21
Approximation of functions of large matrices. Part I. Computational aspects V. Simoncini Dipartimento di Matematica, Universit` a di Bologna and CIRSA, Ravenna, Italy [email protected] 1

Approximation of functions of large matrices. Part I. Computational aspectssimoncin/sds08_I.pdf · Approximation of functions of large matrices. Part I. Computational aspects V. Simoncini

  • Upload
    dinhnga

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

Approximation of functions of large matrices.

Part I. Computational aspects

V. Simoncini

Dipartimento di Matematica, Universita di Bologna

and CIRSA, Ravenna, Italy

[email protected]

1

The problem

Given A ∈ Rn×n, v ∈ R

n and f sufficiently smooth function,

approximate

x = f(A)v

⋆ A large dimension, ‖v‖ = 1

⋆ A sym. pos. (semi)def., or A positive real

⋆ f(A)v vs f(A)

Projection-type methods

K approximation space, m = dim(K) V ∈ Rn×m s.t. K = range(V )

x = f(A)v ≈ xm = V f(V ⊤AV )(V ⊤v)

2

The problem

Given A ∈ Rn×n, v ∈ R

n and f sufficiently smooth function,

approximate

x = f(A)v

⋆ A large dimension, ‖v‖ = 1

⋆ A sym. pos. (semi)def., or A positive real

⋆ f(A)v vs f(A)

Projection-type methods

K approximation space, m = dim(K) V ∈ Rn×m s.t. K = range(V )

x = f(A)v ≈ xm = V f(V ⊤AV )(V ⊤v)

3

Numerical approximation.

f(A)v ≈ x

Important issues:

⋆ Role of f in the approximation quality

⋆ Role of A in the approximation quality

⋆ Efficiency ?

⋆ Measures/Estimates of accuracy?

4

Standard Krylov subspace approximation

K = Km(A, v)

For Hm = V ⊤AV , v = V e1 and V ⊤V = Im:

xm = Vmf(Hm)e1

Polynomial approximation: xm = pm−1(A)v

(pm−1 interpolates f at eigenvalues of Hm)

(alternatives: other polyns or interpolation points; e.g., Moret & Novati, ’01-’04 )

Note: Procedure valid for A symmetric and nonsymmetric

⋆ Numerical and theoretical results since mid ’80s.

5

Typical convergence estimates in Km

Approximation of f(λ) = exp(−λ) (Hochbruck & Lubich ’97)

A sym. semidef. σ(A) ⊆ [0, 4ρ], xm = Vm exp(−Hm)e1,

‖f(A)v − xm‖ ≤ 10e−m2/(5ρ),√

4ρ ≤ m ≤ 2ρ

‖f(A)v − xm‖ ≤ 10

ρe−ρ

(eρ

m

)m

, m ≥ 2ρ

see also Tal-Ezer ’89, Druskin & Knizhnerman ’89, Stewart & Leyk ’96

Approximation of f(λ) = λ−1/2, exp(−√

λ), ... :

‖f(A)v − Vmf(−Hm)e1‖ = O(exp(−2m

√λmin

λmax))

6

Typical convergence estimates in Km

Approximation of f(λ) = exp(−λ) (Hochbruck & Lubich ’97)

A sym. semidef. σ(A) ⊆ [0, 4ρ], xm = Vm exp(−Hm)e1,

‖f(A)v − xm‖ ≤ 10e−m2/(5ρ),√

4ρ ≤ m ≤ 2ρ

‖f(A)v − xm‖ ≤ 10

ρe−ρ

(eρ

m

)m

, m ≥ 2ρ

see also Tal-Ezer ’89, Druskin & Knizhnerman ’89, Stewart & Leyk ’96

Approximation of f(λ) = λ−1/2, exp(−√

λ), ... :

‖f(A)v − Vmf(−Hm)e1‖ = O(exp(−2m

√λmin

λmax))

7

...When things are not so easy

‖ exp(−A)v − Vm exp(−Hm)e1‖ A ∈ R400×400, ‖A‖ = 105

0 20 40 60 80 100 120 14010

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Krylov subspace dimension

err

or

no

rm

‖ exp(−A)v − Vm exp(−Hm)e1‖ ≤ 10e−m2/(5ρ),√

4ρ ≤ m ≤ 2ρ

where σ(A) ⊆ [0, 4ρ]

8

Acceleration Procedures: Shift-Invert Lanczos

A symmetric pos. (semi)def.

Choose γ s.t. (I + γA) is invertible, and construct

K = Km((I + γA)−1, v), van den Eshof-Hochbruck ’06, Moret-Novati ’04

with Tm = V ⊤(I + γA)−1V , v = V e1 and V ⊤V = Im

xm = Vmf(1

γ(T−1

m − Im))e1

Rational approximation: xm = pm−1((I + γA)−1)v

Choice of γ: γ = 1/√

λminλmax (Moret, tr 2005)

9

Acceleration Procedures: Extended Krylov

For A nonsingular,

K = Km1(A, v) + Km2

(A−1, A−1v), Druskin-Knizhnerman 1998, A sym.

Note: K = A−(m2−1)Km1+m2−1(A, v)

Algorithm (augmentation-style)

- Fix m2 ≪ m1

- Run m2 steps of Inverted Lanczos

- Run m1 steps of Standard Lanczos + orth.

10

Extended Krylov: a new implementation

m1 = m2 = m not fixed a priori

K = Km(A, v) + Km(A−1, A−1v)

⋆ Arnoldi-type recurrence:

- U1 ← [v, A−1v] + orth

- Uj+1 ← [AUj(:, 1), A−1Uj(:, 2)] + orth j = 1, 2, . . .

⋆ Recurrence to cheaply compute Tm = U⊤mAUm, Um = [U1, . . . , Um]

⋆ Compute xm = Umf(Tm)e1

Simoncini, 2007

11

Extended Krylov: Convergence theory I

f satisfying f(z) =

∫ 0

−∞

1

z − ζdµ(ζ), z ∈ C\] −∞, 0]

(with convenient measure dµ(ζ))

Druskin-Knizhnerman 1998:

A sym: ‖x − xm‖ = O(m2 exp(−2m 4

√λmin

λmax

))

12

Extended Krylov: Convergence theory II

A new approximation result for nonsingular A:

Let f = f1 + f2, a ∈ [0,∞)

‖f1(z) −m−1∑

k=0

γ1,kF1,k(z)‖ ≤ c1Φ1(−a)−m,

‖f2(z) −m−1∑

k=0

γ2,kF2,k(z−1)‖ ≤ c2Φ2(−1

a)−m,

Φ1, F1,k conformal mapping and Faber Polynomial w.r.to W (A)

Φ2, F2,k conformal mapping and Faber Polynomial w.r.to W (A−1)

From this, for A symmetric: ‖x − xm‖ = O(exp(−2m 4

√λmin

λmax

))

⋆ Currently working on A nonsymmetric

13

Convergence rate. A ