon catalytic

hydrogenation cyclize to azaoxindoles (Scheme 32).84–86

The VNS reaction of nitrobenzene with ethyl α-chloro-

propionate proceeds in the para position of the benzene

ring.87 The formed carbanion of 4-nitrophenylpropionate

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

NO2

SO2Ph

NO2

N

SO2Ph

N

CH2Ph

NH2

SO2Ph

NH

SO2Ph

NCH

2Ph

N CH2PhO

SO2Ph

NH

N

CH2Ph

NMe2

ClCH2SO2Ph

t-BuOK, THF

DMF-DMA

Sn, HCl AcOH, NaBH(OAc)3

HCl aq

NO2

OMe

N

O

SiMe3

Me

N Me

O

OMe

NO2

N Me

O

OMe

NH2

Me

NH

N

Me

HMe

MeO

N

N

Me

HMe

Me

MeNHCOO

TASF = (Me2N)3SMe3SiF2

+ _

+

1) TASF, THF2) DDQ

1) MeI, CsOH2) H2, Pd/C LAH, THF

dl-physostigmine

NO2

NO2

NBu

OHO

2N

-t

O

BuCl

-t

O

Bu

NO2O

2N

-tSnCl2

AcOEt, EtOH

DBU, DMF–20°C

74% 68%

N

NO2

N NH

O

N

NO2

CO2MeClCH2CO2Me

t-BuOK, THF H2, Pd/C

80% 98%

Scheme 29

Scheme 30

Scheme 31

Scheme 32

219

can in situ substitute fluorine atom in subsequently added

1-fluoro-2,4-dinitrobenzene to form 2,4,4'-trinitrodiaryl-

propionate, which upon hydrogenation is transformed into

an 3-aryloxindole derivative (Scheme 33).88,89

Modification of indoles via SNArH reactions

Introduction of carbon substituent

Alkyl substituents can be introduced into 5-nitroindoles

by direct action of alkylmagnesium halides. The resulting

σH-adducts when quenched with BF3 transformed into

4-alkyl-5-nitrosoindoles,90 but when the σH-adducts were

subjected to oxidation with DDQ the corresponding nitro

compounds were obtained (Scheme 34).91,92

1-Alkyl-5- and 1-alkyl-6-nitroindoles undergo the VNS

substitution of hydrogen at positions 4 and 7, respectively,

by action of chloromethyl sulfones and (4-chlorophenoxy)-

acetonitrile to give the corresponding VNS products in

high yields.93 Catalytic reduction of the obtained cyano-

methyl nitroindoles provides condensed pyrroloindoles as

exemplified by the synthesis of pyrrolo[3,2-e]indole shown

in the Scheme 35.94 A versatile synthesis of pyrrolo-anne-

lated quinolines has been reported via alkylation of the

VNS products, ortho-nitroindolylacetonitriles, with α-bromo

ketones. The obtained ketonitriles can be reduced under

mild conditions with tin(II) chloride in ethyl acetate–

ethanol mixture to quinoline-4-carbonitriles.95 The same

reaction sequence has been applied to (nitroindol-4-yl)- and

(nitroindol-5-yl)acetonitriles to obtain tricyclic 4-cyano-

2-phenyl derivatives of pyrrolo[3,2-f]- and pyrrolo[2,3-h]-

quinolines (Scheme 35).95

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

NO2

Me

Cl

CO2Et

NO2

Me

EtO2C O

2N

NO2

NH

O

Me

NH2

NH2

F NO2

O2N

NO2

CMe CO

2Et_

NaH, DMF

77%

H2, Pd/C

54%

Scheme 33

N

R

O2N

N

Me

R1

O2N

NH

R1

ON

N

R

O2N

R1

H_

R1MgBr DDQ

R = H, MeR1 = Me (75%)R1 = CH2SiMe3 (70%)

BF3

(R = Me)

(29%)

(R = H, R1 = CH2CH2Ph)

NMe

BOM

O2N

NMe

BOM

O2N

CN

NMe

BOM

O2N

CN

O Ph

N

BOM

Me

CN

N

Ph

N

NH

BOM

Me

p-ClC6H4OCH2CN

t-BuOK, DMF

PhCOCH2Br

DBU

88%

SnCl2AcOEt, EtOH

33%

BOM = CH2OCH2Ph

84%

H2, Pd/C62%

Scheme 34

Scheme 35

220

Unusual reaction course was observed when 1-methoxy-

6-nitroindole-3-carbaldehyde was treated with this

4-chlorophenoxyacetonitrile-derived carbanion. Instead of

the expected substitution of hydrogen at position 7 (as in

Scheme 36), a multistep process resulting in formation of

pyrimido[1,2-a]indole derivative occurred (Scheme 37).97,98

The process started from the Thorpe condensation of the

aryloxyacetonitrile, followed by a cine substitution of the

N-methoxy group and cyclization.

