Applied Maths i u v Solution

Embed Size (px)

Citation preview

  • 7/31/2019 Applied Maths i u v Solution

    1/36

    APPLIED MATHS I

    Sol u t i on :CSVTU Ex a m i n a t i onPapers

    Depa r tm en t of Ma th em atics

    DIMAT

    Ordinary Differential Equations & Applications

  • 7/31/2019 Applied Maths i u v Solution

    2/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 2

    APPLIED MATHS ITime Allowed : Three hours

    Maximum Marks : 80

    Minimum Pass Marks : 28

    Note : Solve any two parts from each question. All questions carry equal marks.

    UNIT V

    Ordinary Differential Equations & Applications

    SOLUTION (Nov-Dec-2005)

    (a)Solve the differential equation: 2 22 ( 1) 0xydy x y dx .Ans: 2 22 ( 1) 0xydy x y dx

    Which is of the form 0Mdx Ndy

    Where 2 2( 1), 2M x y N xy

    2 , 2M N

    y yy x

    M N

    y x

    , So differential equation is not exact.

    Now,2 2 4 2

    ( )2 2

    M N

    y y yy xf x

    N xy xy x

    So, its I.F. =2

    ( ) 2ln

    2

    1dxf x dx xxe e ex

    By multiplying I.F. to both side of equation (1)2

    2 2

    11 2 0

    y ydx dy

    x x x

    ----------------- (2)

    Which is now exact differential equation.

    Where2

    2 2

    11 , 2

    y yM N

    x x x

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    2

    2 2

    tan

    11 0

    y cons t Not containing x terms

    ydx dy c

    x x

    2 1yx c

    x x

    2 2x y x cx (Ans)

  • 7/31/2019 Applied Maths i u v Solution

    3/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 3

    (b) Solve 2 22 cotdy dyy x ydx dx

    .

    Ans:

    2

    22 cotdy dy

    y x ydx dx

    2 22 cotp yp x y 2 2 2 2 2 22 cot cot cotp yp x y x y y x

    2 2 2( cot ) cosp y x y ec x

    ( cot ) cosp y x y ecx

    cot cos , cot cosp y x y ecx p y x y ecx

    cot cos , cot cosdy dy

    y x y ecx y x y ecxdx dx

    cot cos , cot cosdy dy

    x ecx dx x ecx dxy y

    cot cos , cot cosdy dy

    x ecx dx x ecx dxy y

    ln ln(cos cot ) ln sin ln , ln ln(cos cot ) ln sin lny ecx x x c y ecx x x c

    (cos cot )ln ln . , ln ln

    sin (cos cot )sin

    ecx x cy c y

    x ecx x x

    (cos cot ). ,

    sin (cos cot )sin

    ecx x cy c y

    x ecx x x

    2

    (1 cos ). ,

    sin (1 cos )sin

    x cy c y

    x x x

    2

    (1 cos ). 0, 0

    sin (1 cos )sin

    x cy c y

    x x x

    2

    (1 cos ). 0

    sin (1 cos )sin

    x cy c y

    x x x

    (Ans)

    (c)A pipe 20 cm in diameter contains steam of 0200 C. It is covered by a layer ofinsulations 6 cm thick and thermal conductivity 0.0003. It the temperature of

    the outer surface is 030 C, find the heat loss per hour from two metre length

    of the pipe.

    Ans:

  • 7/31/2019 Applied Maths i u v Solution

    4/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 4

    Let us consider a cylinder of radius x cm and length 1 cm.

    Surface area = 2A x sq cm.Let Q be quantity of heat flowing across the surface.

    So, .2 .dT dT

    Q KA K xdx dx

    2

    Q dxdT

    K x

    ln2

    QT x c

    K

    At 10, 200x T

    200 ln102

    Qc

    K ---------(1)

    Again 30, 16T x

    So, 30 ln162

    Qc

    K -----------(2)

    (1) (2) we get 170 ln16 ln102

    Q

    K

    170 ln1.62

    Q

    K

    170 2 340 0.0003

    ln1.6 ln1.6

    KQ

    Heat loss per hour through 2 m long pipe 3600 200 Q

    340 0.00033600 200

    ln1.6

    490917.3 Cal. (Ans)

    **************

  • 7/31/2019 Applied Maths i u v Solution

    5/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 5

    SOLUTION(Apr-May-2006)

    (a)Find the integrating factor and solve: 3 2 21 (1 ) 03 2 4

    y xy dx y xdy

    .

    Ans:

    3 221

    (1 ) 03 2 4

    y xy dx y xdy

    Which is of the form 0Mdx Ndy

    Where3 2

    21, (1 )3 2 4

    y xM y N y x

    2 211 , (1 )4

    M Ny y

    y x

    M N

    y x

    , So differential equation is not exact.

    Now,

    2 2 2

    2 2

    1 31 (1 ) (1 )34 4 ( )

    1 1(1 ) (1 )

    4 4

    M N y y yy x

    f xN x

    y x y x

    So, its I.F. =3

    ( ) 3ln 3dxf x dx xxe e e x

    By multiplying I.F. to both side of equation (1)

    3 3 53 2 41 (1 ) 0

    3 2 4

    x y xx y dx y x dy

    -----------------(2)

    Which is now exact differential equation.

    Where3 3 5

    3 2 41, (1 )3 2 4

    x y xM x y N y x

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    3 3 53

    tan

    03 2

    y cons t Not containing x terms

    x y xx y dx dy c

    4 4 3 6

    4 12 12

    x y x y xc (Ans)

    (b)Solve the differential equation 4 2y xp x p .Ans: 4 2y px x p

    Differentiate with respect to x we get

    3 2 44 2dy dp dp

    p x x p pxdx dx dx

    3 2 42 4 2

    dp dpp x x p px

    dx dx

  • 7/31/2019 Applied Maths i u v Solution

    6/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 6

    4 3 22 4 2 0

    dp dppx x p p x

    dx dx

    32 2 2 0dp dp

    px x p x pdx dx

    32 2 1 0dp

    x p pxdx

    2 0dp

    x pdx

    2dp

    dxp x

    2dpdx

    p x

    ln 2ln lnp x c

    2

    cp

    x

    Now, putting the value of p in 4 2y px x p we get

    2cy cx

    2xy x c x (Ans)

    (c) In a LR series circuit the current attains one-third of its final steady(maximum) value in 5 seconds. What is the time-constant

    L

    R

    of the circuit?

