38
Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT Department of Methodology and Statistics, Tilburg University, The Netherlands JAY MAGIDSON Statistical Innovations, Boston, USA www.latentclass.com or www.LatentGOLD.com Wednesday 27 November, “A half day meeting on latent class models and finite mixture models”, STATISTICAL COMPUTING SECTION RSS

Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

Applications of Latent Class Analysis: An Introduction to the Technique and

the Latent GOLD Software

JEROEN K. VERMUNT Department of Methodology and Statistics,

Tilburg University, The Netherlands

JAY MAGIDSON Statistical Innovations,

Boston, USA

www.latentclass.com or www.LatentGOLD.com

Wednesday 27 November, “A half day meeting on latent class models and finite mixture models”, STATISTICAL

COMPUTING SECTION RSS

Page 2: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

2

1. Latent Class (LC) and Finite Mixture (FM) Models

• General definition: parameters of the model of interest

differ across unobserved subgroups

• Most important applications: - (probabilistic) clustering - scaling / measurement error / discretized IRT - density estimation - unobserved heterogeneity / correlated observations /

(nonparametric) random-effects modeling • Latent GOLD implements these applications in three

modules: LC cluster, LC factor, and LC regression - not as flexible as possible, but flexible enough - as easy (interface, graphs, output measures), save

(random starts / Bayes constants, diagnostics), fast, and stable (EM +NR) as possible

- work in progress: restrictions / choice / longitudinal / multilevel / complex sampling

• Traditional LC model (Lazarsfeld & Goodman)

- LC cluster model with nominal observed variables - independence model with different parameters for each

latent class (=local independence)

Page 3: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

3

2. General Latent GOLD Model • Simple probability structure from which the three modules

are derived

),|()|()|( ZXYPZXPZYP x∑=

- Y is a set of dependent/response/endogenous variables - Z is a set of independent/predictor/exogenous variables - X is a set of nominal/ordinal latent variables

- density P(Y|Z) is a weighted average of class-specific

densities, which are from the exponentional family (multinomial, Poisson, normal)

- in most cases: local independence between replications - MIMIC model

• For example, the traditional latent class model is:

)|()|()|()()( 1312111321 1xyPxyPxyPxPyyyP x∑=

- note: all Y ’s are nominal, no Z ’s, a single X

• A GLM is specified for each Y variable

- with nominal/ordinal variables these are logit models:

∑ ++

=1 111

111

)exp(

)exp()|( 11

y xyy

xyyxyPβα

βα

Page 4: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

4

3. The Traditional LC Model • EXAMPLE General Social Survey 1982, white sample (see

McCutcheon, 1987; Magidson & Vermunt, Soc. Meth. 2001) - evaluation of surveys by respondent (2 questions) - evaluation of respondent by interviewer (2 questions) - are there different types of survey respondents?

PURPOSE ACCURACY UNDERSTANDING COOPERATION Whites Blacks

Good Mostly true Good Interested 419 117 Cooperative 35 14 Impatient/Hostile 2 3 Fair, poor Interested 71 34 Cooperative 25 19 Impatient/Hostile 5 5 Not true Good Interested 270 95 Cooperative 25 10 Impatient/Hostile 4 3 Fair, poor Interested 42 23 Cooperative 16 14 Impatient/Hostile 5 2

Depends Mostly true Good Interested 23 7 Cooperative 4 1 Impatient/Hostile 1 0 Fair, poor Interested 6 3 Cooperative 2 1 Impatient/Hostile 0 0 Not true Good Interested 43 19 Cooperative 9 1 Impatient/Hostile 2 2 Fair, poor Interested 9 2 Cooperative 3 1 Impatient/Hostile 2 1

Waste Mostly true Good Interested 26 6 Cooperative 3 0 Impatient/Hostile 0 0 Fair, poor Interested 1 3 Cooperative 2 1 Impatient/Hostile 0 0 Not true Good Interested 85 30 Cooperative 23 9 Impatient/Hostile 6 1 Fair, poor Interested 13 9 Cooperative 12 7 Impatient/Hostile 8 4

Page 5: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

5

Profile Output Cluster 1 Cluster 2 Cluster 3

Ideal Believers Skeptics LC Probabilities 0.6169 0.2038 0.1793 Conditional Probabilities PURPOSE