Reactions of indole and indolyl anions

Indolyl-3-acetonitrile carbanions react with nitro deri-

vatives of bicyclic heterocycles, imidazo[1,2-a]pyridine100

and 5-nitrobenzimidazole,101 to form highly fluorescent

pentacyclic heterocycles (Scheme 39).

Indole anions react with nitroarenes to form 3-(nitroaryl)-

indoles following oxidative nucleophilic substitution of

hydrogen (Scheme 40).102

Amination of indoles

1,2-Dimethyl-5-nitroindole was aminated with N-tetra-

methylenethiocarbamoylsulfenamide to form the corres-

ponding 4-amino derivative in moderate yield (Scheme 41).103

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

NH

CF3

NO2

NH

CF3

NO2

N

H

H

CF3

NO2

_+t-BuOK, DMSO

57%

air

1-Methoxy-6-nitroindole react with aryloxyacetonitrile

similarly to 1-alkyl derivatives giving the expected 7-indolyl-

acetonitrile (Scheme 36).96–98

N

OMeO

2N

N

OMeO

2N

NC

p-ClC6H4OCH2CN

t-BuOK, DMF

67%

Scheme 36

Scheme 38

N

Br

Et

O2N

CN

Cl N

O

N

Et

Cl

Br+KOH, EtOH,

49%

Scheme 39

Scheme 40

N

Me

Me

O2N

N

Me

Me

O2N

NH2

N

S SNH

2

t-BuOK, DMSO

45%

Scheme 41

N

OMeO

2N

CHO

ClC6H

4O

NH2

OC6H

4Cl

CN

p-

-p

NN

NH2 OC

6H

4Cl

CHO

O2N

OC6H

4Cl -p

-p

t-BuOK, DMF

67%

p-ClC6H4OCH2CN

+

N

Me

X

O2N

PhN

Me

X

O2N

Ph

NH2

H2NNMe3I+

t-BuOK, DMF

X = NO2 (88%)

X = t-BuSO2 (90%)

1-Alkyl-3-bromo-5-nitroindoles react with phenyl-

acetonitriles in the presence of KOH in ethanol to form

isoxazolo[4,3-e]indoles as exemplified in Scheme 38.99

Scheme 37

4,6-Dinitroindole derivatives were aminated with trime-

thylhydrazinium iodide in the presence of t-BuOK to form

7-amino-4,6-dinitroindole derivatives (Scheme 42).104–106

Scheme 42

N

N

Me

O2N

N

CN

EtN

NN

N

Et

Me

CN

N

CN

MeN N

N

N

CN

Me

N

N

NO2

+KOH, MeOH

74%

KOH, MeOH+

91%

221

9. Wojciechowski, K.; Mąkosza, M. Synthesis 1986, 651.

10. Wojciechowski, K.; Mąkosza, M. Bull. Soc. Chim. Belg.

1986, 95, 671.

11. Mąkosza, M.; Wojciechowski, K. Chem. Rev. 2004, 104, 2631. 12. Mąkosza, M.; Wojciechowski, K. In Selected Methods for

Synthesis and Modification of Heterocycles – The Chemistry

of Synthetic Indole Systems, Kartsev, V. G., Ed.; IBS Press:

Moscow, 2004, vol. 3, p. 103.

13. Mąkosza, M.; Wojciechowski, K. Heterocycles 2014, 88, 75. 14. Mąkosza, M.; Wojciechowski, K. Top. Heterocycl. Chem.

2014, 37, 51.

15. Mąkosza, M. Chem.–Eur. J. 2014, 20, 5536. 16. Mąkosza, M.; Kamieńska-Trela, K.; Paszewski, M.;

Bechcicka, M. Tetrahedron 2005, 61, 11952.

17. (a) Mąkosza, M.; Winiarski, J. Acc. Chem. Res. 1987, 20, 282.

(b) Mąkosza, M.; Glinka, T.; Kinowski, J. Tetrahedron 1984, 40, 1863.

18. Wróbel, Z.; Kwast, A. Synthesis 2010, 3865.

19. Mąkosza, M. Chem. Soc. Rev. 2010, 39, 2855.

20. Mąkosza, M. Synthesis 2011, 2341. 21. Terrier, F. Modern Nucleophilic Aromatic Substitution; Wiley-

VCH Verlag: Weinheim, 2013.

22. Moskalev, N.; Barbasiewicz, M.; Mąkosza, M. Tetrahedron

2004, 60, 347. 23. Sulur, M.; Sharma, P.; Ramakrishnan, R.; Naidu, R.;

Merifield, E.; Gill, D. M.; Clarke, A. M.; Thomson, C.;

Butters, M.; Bachu, S.; Benison, C. H.; Dokka, N.; Fong, E. R.;

Hose, D. R. J.; Howell, G. P.; Mobberley, S. E.; Morton, S. C.;

Mullen, A. K.; Rapai, J.; Tejas, B. Org. Proc. Res. Dev. 2012, 16, 1746.

24. Timofeev, E. N.; Kolganova, N. A.; Smirnov, I. P.;

Kochetkova, S. V.; Florentiev, V. L. Russ. J. Bioorg. Chem.

2008, 34, 201. [Bioorg. Khim. 2008, 34, 220.] 25. Guo, W.; Miao, Z.; Sheng, C.; Yao, J.; Feng, H.; Zhang, W.;

Zhu, L.; Liu, W.; Cheng, P.; Zhang, J.; Che, X.; Wang, W.;

Luo, C.; Xu, Y. Eur. J. Med. Chem. 2010, 45, 2223.

26. Moskalev, N.; Mąkosza, M. Heterocycles 2000, 52, 533.

27. Mąkosza, M.; Paszewski, M. Synthesis 2002, 2203.

28. Mąkosza, M.; Hoser, H. Heterocycles 1994, 37, 1701.

29. Wróbel, Z. Eur. J. Org. Chem. 2000, 521.

30. Korda, A.; Wróbel, Z. Synlett 2003, 1465.

31. Stalewski, J. Tetrahedron Lett. 1998, 39, 9523.

32. Sutherland, J. K. Chem. Commun. 1997, 325.

33. Mąkosza, M.; Winiarski, J. J. Org. Chem. 1980, 45, 1534.

34. Mąkosza, M.; Winiarski, J. J. Org. Chem. 1984, 49, 1494. 35. Mąkosza, M.; Wenäll, M.; Goliński, M.; Kinowski, A. Bull.

Pol. Acad. Sci., Chem. 1985, 33, 427.

36. Mąkosza, M.; Goliński, J.; Baran, J. J. Org. Chem. 1984, 49, 1488.

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]

N

CH2Ph

Me

NH2

NO2

OMe

N

CH2Ph

Me

NH

NO

MeO N

N N

Me

R

MeO

N

C8H

17

Me

O2N

NH2

OMe

N

C8H

17

Me

ON

NH

MeO

R = C8H17 (71%)

R = CH2Ph (64%)t-BuOK, DMF

t-BuOK, DMF

50%

40%

BSA

BSA+

+

Scheme 43

It has recently been found in our laboratory that anilines

react with nitroarenes in the presence of a strong base to

form 2-nitrosodiphenylamines.107 The reaction proceeds via

the addition of the N-anion of anilines to nitroarenes in the

position ortho to the nitro group, followed by conversion of

the resulting σH-adduct according to the intramolecular

redox stoichiometry. The reaction is of general character;

thus, a variety of 2-nitrosodiphenylamines become readily

available.18 These compounds upon treatment with acetic

acid cyclize to phenazines in high yields. This two-step

process is analogous to, but much more efficient than the

classic Wohl–Aue synthesis of phenazines.108

The availability of nitroarenes and anilines opens almost

unlimited simple and efficient access to phenazines, as well as

to their derivatives condensed with an additional ring. The

versatility of this methodology is demonstrated by the synthesis

of pyrrolo[3,2-a]phenazines from two properly chosen pairs of

nitroarene and arylamine: 5-nitroindole derivative and

p-anisidine or 5-aminoindole and p-nitroanisole, respectively.