    Ans: In LR circuit

    0 1R

    tL

    EI e

    R

    -------------- (1)

    Final maximum value of current =0

    E

    R

    Given that after 5 second current attains one-third of final maximum value.5

    0 0113

    R

    LE E

    I eR R

    51

    13

    R

    Le

    5

    2

    3

    R

    Le

    5 2

    ln 0.405463

    R

    L

    0.08109R

    L

    12.332L

    R

    So, time-constantL

    R

    of the circuit is 12.332.

    **************

  • 7/31/2019 Applied Maths i u v Solution

    7/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 7

    SOLUTION (Nov-Dec-2006)

    (a)Solve the differential equation:( sin cos ) ( sin cos ) 0xy xy xy ydy xy xy xy xdx .

    Ans: ( sin cos ) ( sin cos ) 0xy xy xy ydy xy xy xy xdx

    Which is of the form 1 2( ). ( ). 0f xy ydx f xy xdy

    Then its1 2

    1. .

    . ( ). . ( ).I F

    x f xy y y f xy x

    1 1

    ( sin cos ) ( sin cos ) 2 cosxy xy xy xy xy xy xy xy xy xy

    Now multiplying I.F. both side of equation (1) we get

    tan 1 tan 10

    2 2 2 2

    y xy x xydy dx

    x y

    ----------- (2)

    Which is of the form 0Mdx Ndy

    Where tan 1 tan 1,2 2 2 2

    y xy x xyM Nx y

    So equation (2) is an exact differential equation.

    So, its solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    tan

    tan 1 1

    2 2 2y cons t Not containing x terms

    y xydx dy c

    x y

    1 1 1ln sec ln ln

    2 2 2xy x y c

    2sec cx xy ey

    (Ans)

    (b)Solve 39( log ) (2 3log )y xp p p p .Ans: 39( log ) (2 3log )y xp p p p -------------- (1)

    Differentiating with respect to x we get,

    2 29 log log 3 (2 3log ) 3dy dp dp dp dp

    p p x p x p p pdx dx dx dx dx

    2 29 9 log 9 log 9 9 9 log 0dp dp dp

    p p p x p x p p pdx dx dx

    2 2

    log log log 0

    dp dp dp

    p p p x p x p p pdx dx dx

    2(1 log ) (1 log ) (1 log ) 0dp dp

    p p x p p pdx dx

    2(1 log ) ( ) 0dp

    p p x pdx

    2( ) 0

    dpp x p

    dx

  • 7/31/2019 Applied Maths i u v Solution

    8/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 8

    2( )dx

    p x pdp

    1dxx p

    dp p Which is linear differential equation of first order.

    Its

    1

    ln

    . .

    dppp

    I F e e p

    Hence solution is . .x p p pdp c

    3

    .3

    px p c -------------(2)

    Equation (1) and equation (2) combined is the solution.

    (c)A stream pipe 20 cm in diameter contains steam of 0180 C. It is covered by alayer of insulations 16 cm thick. If the temperature of the outer surface is

    030 C, find the temperature half way through the covering under steady state

    condition.

    Ans:

    .2 .dT

    Q K xdx

    2

    Q dxdT

    K x

    ln2

    QT x c

    K

    At 180, 10T x

    180 ln102

    Qc

    K ---------------(1)

    Again at 40, 15T x

    30 ln 262

    Q

    cK ---------------

    (2)

    By subtracting (2) from (1) we get

    150 ln 2.62

    Q

    K --------------(3)

    When 18x

    ln182

    QT c

    K ---------(4)

  • 7/31/2019 Applied Maths i u v Solution

    9/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 9

    Subtracting (1) from (4) we get

    180 ln 1.82

    QT

    K --------(5)

    Dividing (5) by (3) we get

    180 ln1.8

    150 ln 2.6

    T

    0ln1.8 150 180 87.73ln2.6

    T C (Ans)

    **************

    SOLUTION (May-June-2007)

    (a)Find the integrating factor and solve the differential equations:(i) 2 2 3 2 3 2( 2 ) ( ) 0xy x y dx x y x y dy .Ans: 2 2 3 2 3 2( 2 ) ( ) 0xy x y dx x y x y dy ---------------- (1)

    2 2( ) (2 ) 0xy ydx xdy x y ydx xdy

    Which is of the form ' '( ) ( ' ' )a b a bx y mydx nxdy x y m ydx n xdy

    Where 1, ' ' 2, 1, ' 2, ' 1a b a b m n m n

    Its . . h kI F x y where1 1 ' 1 ' 1

    ,' '

    a h b k a h b k

    m n m n

    2 2 3 3,

    1 1 2 1

    h k h k

    , ( 3) 2( 3)h k h k

    3h k

    So. 3 33 3

    1. . h kI F x y x y

    x y

    By multiplying I.F. to (1) we get

    2 2

    1 2 1 10dx dy

    x y x xy y

    which is exact differential equation.

    Where2 2

    1 2 1 1,M N

    x y x xy y

    So, Solution is given by cNdyMdx

    termsxcontainingNottconsy

    tan

    2

    tan

    1 2 1

    y cons t Not containing x terms

    dx dy cx y x y

    12 ln ln

    2x y c

    xy

    (Ans)

    (ii) 3 2 2 4( ) 2( ) 0xy y dx x y x y dy .

  • 7/31/2019 Applied Maths i u v Solution

    10/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 10

    Ans: 3 2 2 4( ) 2( ) 0xy y dx x y x y dy

    Which is of the form 0Mdx Ndy

    Where 3 2 2 4( ), 2( )M xy y N x y x y

    2 23 1, 4 2M N

    xy xyy x

    M N

    y x

    , So differential equation is not exact.