Good 0.8905 0.9157 0.1592 Depends 0.0524 0.0706 0.2220

Waste 0.0570 0.0137 0.6189 ACCURACY

Mostly True 0.6148 0.6527 0.0426 Not True 0.3852 0.3473 0.9574

UNDERSTAND Good 0.9957 0.3241 0.7532

Fair, poor 0.0043 0.6759 0.2468 COOPERATE

Interested 0.9452 0.6879 0.6432 Cooperative 0.0547 0.2583 0.2559

Impatient/ Hostile 0.0001 0.0538 0.1009

Fit measures

Model L²prop.

red. L² df p-value BIC AIC class. errors

1-Cluster 257.26 0.00 29 0.00 51.60 199.26 0.002-Cluster 79.51 0.69 22 0.00 -76.51 35.51 0.083-Cluster 22.09 0.91 15 0.11 -84.29 -7.91 0.134-Cluster 6.61 0.97 8 0.58 -50.12 -9.39 0.20

Page 6: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

6

4. Model Selection, Classification, Estimation, and Problems

4.1 Model selection • Chi-squared statistics

- overall tests: L-squared and X-squared - conditional tests: regularity conditions - sparseness

• Analysis of association - proportional reduction of L-squared

• Information criteria: BIC, AIC, CAIC

- model comparison - parsimony versus fit

• Bivariate residuals - local lack of fit

• Quality of classification

- see classification - fit, parsimony, and classification: AWE

Page 7: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

7

4.2 Classification • After estimating a LC model, we can classify individuals

into latent classes • Latent classification or posterior membership probabilities

∑=

1)|()|()|()(

)|()|()|()()|(

1312111

13121113211

x xyPxyPxyPxP

xyPxyPxyPxPyyyxP

• Allocation methods - modal allocation - proportional allocation - random allocation (+ multiple)

• Quality of classification - proportion of classification errors - reduction of classification errors - other reduction of errors measures

Page 8: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

8

EXAMPLE GSS’82 data (continued) Classification output for 3-cluster model PURPOSE

ACCURACY

UNDERSTA

COOPERAT Modal Cluster1 Cluster2 Cluster3

1 1 1 1 1 0.9197 0.0786 0.00171 1 1 2 1 0.6382 0.3537 0.00811 1 1 3 2 0.0155 0.9435 0.04101 1 2 1 2 0.0238 0.9729 0.00331 1 2 2 2 0.0037 0.9927 0.00361 1 2 3 2 0.0000 0.9932 0.00681 2 1 1 1 0.8780 0.0637 0.05831 2 1 2 1 0.5188 0.2442 0.23691 2 1 3 3 0.0068 0.3503 0.64291 2 2 1 2 0.0246 0.8528 0.12271 2 2 2 2 0.0038 0.8644 0.13181 2 2 3 2 0.0000 0.7761 0.22382 1 1 1 1 0.8653 0.0968 0.03802 1 1 2 1 0.4934 0.3579 0.14872 1 1 3 2 0.0070 0.5560 0.43702 1 2 1 2 0.0173 0.9257 0.0570

Page 9: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

9

4.3 Estimation • Maximum likelihood (ML)

- standard estimation method in LC analysis - known favorable properties like unbiasedness,

consistency, etc. - probability density for data: multinomial distribution

(not restrictive at all) - easy to adapt to other types of Y variables (see mixture

models and LC cluster) • Kernel log-likelihood function:

)(lnln 321321 321

yyyPnLik yyy yyy∑=

∑∑=1321 321

)|()|()|()(ln 1312111xyyy yyy xyPxyPxyPxPn

• EM algorithm - general iterative method for ML estimation with missing

data (here 1X is missing) - E step: fill in missing data - M step: estimate parameters in the usual way - stable (converges irrespective of starting values) - fast per iteration, but may need many iterations

Page 10: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

10

• E step

)|(ˆ 32113213211

yyyxPnn yyyyyyx =

∑=

1)|()|()|()(

)|()|()|()()|(

1312111

13121113211

x xyPxyPxyPxP

xyPxyPxyPxPyyyxP

• M step

)|()|()|()(lnˆ*ln 13121113211 3211

xyPxyPxyPxPnLik yyyx yyyx∑=

NnxP x /ˆ)(11 = ,

111

ˆ/ˆ)|( 11 xyx nnxyP = , etc..

• M step becomes a bit more complicated when a conditional

density is restricted by a GLM. But, standard complete data methods can be used.