In these instances, the cyclization was performed with bis-

(trimethylsilyl)acetamide (BSA) (Scheme 43).109

Conclusions

In this review we have presented numerous ways to

construct indole derivatives via nucleophilic substitution of

hydrogen. It has been shown that this approach is one of

the simplest, most versatile, and efficient ways to such ring

systems, which can easily be adopted for large-scale

operations. Another advantage of this methodology, in

contrast to the majority of modern methods, is that no

transition metals are used, so the troublesome removal of

their impurities from the final products is not necessary.5

References

1. Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. React. (Hoboken, NJ, U. S.) 2012, 76, 281.

2. Yoshikai, N.; Wei, Y. Asian J. Org. Chem. 2013, 2, 466. 3. Li, J. J.; Gribble, G. W. Top. Heterocycl. Chem. 2010, 26, 193. 4. Guo, T.; Huang, F.; Yu, L.; Yu, Z. Tetrahedron Lett. 2015,

56, 296. 5. Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889. 6. Mąkosza, M.; Danikiewicz, W.; Wojciechowski, K. Liebigs

Ann. Chem. 1988, 203. 7. Moskalev, N.; Mąkosza, M. Tetrahedron Lett. 1999, 40, 5395. 8. Wojciechowski, K.; Mąkosza, M. Tetrahedron Lett. 1984, 25,

4793.

222

37. Mudryk, B.; Mąkosza, M. Tetrahedron 1988, 44, 209. 38. Mudryk, B.; Mąkosza, M. Synthesis 1988, 1007. 39. Mąkosza, M.; Sienkiewicz, K.; Wojciechowski, K. Synthesis

1990, 850. 40. Stahly, G. P.; Stahly, B. C.; Maloney, J. R. J. Org. Chem.

1988, 53, 690. 41. Wróbel, Z.; Mąkosza, M. Tetrahedron 1997, 53, 5501. 42. Wróbel, Z.; Mąkosza, M. Synlett 1993, 597. 43. Selvakumar, N.; Khera, M. K.; Reddy, B. Y.; Srinivas, D.;

Azhagan, A. M.; Iqbal, J. Tetrahedron Lett. 2003, 44, 7071. 44. Wróbel, Z.; Kwast, A.; Mąkosza, M. Synthesis 1993, 31. 45. Mąkosza, M.; Tyrała, A. Synth. Commun. 1986, 16, 419. 46. Söderberg, B. C. G.; Banini, S. R.; Turner, M. R.; Minter, A. R.;

Arrington, A. K. Synthesis 2008, 903. 47. Banini, S. R.; Turner, M. R.; Cummings, M. M.;

Söderberg, B. C. G. Tetrahedron 2011, 67, 3603. 48. Wróbel, Z.; Mąkosza, M. Tetrahedron 1993, 49, 5315. 49. Wróbel, Z.; Wojciechowski, K.; Kwast, A.; Gajda, N. Synlett

2010, 2435. 50. Walker, G. N. J. Am. Chem. Soc. 1955, 77, 3844. 51. Błażej, S.; Mąkosza, M. Chem.–Eur. J. 2008, 14, 11113. 52. Lerman, L.; Weinstock-Rosin, M.; Nudelman, A. Synthesis

2004, 3043. 53. Iakobson, G.; Pošta, M.; Beier, P. Synlett 2013, 24, 855. 54. Jończyk, A.; Kowalkowska, A. Synthesis 2002, 674. 55. Maruoka, H.; Tomioka, Y. J. Heterocycl. Chem. 2003, 40, 1051. 56. Mąkosza, M.; Kinowski, A.; Danikiewicz, W.; Mudryk, B.

Liebigs Ann. Chem. 1986, 69. 57. Vlachou, M.; Tsotinis, A.; Kelland, L. R.; Thurston, D. E.

Heterocycles 2002, 57, 129. 58. Wróbel, Z.; Wojciechowski, K. Synlett 2011, 2567. 59. Yamagishi, H.; Matsumoto, K.; Iwasaki, K.; Miyazaki, T.;

Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2008, 10, 2369.