    Now,2 2 2

    3 2

    4 2 3 1 1 1( )

    ( ) ( 1)

    N M

    xy xy xyx yf y

    M xy y y xy y

    So, its I.F. =

    1( ) ln

    dyf y dy yye e e y

    By multiplying I.F. to both side of equation (1)4 2 2 3 5( ) 2( ) 0xy y dx x y xy y dy -----------------(2)

    Which is now exact differential equation.

    Where 4 2 2 3 5( ), 2( )M xy y N x y xy y

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    4 2 5

    tan

    ( ) 2y cons t Not containing x terms

    xy y dx y dy c

    2 4 62

    2 3

    x y yxy c (Ans)

    (b)Solve the following differential equations:(i) 3xp a bp where dyp

    dx

    Ans: 3xp a bp 3

    a bpx

    p

    Differentiating with respect to y we get

    6 5

    6

    . 6dp dp

    p b a bp pdx dy dy

    dy p

    61

    dp dpbp a bp

    dy dy

    p p

    6 7 1dp

    a bpdy

    6 7dy a bp dp 27

    62

    bpy ap c ---------- (2)

    Solution is the elimination of p from (1) and (2).

    (ii) 2 32y xp y p .

  • 7/31/2019 Applied Maths i u v Solution

    11/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 11

    Ans: 2 32y xp y p ---------- (1)2 3

    2

    y y px

    p

    Differentiating with respect to y we get

    3 2 2 2 3

    2

    1 2 31

    2

    dp dp

    p yp y p y y pdy dydx

    dy p

    4 2 3 2 3

    2

    2 31 1

    2

    dp dp dpp yp y p y y p

    dy dy dy

    p p

    4 2 32 2 2dp dp

    p p yp y p ydy dy

    4 2 32 2 0dp dp

    p yp y p ydy dy

    3 31 2 1 2 0dpp yp y ypdy

    31 2 0dp

    yp p ydy

    0dp

    p ydy

    dp dy

    p y

    ln ln lnp y c

    py c

    Putting the value of p in (1) we get

    3

    2c c

    y xy y

    2 32y cx c (Ans).

    (c)A coil having a resistance of 15 ohm and an inductance of 10 henry isconnected to a 90 volt supply. Determine the value of the current:

    (i) After 0.67 sec(ii)After 2 sec. (e = 2.718)

    Ans: Here R = 15 ohm, L = 12 Henry, E = 90 volt.

    It is RL-circuit.Equation of RL-circuit is

    diRi L E

    dt

    15 12 90di

    idt

    5(6 )

    4

    dii

    dt

  • 7/31/2019 Applied Maths i u v Solution

    12/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 12

    5

    6 4

    didt

    i

    5ln( 6) ln

    4i t c

    5

    46t

    i ce

    5

    46t

    i ce

    -----------(1)At t = 0, i = 0, so equation (1) becomes 0 6 6c c

    Putting the value of c in (1) we get5

    46 6t

    i e

    -----------(2)(i) Current after 0.67 sec

    50.67

    0.837546 6 6 6 6 6 0.4328 6 0.5612 3.3672e e

    (Ans)

    (ii)Current after 2 sec5

    20.546 6 6 6 6 6 0.6065 6 0.3965 2.379e e

    (Ans).

    **************

    SOLUTION (Nov-Dec-2007)

    (a)Explain necessary and sufficient condition for a differential equation0Mdx Ndy to be exact.

    Ans: Necessary condition for a differential equation 0Mdx Ndy to be exact is

    M N

    y x

    .

    (b)Solve the differential equation: 32 1/ 2( ) 0xxy e dx x ydy .Ans: Which is of the form 0Mdx Ndy

    Where32 1/ 2,

    xM xy e N x ydy

    2 , 2M N

    xy xyy x

    M N

    y x

    , So differential equation is not exact.

    Now,2 2

    2 2 4 4( )

    M N

    xy xy xyy xf x

    N x y x y x

    So, its I.F. =4

    ( ) 4ln

    4

    1dxf x dx xxe e ex

    By multiplying I.F. to both side of equation (1)

  • 7/31/2019 Applied Maths i u v Solution

    13/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 13

    32 1/

    3 4 20

    xy e ydx dy

    x x x

    -----------------(2)

    Which is now exact differential equation.

    Where

    32 1/

    3 4 2,

    xy e y

    M Nx x x

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    32 1/

    3 4

    tan

    0x

    y cons t Not containing x terms

    y edx dy c

    x x

    32

    1/

    2

    1

    2 3

    xye c

    x (Ans)

    (c)Solve 4 2y px x p .Ans: 4 2y px x p

    Differentiate with respect to x we get

    3 2 44 2

    dy dp dpp x x p px

    dx dx dx

    3 2 42 4 2dp dp

    p x x p pxdx dx

    4 3 22 4 2 0

    dp dppx x p p x

    dx dx

    32 2 2 0dp dp

    px x p x pdx dx

    32 2 1 0dp

    x p px

    dx

    2 0dp

    x pdx

    2dpdx

    p x

    2dpdx

    p x

    ln 2ln lnp x c

    2

    cp

    x

    Now, putting the value of p in 4 2y px x p we get

    2cy c

    x

    2xy x c x (Ans)

  • 7/31/2019 Applied Maths i u v Solution

    14/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 14

    (d)The equation of electromotive force in terms of current i for an electricalcircuit having resistance R and condenser capacity c, in series is

    iE Ri dt

    C . Find the current i at any time t, when 0 sinE E wt .

    Ans:i

    E Ri dt

    C

    0 sini

    Ri dt E wtC

    By Differentiating with respect to t we get

    0 cosdi i

    R E w wtdt C

    0 cosE w wtdi i

    dt RC R -------------- (1)

    Which is first order linear differential equation.

    Its I.F. =1 t

    dtRC RCe e

    Solution of (1) is0 cos

    t t

    RC RCE w

    Ie e wtdtR

    0

    2

    2 2

    1cos sin

    1

    tt RC

    RCE w e

    Ie wt w wt cR RC

    wR C

    2

    0

    2 2 2

    1cos sin

    1

    t t

    RC RCE wC R

    Ie e wt w wt cR C w RC

    0

    2 2 2 cos sin1

    t

    RCE wC

    I wt wRC wt ceR C w

    (Ans)

    **************

    SOLUTION (May-June-2008)

    (a)Write the general form of the first order differential equation of nth degree.Ans:

    1

    0 1( , ) ( , ) ...................... ( , ) 0

    n n

    n

    dy dyf x y f x y f x y

    dx dx

    .