Page 11: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

11

• Newton-Raphson algorithm

- standard optimization algorithm - first and second derivatives log-likelihood - unstable (needs good starting values) - fast when near to the maximum

• Latent Gold: hybrid algorithm - EM when far from the maximum - Newton-Raphson when close enough to maximum

Page 12: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

12

4.4 Problems and possible solutions • Non-identification

- different sets of parameter estimates yield the same value of L-squared: estimates are not unique

- detection: running the model with different sets of starting values, or formally from the rank of the information matrix

- famous example: 3-cluster model for 4 dichotomous indicators

• Local maxima

- there are different sets of ’ML’ parameter estimates with different L2 values

- we want the solution with lowest L2 (highest likelihood) - solution: multiple sets of starting values - example GSS’82: 3-cluster model with L2 of 37.57

instead of 22.09

• Boundary solutions - estimated probability becomes zero, or log-linear

parameters extremely large negative - solution: using priors to smooth the estimates - example GSS’82: 3-cluster model contains 2 zero

probabilities

Page 13: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

13

5. Extensions of the Traditional LC Model • 4 most important extensions of traditional LC model

- several latent variables (LC factor) - local dependencies - ordinal variables - covariates

5.1 Several latent variables (LC factor model) • When items don’t measure a single dimension, we may

introduce a second latent variable - Similar to (confirmatory/exploratory) factor analysis

• For example, two latent variables:

)|()|()|()()( 21321221121321 21xxyPxxyPxxyPxxPyyyP xx∑=

with: ∑ ++

++=

1 21111

21111

)exp(

)exp()|( 211

y xyxyy

xyxyyxxyPββα

ββα

some β 's may be set equal to zero

• This is done in the LC factor module, with the additional

restriction that the latent variables are dichotomous/ordinal (see Magidson and Vermunt, Soc. Meth. 2001).

Page 14: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

14

5.2 Local dependencies • Why doesn’t a LC model fit?

- because local independence assumption is violated

• 3 possible solutions: 1. increase the number of clusters or latent classes 2. increase the number of factors or latent variables 3. allow for local dependencies or direct relationships

between certain items

• Option 3 is similar to correlated errors in structural equation models

• For example:

)|()|()()( 131211321 xyPxyyPxPyyyP x∑=

with:

∑ ++++++++

=21 12112121

12112121

)exp(

)exp()|( 121

yy xyxyyyyy

xyxyyyyyxyyPββααα

ββααα

• Interpretation: two items are more strongly related than can

be explained by clusters/factors • Exploratory versus theoretical justification • Detection: bivariate residuals (kind of modification indices)

Page 15: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

15

EXAMPLE: Political orientation (Hagenaars, 1993) 5 dichotomous variables - system responsiveness (low/high) - ideological level (nonideologies/ideologies) - repression potential (high/low) - protest approval (low/high) - conventional participation (low/high) Fit measures: Model L-squared BIC df p-value 1-cluster 296.56 113 26 0.00 2-cluster 95.82 -45 20 0.00 3-cluster 24.80 -74 14 0.04 4-cluster 7.45 -49 8 0.49 2-factor 12.30 -86 14 0.58 2-cluster + 1 direct effect 19.10 -115 19 0.45 Bivariate residuals in 2-cluster model Indicators SYS_RESP IDEO_LEV REP_POT PROT_APP IDEO_LEV 0.6751 REP_POT 3.5917 0.3085 PROT_APP 0.1405 0.0739 57.8794CONV_PAR 2.5345 0.5543 3.2535 2.0772

Page 16: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

16

5.3 Ordinal indicators

• So far: dichotomous or unordered polytomous indicators • When indicators are ordinal, we can restrict their

relationship with the latent variable(s) • Several options

1. different types of logits - adjacent-category logit - cumulative logit (or probit) - continuation-ratio logit

2. inequality restrictions 3. binomial count (k out of K)

• In Latent Gold, we work with adjacent category logit models with fixed scores for item categories, for example