60. Groszek, G.; Bednarski, M.; Dybala, M.; Filipek, B. Eur. J. Med. Chem. 2009, 44, 809.

61. Pedras, M. S. C.; Zheng, Q.-A.; Gadagi, R. S. Chem. Commun. 2007, 368.

62. Czeskis, B. A.; Clodfelter, D. K.; Wheeler, W. J. J. Labelled Compd. Radiopharm. 2002, 45, 1143.

63. Pedras, M. S. C.; Okinyo, D. P. O. J. Labelled Compd. Radiopharm. 2006, 49, 33.

64. Khdour, O.; Ouyang, A.; Skibo, E. B. J. Org. Chem. 2006, 71, 5855.

65. Mąkosza, M.; Ludwiczak, S. J. Org. Chem. 1984, 49, 4562. 66. Mąkosza, M.; Stalewski, J.; Maslennikova, O. Synthesis

1997, 1131. 67. Chackal, S.; Dudouit, F.; Houssin, R.; Hénichart, J.-P.

Heterocycles 2003, 60, 615. 68. Macor, J. E.; Burkhart, C. A.; Heym, J. H.; Ives, J. L.;

Lebel, L. A.; Newman, M. E.; Nielsen, J. A.; Ryan, K.; Schulz, D. W. J. Med. Chem. 1990, 33, 2087.

69. Macor, J. E.; Wehner, J. M. Heterocycles 1993, 35, 349. 70. Larraya, C.; Guillard, J.; Renard, P.; Audinot, V.; Boutin, J. A.;

Delagrange, P.; Bennejean, C.; Viaud-Massuard, M.-C. Eur. J. Med. Chem. 2004, 39, 515.

71. Poël, H. Van de; Guillaumet, G.; Viaud-Massuard, M.-C. Tetrahedron Lett. 2002, 43, 1205.

72. Papageorgiou, C.; Camenisch, G.; Borer, X. Bioorg. Med. Chem. Lett. 2001, 11, 1549.

73. Saab, F.; Bénéteau, V.; Schoentgen, F.; Mérour, J.-Y.; Routier, S. Tetrahedron 2010, 66, 102.

74. Carbone, A.; Pennati, M.; Barraja, P.; Montalbano, A.; Parrino, B.; Spano, V.; Lopergolo, A.; Sbarra, S.; Doldi, V.; Zaffaroni, N.; Cirrincione, G.; Diana, P. Curr. Med. Chem. 2014, 21, 1654.

75. Liedtke, A. J.; Kim, K.; Stec, D. F.; Sulikowski, G. A.; Marnett, L. J. Tetrahedron 2012, 68, 10049.

76. Yoshikawa, K.; Yokomizo, A.; Naito, H.; Haginoya, N.; Kobayashi, S.; Yoshino, T.; Nagata, T.; Mochizuki, A.; Osanai, K.; Watanabe, K.; Kanno, H.; Ohta, T. Bioorg. Med. Chem. 2009, 17, 8206.

77. Jeanty, M.; Suzenet, F.; Guillaumet, G. J. Org. Chem. 2008, 73, 7390.

78. Mąkosza, M.; Danikiewicz, W.; Wojciechowski, K. Liebigs Ann. Chem. 1987, 711.

79. Heffernan, G. D.; Coghlan, R. D.; Manas, E. S.; McDevitt, R. E.; Li, Y.; Mahaney, P. E.; Robichaud, A. J.; Huselton, C.; Alfinito, P.; Bray, J. A.; Cosmi, S. A.; Johnston, G. H.; Kenney, T.; Koury, E.; Winneker, R. C.; Deecher, D. C.; Trybulski, E. J. Bioorg. Med. Chem. 2009, 17, 7802.

80. Bernotas, R. C.; Antane, S.; Shenoy, R.; Le, V.-D.; Chen, P.; Harrison, B. L.; Robichaud, A. J.; Zhang, G. M.; Smith, D.; Schechter, L. E. Bioorg. Med. Chem. Lett. 2010, 20, 1657.