  • 7/31/2019 Applied Maths i u v Solution

    15/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 15

    (b)Solve: (1 ) (1 ) 0y xy dx x xy dy .Ans: (1 ) (1 ) 0y xy dx x xy dy ------------- (1)

    Which is of the form 1 2( ). ( ). 0f xy ydx f xy xdy

    Then its2 2

    1 2

    1 1 1. .

    . ( ). . ( ). (1 ) (1 ) 2I F

    x f xy y y f xy x xy xy xy xy x y

    Now multiplying I.F. both side of equation (1) we get

    2 2

    1 1 1 10

    2 2 2 2dx dy

    x y x xy y

    ----------- (2)

    Which is of the form 0Mdx Ndy

    Where2 2

    1 1 1 1,

    2 2 2 2M N

    x y x xy y

    2 2 2 2

    1 1,

    2 2

    M N

    y x y x x y

    M N

    y x

    . So equation (2) is an exact differential equation.

    So, its solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    2

    tan

    1 1 1

    2 2 2y cons t Not containing x terms

    dx dy cx y x y

    1 1 1ln ln

    2 2 2x y c

    xy

    ln ln 1 2xy x xy y cxy (Ans)

    (c)Solve:2

    tan1

    pp x

    p

    .

    Ans:2

    tan1

    pp x

    p

    1

    2tan

    1

    px p

    p

    1

    2tan

    1

    px p

    p

    -------------- (1)

    Differentiating with respect to y we get

    2 2

    22 2

    1 1 2

    1 1

    dx dp p p dp

    dy p dy dyp

    2 2

    22

    1 1 1

    1

    p p dp

    p dyp

    22

    1 2

    1

    dp

    p dyp

    22

    2

    1

    pdpdy

    p

    22

    2

    1

    pdpdy

    p

    2

    1

    1y c

    p

  • 7/31/2019 Applied Maths i u v Solution

    16/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 16

    21

    1c y

    p

    11p

    c y

    ------------------ (2)

    Equation (1) and (2) are the solution.

    (d)The equation of electromotive force in terms of current i for an electricalcircuit having resistance R and condenser capacity c, in series is

    iE Ri dtc

    . Find the current i at any time t, when 0 sinE E wt .

    Ans:i

    E Ri dtC

    0 sini

    Ri dt E wtC

    By Differentiating with respect to t we get

    0 cosdi i

    R E w wtdt C

    0cosE w wtdi i

    dt RC R -------------- (1)

    Which is first order linear differential equation.

    Its I.F. =1 t

    dtRC RCe e

    Solution of (1) is

    0 cost t

    RC RCE w

    Ie e wtdtR

    0

    2

    2 2

    1cos sin

    1

    tt RC

    RCE w e

    Ie wt w wt cR RC

    wR C

    20

    2 2 2

    1cos sin

    1

    t tRC RC

    E wC RIe e wt w wt c

    R C w RC

    02 2 2

    cos sin1

    t

    RCE wC

    I wt wRC wt ceR C w

    (Ans)

    **************

    SOLUTION (Dec-2008)

    (a)Select the correct answer: integrating factor for 32 1/ 2( ) 0xxy e dx x ydy is:I. 4x .

    II. 4x .III. 3x .IV. 3x .

  • 7/31/2019 Applied Maths i u v Solution

    17/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 17

    Ans: 4x

    .

    (b)Solve the differential equation: 2 2(3 2 ) ( 2 ) 0xy ay dx x axy dy .Ans: 2 2(3 2 ) ( 2 ) 0xy ay dx x axy dy ----------------(1)

    Here 2 2(3 2 ), ( 2 )M xy ay N x axy

    Then 3 4 , 2 2

    M N

    x ay x ayy x

    x

    N

    y

    M

    So, given differential equation is non-exact.

    Now,2

    3 4 2 2 1( )

    2 ( 2 )

    M N

    x ay x ay x ayy xf x

    N x axy x x ay x

    So, its I.F. =1

    ( ) lndxf x dx xxe e e x

    By multiplying I.F. to both side of equation (1)

    2 2 3 2(3 2 ) ( 2 ) 0x y axy dx x ax y dy -----------------(2)

    Which is now exact differential equation.

    Where 2 2 3 2(3 2 ), ( 2 )M x y axy N x ax y

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    2 2

    tan

    (3 2 ) 0y cons t Not containing x terms

    x y axy dx dy c

    3 2 2x y ax y c (Ans)

    (c)Solve the differential equation: 42 2 . 0dy dyx x ydx dx

    .

    Ans:

    4

    22 . 0dy dyx x y

    dx dx

    4

    2 2 .dy dy

    y x xdx dx

    2 4 2y x p xp

    Now differentiating with respect to x we get

    4 2 32 4 2 2dy dp dp

    xp x p p xdx dx dx

    4 2 32 4 2 2dp

    p xp x p x pdx

    4 2 30 2 4 2dp

    xp x p x p

    dx

    3 32 2 1 2 1 0dp

    x xp p xp

    dx

    32 1 2 0dp

    xp x pdx

    Now 2 0dp

    x pdx

    22

    dp dp dxx p

    dx p x

    2

    dp dx

    p x

  • 7/31/2019 Applied Maths i u v Solution

    18/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 18

    1ln ln ln

    2

    cp x c p

    x

    So, solution is 2 4 2y x p xp 4

    2

    22

    c cy x x

    x x

    42y c c x (Ans)

    (d)The temperature of a body decreases at a rate k where 0 is the amount thebody is hotter than the surrounding air. The body is heated by a source

    which makes the bodys temperature increase at a rate ' 'at where t is time

    and a is constant. If this source is applied at t = 0, and the body is then at

    the temperature of the surrounding air, show that:1 1 kta t e

    k k k

    .

    Ans:

    Given that The temperature of a body decreases at a rate k where 0 is

    the amount the body is hotter than the surrounding air. The body is heated by a

    source which makes the bodys temperature increase at a rate ' 'at where t istime and a is constant.