1111

yxxy ββ =

• Assumption: local odds-ratios are category independent • Note: in the LC factor model, we assume that the latent

variables are ordinal

Page 17: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

17

EXAMPLE GSS’82 data (continued) Fit measures Model L² BIC df p-valueNominal 1-Cluster 257.26 51.60 29 0.00 2-Cluster 79.51 -76.51 22 0.00 3-Cluster 22.09 -84.29 15 0.11Ordinal 1-Cluster 257.26 51.60 29 0.00 2-Cluster 82.60 -87.60 24 0.00 3-Cluster 30.67 -104.07 19 0.04 Profile output ordinal 3-cluster (constraint?) Cluster1 Cluster2 Cluster3 Cluster Size 0.6407 0.1925 0.1668 PURPOSE good 0.8792 0.2512 0.9167 depends 0.0756 0.1475 0.0579 waste 0.0451 0.6013 0.0254 ACCURACY mostly true 0.6233 0.0415 0.6753 not true 0.3767 0.9585 0.3247 UNDERSTA good 0.9949 0.7483 0.2027 fair/poor 0.0051 0.2517 0.7973 COOPERAT interested 0.9362 0.6365 0.6971 cooperative 0.0609 0.2754 0.2412 impatient/hostile 0.0029 0.0881 0.0617

Page 18: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

18

5.4 Covariates • Other terms: exogenous, explanatory, external,

independent, concomitant, or predictor variables • Probably most important extension of standard LC model • Covariates to predict class membership: joint classification

and prediction • More elegant than separate classification and prediction • Covariates may be nominal or continuous/numeric • A model with two nominal covariates:

)|()|()|()|()|( 13121121121321 1xyPxyPxyPzzxPzzyyyP x∑=

with a logit model for the latent variable:

∑ ++++

=2 21111

21111

)exp(

)exp()|( 211

x zxzxx

zxzxxzzxPββα

ββα

• Alternative: inactive covariates

Page 19: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

19

EXAMPLE: Political orientation (Hagenaars, 1993) Parameters output Latent Variable(s) (gamma) Cluster1 Cluster2 Cluster3Intercept 0.5907 -0.0762 -0.5146 Covariates Cluster1 Cluster2 Cluster3SEX

Men 0.2951 -0.2291 -0.0660Women -0.2951 0.2291 0.0660

EDUC Some College 0.9812 -0.5570 -0.4242

Less Than College -0.9812 0.5570 0.4242AGE

16-34 -0.3910 -0.8987 1.289735-57 0.2776 0.0491 -0.326658-91 0.1134 0.8497 -0.9631

ProbMeans output

Cluster1 Cluster2 Cluster3 Overall Probability 0.4167 0.3526 0.2307 Covariates SEX

Men 0.5283 0.2507 0.2210 Women 0.3294 0.4325 0.2381

EDUC Some College 0.7660 0.0969 0.1371

Less Than College 0.1767 0.5285 0.2949 AGE

16-34 0.3898 0.0979 0.5124 35-57 0.5213 0.3466 0.1320 58-91 0.3296 0.6153 0.0551

Page 20: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

20

6. Simple Mixture Models • Basic idea of mixture models

- unobserved heterogeneity - parameters of the specified model are different for

subgroups - unknown to which subgroup someone belongs - subgroups are latent classes

• Applicable to:

1. univariate distributions: mean + variance - density estimation - clustering

2. multivariate distributions: means + variances/covariances - multivariate density estimation - clustering

3. regression models: coefficients - clustering using a regression model - unobserved heterogeneity - dependence between observations

4. more complex models: coefficients • Note: standard LC model is also a mixture model • Estimation, testing, and classification issues same as in

models discussed so far

Page 21: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

21

Mixtures of univariate distributions • A single Y , which mean and variance differs across

subgroups • In Latent Gold, Y may be nominal, ordinal, count, or

continuous • Formula: )|()()( 1111 1

xyPxPyP x∑=

• The exact form of )|( 11 xyP depends of the type of Y variable

Page 22: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

22

EXAMPLE: Mixture of Poisson distributions (weekly consumption of hard-candy) Observed and estimated distributions

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

number of packs

freq

uen

cy

observed Poisson 3-class Poisson

Fit measures Model LL BIC Npar 1-Class -1545.00 3096.12 1 2-Class -1188.83 2396.03 3 3-Class -1132.04 2294.70 5 4-Class -1130.08 2303.01 7 5-Class -1130.07 2315.25 9

Page 23: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

23

EXAMPLE: Mixture of normals Data set of 12 cases: 1.2, 1.3, 1.2, 1.5, 1.2, 2.3, 2.7, 1.2, 1.8, 3.2, 3.5, and 3.7 mean: 2.07 variance: 0.87 Class-independent variances Model Log-Lik BIC Npar 1 class -16.20 37.36 2 2 class -12.62 35.17 4 3 class -9.73 34.37 6 4 class -8.75 37.38 8 5 class -7.79 40.43 10 • Results for 3-class model:

