22
Venu Menon Vice President, Analog Technology Development March 20, 2012 Applications Drive Analog Technology Development and Innovation

Applications Drive Analog Technology Development and ... · Analog Technology Development March 20, 2012 Applications Drive Analog Technology Development and Innovation . Inside the

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Venu Menon Vice President,

Analog Technology Development

March 20, 2012

Applications Drive Analog Technology Development and Innovation

Inside the box

What can you do with these?

Nothing. Without analog!

Growing need for analog More people entering the global economy and more

electronics per person

4.3% CAGR ($63T in 2010)

1.4% CAGR (6.9B in 2010)

Gross World Product

World population

Analog units

9.2% CAGR (660B units in 2010)

Sources: WSTS, International Monetary Fund, U.S. Census Bureau

10.3% CAGR (92B units in 2010)

Semiconductor units

New applications and new markets

New applications

New solutions to old applications New markets

Source: WSTS, December 2011

Analog market WSTS Total Analog TAM 2011 $42.3B

Vertical Market Catalog Market

Standard

Linear

17.1B

Application

Specific

25.1B

Power Mgmt

$9.1B

Data Converter

$2.7B

Amp/Comp

$3B

Interface

$2.5B Communications

$11.7B

Auto

$5.7B

Computer

$3.1B

Consumer

$2.5B

OTH

$1.9B

Signal conditioning & data converter needs

• Transistors − Speed

− Linearity

− Noise

• Resistors − Temperature

coefficient

− Linearity

− Matching

• Capacitors − Linearity

− Matching

• Technology − HS BiCMOS

− HV Bipolar

− Prec. CMOS

− High Density

Analog CMOS

Low-Noise

High-Accuracy

High-Speed

Customers Want

Small Form

Factors

Price

Competitiveness

Low Power

Widely Varying

Voltage Ranges

Process Needs

High speed bipolar technologies deliver smaller amplifiers

SOIC SOT23 MSOP SC70

OPA627 SOIC-8

3.05mm x 2.10mm (6.4mm2)

OPA827 MSOP-8

1.77mm x 1.38mm (2.4mm2)

High precision capacitors

deliver better A/D converters

Capacitor Voltage Coefficient Comparison

0.9985

0.999

0.9995

1

1.0005

1.001

-10 -8 -6 -4 -2 0 2 4 6 8 10

V (v)

HPA07

Conventional Process

Voltage (V)

Ca

pa

cit

or

Ra

tio

The Most Important Component in Precision A/D Converters

Conventional Process

HPA07

Output Code

Error vs. Code

Err

or

(LS

B)

DAC8534 & DAC8554 Channel C INL Error vs.

DIGITAL INPUT CODE

-48

-32

-16

0

16

32

48

IN

L (L

SB

)

DAC8534 - Channel C

DAC8554 - Channel C

VDD=VREF=5V, TA=25C,

Channel C Output

High precision resistors

deliver better D/A converters

0

250

500

750

1000

1250

1500

1750

2000

9 10 11 12 13 14 15 16 17 18 19 20

Bits

Rela

tive E

rro

r

HPA07

Conventional

Process

Resistor

Matching Comparison

The Most Important Component in Precision D/A Converters

Error vs. Code

48

32

16

0

-16

-32

-48

Err

or

(LS

B)

Output Code

HPA07

Conventional

Process

Everything that uses electricity needs power management

Efficiency, Control,

Voltage Scaling,

Form factor,

Sequencing/Multiphase

Customers Want

Batteries

Motors

Lighting

Automobiles etc.

In

Audio

Peripherals

Power IC Care Abouts

• Power Fets − LDMOS

− Voltage

− Current

− Ruggedness

− Power Metal

− Package

• Analog mix − ACMOS

− DE-CMOS

− Bipolar

− ESD

− Passives

• Technology − LBCSOI

− LBC4

− LBC5

− LBC7

− Thick Cu

High voltage, low Rdson devices deliver

efficient power management

0.01

0.10

1.00

10 100Voltage

CompA

CompB

CompC

CompD

TI-Tech (LV)

TI-Tech (MV)

CompE

1d Si limit TI-Tech

(low voltage)

CompA

CompC

1d limit

CompD

CompE

CompB

1d Si limit

TI-Tech

(med. voltage)

For Any Voltage, Smaller is BetterPo

wer

Tra

nsis

tor

Size

+

TI-Gen(n-1) TI-Gen(n)

High density analog CMOS microcontrollers that sip power

Customers Want

MIPS

Low Power

Pwr source flexibility

Fast wake-up

Security

Voltage Scaling

Form factor

Low price

• Ultra-low leakage process − Active pwr − Standby pwr − Near sub-Vt

operation − Passives − Low cost

• Embedded non-volatile memory − Fast write − Low power − High endurance − Low cost