    So,d

    at kdt

    dk at

    dt

    which is first order linear differential equation..

    Its . .kdt ktI F e e

    So, solution is . kt kt e a te dt

    . ( )kt kt kt d

    e a t e dt e dt t dt

    dt

    .kt kt

    kt e ee a t dt k k

    2.

    kt kt kt e ee a t C

    k k

    -------------(1)

    Given that at t = 0, 0 .So, equation (1) becomes

    2

    aC

    k

    So, putting the value of C in (1) we get

    2 2.

    kt kt kt e e ae a t

    k k k

    2 2

    1.

    kt kt kt e ee a t

    k k k

    2 2

    1 ktt ea

    k k k

    1 1 kta t ek k k

    (Proved).

    **************

  • 7/31/2019 Applied Maths i u v Solution

    19/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 19

    Solution (Apr-May-2009)

    (a)Fill up the blank:Integrating factor for

    3

    2 1/ 2( ) 0x

    xy e dx x ydy is __________.

    Ans: Integrating factor for3

    2 1/ 2( ) 0xxy e dx x ydy is 4x . (Ans)

    (b)Solve the differential equation: 3 2 2 3( ) ( ) 0x y x dy x y y dx .Ans: 3 2 2 3( ) ( ) 0x y x dy x y y dx ---------------- (1)

    2 2( ) ( ) 0ydx xdy x y xdy ydx

    Which is of the form ' '( ) ( ' ' )a b a bx y mydx nxdy x y m ydx n xdy

    Where 0, ' ' 2, 1, 1, ' 1, ' 1a b a b m n m n

    Its . . h kI F x y where1 1 ' 1 ' 1

    ,' '

    a h b k a h b k

    m n m n

    1 1 3 3,

    1 1 1 1

    h k h k

    1 1,3 3h k h k

    1, 1h k

    So. 1 11

    . . h kI F x y x yxy

    By multiplying I.F. to (1) we get

    2 21 1 0x y dy xy dyy x

    which is exact differential equation.

    Where 2 21 1,N xy M x yx y

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    2

    tan

    1 1

    y cons t Not containing x terms

    x y dx dy cy y

    2 2

    log log2

    x yx y c (Ans)

    (c)Solve the differential equation: 2tan ,1 p dyp x pp dx .Ans:

    2tan

    1

    pp x

    p

    1

    2tan

    1

    px p

    p

  • 7/31/2019 Applied Maths i u v Solution

    20/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 20

    1

    2tan

    1

    px p

    p

    -------------- (1)

    Differentiating with respect to y we get

    2 2

    22 2

    1 1 2

    1 1

    dx dp p p dp

    dy p dy dyp

    2 2

    22

    1 1 1

    1

    p p dp

    p dyp

    22

    1 2

    1

    dp

    p dyp

    22

    2

    1

    pdpdy

    p

    22

    2

    1

    pdpdy

    p

    2

    1

    1y c

    p

    21

    1c y

    p

    11p

    c y

    ------------------ (2)

    Equation (1) and (2) are the solution.

    (d)A pipe 20 cm in diameter contains steam at 0150 C and is protected with acovering 5 cm thick for which K = 0.0025. If the temperature of the outersurface of the covering is 040 C, find the temperature half way through the

    covering under steady state condition.

    Ans:

    .2 .dT

    Q K xdx

    2

    Q dxdT

    K x

    ln2

    QT x c

    K

    At 150, 10T x

    150 ln102

    Qc

    K ---------------(1)

    Again at 40, 15T x

    40 ln152

    Qc

    K ---------------(2)

    By subtracting (2) from (1) we get

  • 7/31/2019 Applied Maths i u v Solution

    21/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 21

    110 ln1.52

    Q

    K --------------(3)

    When 12.5x

    ln12.52

    QT c

    K ---------(4)

    Subtracting (1) from (4) we get150 ln1.25

    2

    QT

    K --------(5)

    Dividing (5) by (3) we get

    150 ln1.25

    110 ln1.5

    T

    0ln1.25110 150 89.5

    ln1.5T C (Ans)

    **************

    SOLUTION (Nov-Dec-2009)

    (a) Explain necessary condition for a differential equation 0 NdyMdx to beexact.

    Ans: - The necessary condition for differential equation 0 NdyMdx to be exact is

    x

    N

    y

    M

    (b) Solve: 3 2 2 4( ) 2( ) 0xy y dx x y x y dy .Ans: - 3 2 2 4( ) 2( ) 0xy y dx x y x y dy ----------------(1)

    Here 3 2 2 4, 2 2 2M xy y N x y x y

    Then 2 23 1, 4 2M N

    xy xyy x

    x

    N

    y

    M

    So, given differential equation is non-exact.

    Now,2 2 2

    3 2

    4 2 3 1 1 1( )

    ( 1)

    N M

    xy xy xyx yf y

    M xy y y xy y

    So, its I.F. =

    1( ) ln

    dyf y dy yye e e y

    By multiplying I.F. to both side of equation (1)4 2 2 3 5( ) 2( ) 0xy y dx x y xy y dy -----------------(2)

    Which is now exact differential equation.

    Where 4 2 2 3 5( ), 2( )M xy y N x y xy y

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    4 2 5

    tan

    ( ) 2y cons t Not containing x terms

    xy y dx y dy c

  • 7/31/2019 Applied Maths i u v Solution

    22/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 22

    2 4 62

    2 3

    x y yxy c (Ans)

    (c) Solve:

    21tan

    p

    pxp .

    Ans: - 2tan 1

    pp x p

    1

    2 tan1

    px pp

    1

    2tan

    1

    px p

    p

    -------------- (1)

    Differentiating with respect to y we get

    2 2

    22 2

    1 1 2

    1 1

    dx dp p p dp

    dy p dy dyp

    2 2

    22

    1 1 1

    1

    p p dp

    p dyp

    22

    1 2

    1

    dp

    p dyp

    22

    2

    1

    pdpdy

    p

    22

    2

    1

    pdpdy

    p

    2

    1

    1y c

    p

    21

    1c y

    p

    11p

    c y

    ------------------ (2)

    Putting (2) in (1) we get the solution as

    1

    11

    1tan 1

    11 1

    c yx

    c y

    c y

    1

    1

    1tan

    1

    c y

    c yc yx

    c y

    c y

    1 1tan (1 )( )c y

    x c y c yc y

    (Ans).