- sizes: 0.58, 0.25, and 0.17 - means: 1.34, 3.47, and 2.50 - variance: 0.044

Page 24: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

24

Class-dependent variances Model Log-Lik BIC Npar 1 class -16.20 37.36 2 2 class -7.18 26.78 5 3 class >0 8 • results for 2 class model:

- sizes: 0.60 and 0.40 - means: 2.63 and 1.22 - variances: 0.654 and 0.001

Class-dependent variances with priors (1.00) Model Log-Lik BIC Npar 1 class -16.20 37.36 2 2 class -11.91 36.25 5 3 class -11.47 42.83 8 4 class -11.10 49.54 11 • Results for 2-class model:

• sizes: 0.57 and 0.43 • means: 1.35 and 3.05 • variances: 0.107 and 0.360

Page 25: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

25

7. LC or Model-Based Clustering

• LC analysis is becoming a popular clustering tool • Is application of mixtures of multivariate distributions • Clustering via LC or mixture models has many advantages

over traditional types of cluster analysis: - large samples - mixed mode data - no linear scale transformation necessary - favorable properties of statistical model: model options,

statistical tests • Basic formula: )|()|()|()()( 1312111321 1

xyPxyPxyPxPyyyP x∑= • Same basic assumption as standard LC model, which is, in

fact, the special case with all variables nominal/ordinal. Local independence assumption can be relaxed.

• Mixed mode data: choosing the appropriate probability

density function for each indicator variable - nominal: multinomial - ordinal: restricted multinomial - counts: Poisson / binomial - continuous: (multivariate) normal

• LC cluster versus K-means

Page 26: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

26

EXAMPLE: Diabetes data Three continuous measures to diagnose diabetes: Glucose, Insulin, and SSPG (steady-state plasma glucose) Information on the clinical diagnosis: "normal", "chemical diabetes", and "overt diabetes"

GLUCOSE

INSULIN

SSPQ

CLINICAL

Overt

Normal

Chemical

Note: cluster forms/shapes are very different from K-means clusters

Page 27: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

27

Fit measures Model LL BIC Npar Equal and diagonal 1-Cluster -2750.13 5530.13 6 2-Cluster -2559.88 5169.52 10 3-Cluster -2464.78 4999.24 14 4-Cluster -2424.46 4938.49 18 5-Cluster -2392.56 4894.60 22 Unequal and diagonal 1-Cluster -2750.13 5530.13 6 2-Cluster -2446.12 4956.94 13 3-Cluster -2366.92 4833.38 20 4-Cluster -2335.38 4805.13 27 5-Cluster -2323.13 4815.47 34 Unequal and full 1-Cluster -2546.83 5138.46 9 2-Cluster -2359.12 4812.80 19 3-Cluster -2308.64 4761.61 29 4-Cluster -2298.59 4791.28 39 5-Cluster -2284.97 4813.79 49 Unequal and y1-y2 free 1-Cluster -2560.40 5155.64 7 2-Cluster -2380.27 4835.19 15 3-Cluster -2320.57 4755.61 23 4-Cluster -2303.14 4760.56 31 5-Cluster -2295.05 4784.19 39

Page 28: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

28

K-Means type model

GLUCOSE

INSULIN

SSPQ

Cluster modal

5.00

4.00

3.00

2.00

1.00

Final 3-cluster model

GLUCOSE

INSULIN

SSPQ

Cluster modal

3.00

2.00

1.00

Page 29: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

29

EXAMPLE: cancer data (mixed mode) mixed mode data: 8 continuous and 4 nominal variables class-dependent variances Model LL BIC Npar class. errors 1 class -11798 23762 27 0.000 2 class -11386 23112 55 0.036 3 class -11289 23089 83 0.100 4 class -11202 23088 111 0.111

Page 30: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

30

8. LC or Mixture Regression Models • Single Y and one or more Z ’s • Formula: ),|()()|( 1111 1

ZxyPxPZyP x∑= • The parameters of the model in which Y is regressed on

Z differ across latent classes

-10

0

10

20

30

40

50

0 2 4 6 8 10 12 14

observed YLC1 YLC2

Page 31: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

31

• One way of seeing the model: cluster analysis based on a

regression model • Another perspective: two-level nonlinear mixed model

- non-parametric specification random-effects - replications / repeated measures - level-1 predictors and level-2 predictors (covariates) - fixed (class-independent) and random (class-dependent)