81. Mąkosza, M.; Stalewski, J.; Wojciechowski, K.; Danikiewicz, W. Tetrahedron 1997, 53, 193.

82. Rege, P. D.; Johnson, F. J. Org. Chem. 2003, 68, 6133. 83. Bujok, R.; Wróbel, Z.; Wojciechowski, K. Synlett 2012, 23, 1315. 84. Andreassen, E. J.; Bakke, J. M. J. Heterocycl. Chem. 2006, 43, 49. 85. Bakke, J. M. J. Heterocycl. Chem. 2005, 42, 463. 86. Andreassen, E. J.; Bakke, J. M.; Sletvold, I.; Svensen, H.

Org. Biomol. Chem. 2004, 2, 2671. 87. Stahly, G. P.; Stahly, B. C.; Lilje, K. C. J. Org. Chem. 1984,

49, 578. 88. Lawrence, N. J.; Davies, C. A.; Gray, M. Org. Lett. 2004, 6, 4957. 89. Cao, S.; Wu, J. J.; Li, L.; Zhu, L. J.; Zhang, J.; Yu, J. L.;

Qian, X. H. Org. Biomol. Chem. 2008, 6, 1293. 90. Bartoli, G.; Leardini, R.; Medici, A.; Rosini, G. J. Chem.

Soc., Perkin Trans. 1 1978, 692. 91. Bartoli, G.; Bosco, M.; Dalpozzo, R.; Todesco, P. E. J. Org.

Chem. 1986, 51, 3694. 92. Forbes, I. T.; Ham, P.; Booth, D. H.; Martin, R. T.;

Thompson, M.; Baxter, G. S.; Blackburn, T. P.; Glen, A.; Kennett, G. A.; Wood, M. D. J. Med. Chem. 1995, 38, 2524.

93. Wojciechowski, K.; Mąkosza, M. Synthesis 1989, 106. 94. Macor, J. E.; Forman, J. T.; Post, R. J.; Ryan, K. Tetrahedron

Lett. 1997, 38, 1673. 95. Bujok, R.; Trawczyński, A.; Wróbel, Z.; Wojciechowski, K.

Synlett 2012, 2682. 96. Yamada, K.; Kawasaki, T.; Fujita, T.; Somei, M.

Heterocycles 2001, 55, 1151. 97. Yamada, K.; Yamada, F.; Shiraishi, T.; Tomioka, S.; Somei, M.

Heterocycles 2009, 77, 971. 98. Yamada, F.; Shinmyo, D.; Nakajou, M.; Somei, M.

Heterocycles 2012, 86, 435. 99. Pordel, M.; Abdollahi, A.; Razavi, B. Russ. J. Bioorg. Chem.

2013, 39, 211. 100. Rahimizadeh, M.; Pordel, M.; Ranaei, M.; Bakavoli, M. J.

Heterocycl. Chem. 2012, 49, 208. 101. Sokhanvar, M.; Pordel, M. ARKIVOC 2014, (iv), 328. 102. Kumar, S.; Rathore, V.; Verma, A.; Prasad, C. D.; Kumar, A.;

Yadav, A.; Jana, S.; Sattar, M.; Meenakshi; Kumar, S. Org. Lett. 2015, 17, 82.

103. Mąkosza, M.; Białecki, M. J. Org. Chem. 1998, 63, 4878. 104. Bastrakov, M. A.; Starosotnikov, A. M.; Leontieva, M. A.;

Shakhnes, A. K.; Shevelev, S. A. Mendeleev Commun. 2009, 19, 47. 105. Bastrakov, M. A.; Starosotnikov, A. M.; Shakhnes, A. K.;

Shevelev, S. A. Russ. Chem. Bull. 2008, 57, 1539. [Izv. Akad. Nauk 2008, 1508.]

106. Rozhkov, V. V.; Kuvshinov, A. M.; Shevelev, S. A. Synth. Commun. 2002, 32, 1465.

107. Wróbel, Z.; Kwast, A. Synlett 2007, 1525. 108. Wohl, A.; Aue, W. Ber. Dtsch. Chem. Ges. 1901, 34, 2442. 109. Bujok, R.; Więcław, M.; Wróbel, Z.; Wojciechowski, K.

Monatsh. Chem. 2013, 144, 1847.

Chem. Heterocycl. Compd. 2015, 51(3), 210–222 [Химия гетероцикл. соединений 2015, 51(3), 210–222]