    (d) Show that the differential equation for the current i in an electrical circuitcontaining an inductance L and a resistance R in series and acted upon by an

    electromotive force wtEsin satisfies the equation wtERidt

    diL sin . Find

    the values of the current at any time t, if initially there is no current in the

    circuit.Ans: For LR circuit

    Voltage drops across R = Ri .

    Voltage drops across L =di

    Ldt

    .

    Given electromotive force = wtEsin

    So, by Kirchhoffs Law, sum of voltage drops across R and L = Electromotiveforce.

  • 7/31/2019 Applied Maths i u v Solution

    23/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 23

    So, wtERidt

    diL sin (Proved).-------------- (1)

    wtL

    Ei

    L

    R

    dt

    disin , Which is first order linear differential equation.

    So, itst

    L

    Rdt

    L

    R

    eeFI

    ..

    So, solution is dttweL

    Eie

    tL

    Rt

    L

    R

    .sin

    CwtwwtL

    R

    wL

    R

    e

    L

    Eie

    tL

    R

    tL

    R

    cossin

    2

    2

    CwtLwwtRwLR

    Eeie

    tL

    R

    tL

    R

    cossin222

    t

    L

    R

    CewtLwwtRwLR

    Ei

    cossin222

    Given that at 00 it .

    2222220

    wLR

    ELwCC

    wLR

    ELw

    So, solution t

    L

    R

    ewLR

    ELwwtLwwtR

    wLR

    Ei

    222222cossin (Ans).

    **************

    Solution (May-June-2010)

    (a) What is the I.F. of 0)( 2/12 3 ydyxdxexy x .Ans: - 0)(

    2/12 3 ydyxdxexy x Which is of the form 0Mdx Ndy

    Where32 1/ 2,xM xy e N x ydy 2 , 2

    M Nxy xy

    y x

    M N

    y x

    , So differential equation is not exact. Now,

    2 2

    2 2 4 4( )

    M N

    xy xy xyy xf x

    N x y x y x

    So, its I.F. =

    4( ) 4ln

    4

    1dxf x dx xxe e ex

    .

  • 7/31/2019 Applied Maths i u v Solution

    24/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 24

    (b) Solve 0)(cos34 xyecyxdx

    dyx .

    Ans: - Let

    x

    t

    dx

    dt

    xy

    dx

    dt

    xdx

    dy

    dx

    dyxy

    dx

    dtxyt

    11

    Then 0)(cos34 xyecyxdx

    dyx

    0)(cos0)(cos1 22334

    tectxtx

    dx

    dtxtec

    x

    tx

    x

    t

    dx

    dt

    xx

    0)(cos3 tecdx

    dtx

    3sin

    x

    dxtdt On integrating

    2

    2cos2

    22

    1cos

    xctC

    xt

    2)cos(2 xcxy

    Cxxy 2)cos(2 (Ans).

    (c) Solve ]1[ 2ppxy Ans: - ]1[ 2ppxy

    2

    2

    1 ppx

    y

    22

    2

    2

    12 pppx

    y

    x

    y

    x

    xyyp

    x

    xy

    x

    y

    x

    yp 22

    2

    22

    2

    2

    212

    x

    xy

    dx

    dyy

    22

    2

    02)( 22 xydydxyx ---------------- (1) which is of the form

    0 NdyMdx

    Where xyNyxM 2),( 22

    Now, yx

    Ny

    y

    M2,2

    Here

    x

    N

    y

    M

    So, differential equation is not exact.

    )(2

    2

    22xf

    xxy

    yy

    N

    x

    N

    y

    M

    So, 2ln22

    ..

    xeeFI xdx

    x

    By multiplying I.F. both side to equation (1) we get

  • 7/31/2019 Applied Maths i u v Solution

    25/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 25

    0212

    2

    dy

    x

    ydx

    x

    y, which is exact differential equation.

    So, its solution is cNdyMdxtermsxcontainingNottconsy

    tan

    Cdydxx

    y

    012

    2

    Cx

    yx

    2

    (Ans).

    (d) A constant electromotive force E volts is applied to a circuit containing aconstant resistance R ohms in series and a constant inductance L henries. If

    the initial current is zero, show that the current builds half its theoretical

    maximum in (Llog2)/R seconds.

    Ans: -

    For LR circuit

    Voltage drops across RiR .

    Voltage drops acrossdt

    diLL .

    Given electromotive force = E

    So, by Kirchhoffs Law, sum of voltage drops across R and L = Electromotiveforce.

    So, ERidt

    diL

    L

    Ei

    L

    R

    dt

    di , Which is first order linear differential equation.

    So, its

    tL

    Rdt

    L

    R

    eeFI

    ..

    So, solution is dteL

    Eie

    tL

    Rt

    L

    R

    CeR

    EC

    L

    R

    e

    L

    Eie

    tL

    RtL

    R

    tL

    R

    CeR

    Ei

    tL

    R

    Given that at 00 it .

    R

    ECC

    R

    E

    0

    So, solution

    t

    L

    Rt

    L

    R

    eR

    Ee

    R

    E

    R

    Ei 1 --------------- (1)

    Maximum theoretical value ofR

    Ei

  • 7/31/2019 Applied Maths i u v Solution

    26/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 26

    To become its half i.eR

    Ei

    2

    Equation (1) becomes

    t

    L

    R

    eR

    E

    R

    E1

    2

    22

    1

    2

    11

    t

    L

    Rt

    L

    Rt

    L

    R

    eee

    2log tL

    R

    R

    Lt

    2log. (Proved)

    **************

    SOLUTION (Nov-Dec-2010)

    (a) Find the integrating factor of the differential equation0)()2( 2222 dyyxxyxdxyxxyy .