coefficients - very fast and stable compared to standard nonlinear

mixed models

Page 32: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

32

EXAMPLE: mixture logistic regression model (Formann, JASA, 1992) Y = survival (0=death, 1=survive) Z = dose (8 levels: 4.7, 4.8, 4.9, .., and 5.4) Random-effects logistic regression model: - dependent: binomial count, ordinal, or nominal - dose: numeric - class-dependent intercept (automatic) - class-independent slope Fit measures LL BIC(LL) Npar L² BIC(L²) df p-value 1-Class -187.61 387.33 2 23.86 -12.47 6 0.00 2-Class -177.71 379.64 4 4.06 -20.16 4 0.40 3-Class -177.23 390.79 6 3.10 -9.00 2 0.21 Profile output Class1 Class2 Class Size 0.65 0.35 Parameters output Class1 Class2 Wald p-value Wald(=) p-value survival 113.09 105.00 33.45 5.50E-08 19.47 1.00E-05Predictors dose -21.76 -21.76 28.73 8.30E-08 0

Page 33: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

33

EXAMPLE: mixture linear regression with repeated measurements - example accompanying GLIMMIX program - conjoint study on cakes (68 persons) - dependent variable is “continuous” evaluation - predictors are 4 product characteristics - repeated measures or replications (each person evaluates 16

products) Fit measures Model LL BIC Npar 1 class -1982 4006 10 2 class -1858 3804 21 3 class -1766 3666 32 4 class -1729 3641 43 5 class -1682 3593 54 Two problems: - single case in class 5 (outlier) - scale type dependent variable

Page 34: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

34

EXAMPLE: mixture binomial regression for longitudinal data - Attitude towards abortion measured at 4 time points - Class-independent predictor religion - Non-parametric random-coefficient model - See Vermunt & Van Dijk, 2001, Multilevel Modelling

Newsletter Fit measures LL BIC Npar1-Class -2188.38 4415.80 72-Class -1745.42 3557.75 123-Class -1682.71 3460.21 174-Class -1656.72 3436.10 225-Class -1645.20 3440.96 27 Time effects for 4 latent classes

Figure. Latent class parameters for Model IIId

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

1983 1984 1985 1986

year

logi

t

Class 1 (0.30) Class 2 (0.28) Class 3 (0.24) Class 4 (0.19)

Page 35: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

35

9. LC Models for Choice Data EXAMPLE: choice based conjoint experiment • special case of LC regression

- conditional logit model - choice-specific predictors

• 3 data files: responses, alternatives, choice sets • responses on 8 choice tasks (3 alternatives + none) • 400 cases • effect of product attributes on choice

- fashion (traditional/modern) - quality (low/high) - price (2-6) - none dummy

• purpose: find market segments for market simulations

Page 36: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

36

10. Other Types of LC and FM Models • Latent class scaling models • Mixture variants of (regression) models for paired

comparison, ranking, and other types of choice data • Mixture variants of models for dependent/longitudinal data,

such as Markov models and Rasch models • Latent Markov models • Loglinear models with latent variables • Mixture variants of structural equation models

Page 37: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

37

11. Some of the new Features in the Next Version of Latent GOLD

• LC regression module

- monotonicity constraints on predictor effects - flexible restrictions: a different regression model in each

class, with equality restrictions across classes - replication weights in addition to case weights - predicted values, R-squared measures, and posterior

means of parameters

• More textual and graphical output - conditional distribution X given Z - joint profile in LC factor - profile graphs for all scale types - Probmeans in regression - Bootstrap p value L² statistic

• Other

- improved starting values procedure (# iteration per set, seed best start set)

- algorithm speeded up considerably - saving output in html and ascii format - efficient treatment of inactive covariates

• Separate program (Latent GOLD Choice) with choice

module - conditional logit model - choice, ranking, and allocation data - data setup from choice-based conjoint studies

Page 38: Applications of Latent Class Analysis: An Introduction to the ...Applications of Latent Class Analysis: An Introduction to the Technique and the Latent GOLD Software JEROEN K. VERMUNT

38

12. Some References on LC and FM models - Hagenaars and McCutcheon (2002, eds.), “Applied Latent

Class Analysis”, Cambridge University Press. - Agresti (2002) “Categorical Data Analysis”, second edition,

chapter 13. Wiley. - McLachlan and Peel (2000). “Finite Mixture models”.

Wiley. - Vermunt (1997). “Log-linear Models for Event Histories”,

chapters 3 and 5. Sage Publications.

- Papers on website www.latentclass.com.