• Technology − ULL CMOS+NVM − FRAM

MCU IC Care Abouts

Ultra-low power MCU innovations

FRAM – Lowest power NVM

ULP SRAM Digital standard cell library

• 360nA Standby w/ RTC

• 7 low-power modes

• Fine-grained standard cells

• 21X reduction in active leakage

• Advance power management − 50X lower leakage in deep sleep

− 50nA LPM4 Retention Mode

Advanced power management • Power gating

Analog IP • ADC12 at 75uA with 200 ksps

• 32kHz oscillator at 50nA

• 100X faster writes vs Flash

• 300X lower write energy

• 100uA/MHz Active Power

Half the power

of competing MCUs

130nm ULL Process 0.9v,1.8v, 3.3v, 5v

0

1000

2000

3000

4000 Lowest standby power

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Lowest power ADC

0

50

100

150

200

250 Lowest active power

250x less energy per bit

Analog process technology platforms

HPA07

High Precision

BiCom3

High Speed

LBC7

High Power

A035

High Density

• Finely tuned analog process technology portfolio

• Significant differentiation through process and components

• Long process and product life-times. Continuous improvement is key

• Years of accumulated process/component IP

• Multiple factories useful for parallel development

• Use mostly depreciated equipment

• SOI & Bulk

• SiGe NPN and PNP

• Precision thin film resistors and capacitors

• Low parasitic capacitance

High-Speed BiCMOS

• Low power, low parasitic CMOS

• Low 1/f noise

• Precision thin film resistors and capacitors

• Non-volatile memories

High-Precision Analog CMOS

• Dense, low power CMOS

• Analog friendly CMOS

• Multi-Vt CMOS

• FRAM, SRAM & other low power memories

High-Density Analog CMOS

• Power LDMOS devices

• Broad and multi-voltage capability

• Thick metal technology

• SRAM and non-volatile memories

High-Voltage BiCMOS

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Analog vs digital

Years

Vo

lum

e

250nm

CMOS

180nm

CMOS

180nm

A-CMOS

250nm

A-CMOS

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

250nm

LBC

180nm

LBC

Analog vs digital

Years

Vo

lum

e

250nm

CMOS

180nm

CMOS

180nm

A-CMOS

250nm

A-CMOS

Product diversity drives package diversity

Quad Flatpack

No Leads

(QFN) Heat Sink Thin

Quad Flatpack

(HTQFP)

Small Outline

Transistor

(SOT223)

Thin Shrink

Small Outline

Package

(TSSOP)

Small

Outline

No Leads

(SON)

Wafer Scale

Package

(WSP)

Small Outline

Transistor

Package

(SOT23)

Thin Quad

Flatpack

(TQFP)

Transistor

Outline

(TO236)

PowerPad

Small Outline

Package

(HSOP)

Mini Small

Outline

Package

(MSOP)

Shrink

Small Outline

Package

(SSOP) Surface Mount

Header

(DDPak)

Transistor

Outline

(TO220)

MicroStar BGA ™

Chip Scale Tape BGA

(u*BGA)

Laminate Chip Scale BGA

(nFBGA)

Power

Small Outline

Package

(PSOP3)

Small

Outline

Integrated

Circuit

(SOIC) Heat Slug

Small Outline

Integrated

Circuit

MicroStar JR ™

Chip Scale Pkg

(u*JR BGA)

MicroStar Ultra Thin™

Land Grid Array

Chip Scale Package

(u*UT LGA)

Plastic Dual-In-Line

Package

(PDIP)

Analog Mirror

Packages Thermally

Enhanced BGAs

Flip-Chip

Power Packages

Power Modules

Thin is in

Invisible to

naked eye

~0.04 mm

QFN

1 mm

Thin QFN 0.8 mm

WCSP (NanoStar) 0.6/0.5 mm

X-QFN 0.4 mm

PicoStar 0.15/0.1 mm

TSSOP

1.2 mm

SOIC

1.75 mm

TWCSP 0.4/0.3 mm

MicroStar

1 mm

U*CSP

0.45mm

PicoStar-2G 0.075mm

More chips in package

250um 150um

Inductor

Challenges & opportunities

• Not limited by an industry roadmap. Significant opportunities to differentiate. Creative ideas welcome!

• Managing large diversity of process technologies in many factories

• Years of accumulated process/component/design IP. Maintaining & updating processes, SPICE models, PDKs and documentation is a challenge.

• Leveraging older equipment and factories drives challenges with process matching. Must “copy smart”

• Speed boats, not aircraft carriers

Thank You!