    (b) Solve the differential equation: 32 1/ 2( ) 0xxy e dx x ydy .Ans: Which is of the form 0Mdx Ndy

    Where3

    2 1/ 2,xM xy e N x ydy

    2 , 2M N

    xy xyy x

    M Ny x , So differential equation is not exact.

    Now,2 2

    2 2 4 4( )

    M N

    xy xy xyy xf x

    N x y x y x

    So, its I.F. =

    4( ) 4ln

    4

    1dxf x dx xxe e ex

    By multiplying I.F. to both side of equation (1)

    32 1/

    3 4 20

    xy e ydx dy

    x x x

    -----------------(2)Which is now exact differential equation.

    Where

    32 1/

    3 4 2,

    xy e yM N

    x x x

    So, Solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

  • 7/31/2019 Applied Maths i u v Solution

    27/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 27

    32 1/

    3 4

    tan

    0x

    y cons t Not containing x terms

    y edx dy c

    x x

    3

    21/

    2

    1

    2 3

    xye c

    x

    (Ans)

    (c) Solve 4 2y px x p .Ans:

    4 2y px x p Differentiate with respect to x we get

    3 2 44 2

    dy dp dpp x x p px

    dx dx dx

    3 2 42 4 2

    dp dpp x x p px

    dx dx

    4 3 22 4 2 0

    dp dppx x p p x

    dx dx

    32 2 2 0dp dppx x p x pdx dx

    32 2 1 0dp

    x p pxdx

    2 0dp

    x pdx

    2dpdx

    p x

    2dp

    dx

    p x

    ln 2ln lnp x c

    2

    cp

    x

    Now, putting the value of p in 4 2y px x p we get

    2cy c

    x

    2xy x c x (Ans)

    (d) The equation of electromotive force in terms of current i for an electrical circuithaving resistance R and condenser capacity c, in series is

    iE Ri dt

    c . Find

    the current i at any time t, when 0 sinE E wt .

    Ans

    :

    iE Ri dt

    C

  • 7/31/2019 Applied Maths i u v Solution

    28/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 28

    0 sini

    Ri dt E wtC

    By Differentiating with respect to t we get

    0 cosdi i

    R E w wtdt C

    0cosE w wtdi i

    dt RC R --------------(1)Which is first order linear differential equation.

    Its I.F. =

    1 tdt

    RC RCe e

    Solution of (1) is

    0 cost t

    RC RCE w

    Ie e wtdtR

    0

    2

    2 2

    1cos sin

    1

    tt RC

    RCE w e

    Ie wt w wt cR RC

    wR C

    2

    0

    2 2 2

    1cos sin

    1

    t t

    RC RCE wC R

    Ie e wt w wt cR C w RC

    02 2 2 cos sin1

    t

    RCE wC

    I wt wRC wt ceR C w

    (Ans)

    SOLUTION (Apr-May-2011)

    a) Write the necessary and sufficient condition for a differential equation0Mdx Ndy to be exact.

    Ans: Necessary condition for a differential equation 0Mdx Ndy to be exact is

    M N

    y x

    .

    b) Solve the differential equation : (1 ) (1 ) 0y xy dx x xy dy .Ans: (1 ) (1 ) 0y xy dx x xy dy ------------- (1)

    Which is of the form 1 2( ). ( ). 0f xy ydx f xy xdy

    Then its2 2

    1 2

    1 1 1. .. ( ). . ( ). (1 ) (1 ) 2

    I Fx f xy y y f xy x xy xy xy xy x y

    Now multiplying I.F. both side of equation (1) we get

    2 2

    1 1 1 10

    2 2 2 2dx dy

    x y x xy y

    ----------- (2)

    Which is of the form 0Mdx Ndy

  • 7/31/2019 Applied Maths i u v Solution

    29/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 29

    Where2 2

    1 1 1 1,

    2 2 2 2M N

    x y x xy y

    2 2 2 2

    1 1,

    2 2

    M N

    y x y x x y

    M N

    y x

    . So equation (2) is an exact differential equation.

    So, its solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    2

    tan

    1 1 1

    2 2 2y cons t Not containing x terms

    dx dy cx y x y

    1 1 1

    ln ln2 2 2

    x y cxy

    ln ln 1 2xy x xy y cxy (Ans)

    c) Solve:2

    tan1

    pp x

    p

    .

    Ans

    2tan

    1

    pp x

    p

    1

    2tan

    1

    px p

    p

    1

    2

    tan1

    px p

    p

    --------------(1)Differentiating with respect to y we get

    2 2

    22 2

    1 1 2

    1 1

    dx dp p p dp

    dy p dy dyp

    2 2

    22

    1 1 1

    1

    p p dp

    p dyp

    22

    1 2

    1

    dp

    p dyp

    22

    2

    1

    pdpdy

    p

    22

    2

    1

    pdpdy

    p

    2

    1

    1y c

    p

    21

    1c y

    p

    11p

    c y

    ------------------(2)

  • 7/31/2019 Applied Maths i u v Solution

    30/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 30

    Equation (1) and (2) are the solution.

    d) A pipe 20 cm in diameter contains steam at 0180 C and is covered with a material6 cm thick for which K = 0.0025. If the temperature of the outer surface of the

    covering is 030 C, find the temperature half way through the covering under

    steady state condition.

    Ans:

    .2 .dT

    Q K xdx

    2

    Q dxdT

    K x

    ln2

    QT x c

    K

    At

    180, 10T x

    180 ln10

    2

    Qc

    K

    ---------------(1)

    Again at

    30, 16T x

    30 ln162

    Qc

    K ---------------(2)

    By subtracting (2) from (1) we get

    150 ln1.62

    Q

    K --------------(3)

    ln132

    QT c

    K ---------(4)

    Subtracting (1) from (4) we get180 ln1.3

    2

    QT

    K --------(5)

    Dividing (5) by (3) we get

    180 ln1.3

    150 ln1.6

    T

    ln1.3

    ln1.150 80

    61T (Ans)

  • 7/31/2019 Applied Maths i u v Solution

    31/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 31

    SOLUTION (Nov-Dec-2011)

    1. Find the integrating facto of the differential equation0)()2( 2222 dyyxxyxdxyxxyy .Ans:- Rewriting the equation as( + ) + ( 2) = 0 and comparing with

    ( + ) + ( + ) = 0 We have a=b=1, = = 2 = = 1 I.F=.Where

    =

    ,

    =

    1 + + 11

    =1 + + 1

    1,1 + + 1

    2=

    2 + + 11 = 0 , + 2 + 9 = 0

    Solving these ,we get h=k=-3

    I.F= ,it becomes

    1

    +

    2

    +

    1

    1

    = 0

    which is an exact differential equation.

    Therefore the solution is + ( ) = 1 1 + 2 = 2 1 =

    2. Solve the differential equation: 32 1/ 2( ) 0xxy e dx x ydy .Here M= , = = ( = which is a function of x only .I.F = = =

    Multiplying throughout the given differential equation by

  • 7/31/2019 Applied Maths i u v Solution

    32/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 32

    1 = 0 For the differential equation (1) ,we have

    M=

    N= Now

    = = .Hence the differential equation (1) is exact .

    Now = =

    +

    (3

    )

    = + = = 2Since no new term is obtained by integrating N w.r.t y , hence the required solution is

    =c3. Solve 4 2y px x p

    Ans:-The given equation is

    = + .(1)Which is clearly solvable for y .Hence differentiating (1) w.r.t to x we get

    = + 4 + 22( 1 2) + . ( 1 2) = 0 (2 + ) ( 1 2) = 0

  • 7/31/2019 Applied Maths i u v Solution

    33/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 33

    Neglecting the second factor which does not contain the derivatives of p, we have

    (2 + ) = 0

    + 2

    = 0

    Integrating, we get + 2

    =

    = = =

    Substituting this value of p in eq(1) ,we get = . + . = . +

    4. The equation of electromotive force in terms of current i for an electrical circuithaving resistance R and condenser capacity c, in series is

    iE Ri dt

    c . Find the

    current i at any time t, when 0 sinE E wt .

    Ans:-Given equation can be written as + = .Differentiating both the sides w.r.t t ,we have + = . + = (1 )Which is a Leibnitzs linear equation .

    I.F= = Therefore the solution of the equation (1) is

    .

    =

    .

    =

    . 1 +

    1 + =

    ( ) +

  • 7/31/2019 Applied Maths i u v Solution

    34/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 34

    = i= ( ) +

    which gives the current at any time t.

    SOLUTION (Apr-May-2012)

    (a)Write down exact differential.Ans A differential equation is called an exact differential ,if it can be derived

    from its primitive directly by differentiation without any subsequent operation ofelimination or reduction = + dy= (,) + (,)

    (b)Solve the differential equation : (1 ) (1 ) 0y xy dx x xy dy .Ans:

    (1 ) (1 ) 0y xy dx x xy dy -------------(1)

    Which is of the form 1 2( ). ( ). 0f xy ydx f xy xdy

    Then its2 2

    1 2

    1 1 1. .

    . ( ). . ( ). (1 ) (1 ) 2I F

    x f xy y y f xy x xy xy xy xy x y

    Now multiplying I.F. both side of equation (1) we get

    2 2

    1 1 1 10

    2 2 2 2dx dy

    x y x xy y

    -----------(2)

    Which is of the form 0Mdx Ndy

    Where2 2

    1 1 1 1,

    2 2 2 2M N

    x y x xy y

    2 2 2 2

    1 1,

    2 2

    M N

    y x y x x y

    M N

    y x

    . So equation (2) is an exact differential equation.

    So, its solution is given by cNdyMdxtermsxcontainingNottconsy

    tan

    2

    tan

    1 1 1

    2 2 2y cons t Not containing x terms

    dx dy cx y x y

    1 1 1

    ln ln2 2 2

    x y cxy

    ln ln 1 2xy x xy y cxy (Ans)

  • 7/31/2019 Applied Maths i u v Solution

    35/36

    UNIT V (I semester)

    Depar tm ent o f M athemat ics, DIM AT Page 35

    (c) Solve the differential equation: 2 32y px y p .Ans

    Solving the given equation for x, we obtain2 2

    2 2

    y y px

    p

    Differentiating (1) w.r.t y ,we obtain2 2

    2

    2

    2

    2 2

    1

    2 2

    1 1 1

    2 2

    (1 2 ) (1 2 )

    dx y dp dpyp y p

    dy p x dy dy

    dpyp y py

    p p p dy

    dpyp p y yp

    dy

    31 2 0dp

    p y ypdy

    Neglecting the second factor, we obtain

    0dp

    p ydy

    Separating the variables ,we get

    0dp dy

    y y

    Integration gives,

    0dp dy

    y y

    log log logp y c

    py c

    cp

    y

    Substituting this value of p in the equation (1) ,we have2 2

    2 3

    2 2

    2

    y cx

    c

    y cx c

    s

    (d) Solve the differential equation 0 sindiL Ri E wtdt

    where L, R , and0E are constants

    and discuss the case when t increases indefinitely.Ans: For LR circuit

    Voltage drops across R = Ri .

  • 7/31/2019 Applied Maths i u v Solution

    36/36

    UNIT V (I semester)

    Voltage drops across L =di

    Ldt

    .

    Given electromotive force = wtEsin

    So, by Kirchhoffs Law, sum of voltage drops across R and L = Electromotiveforce.

    So, wtERidt

    di

    L sin (Proved).-------------- (1)

    wtL

    Ei

    L

    R

    dt

    disin , Which is first order linear differential equation.

    So, itst

    L

    Rdt

    L

    R

    eeFI

    ..

    So, solution isdttwe

    L

    Eie

    tL

    Rt

    L

    R

    .sin

    CwtwwtL

    R

    wL

    R

    e

    L

    Eie

    tL

    R

    tL

    R

    cossin

    2

    2

    CwtLwwtRwLR

    Eeie

    tL

    R

    tL

    R

    cossin222

    t

    L

    R

    CewtLwwtRwLR

    Ei

    cossin222

    Given that at 00 it .

    2222220

    wLR

    ELwCC

    wLR

    ELw

    So, solution tLR

    ewLR

    ELwwtLwwtRwLR

    Ei

    222222 cossin (Ans).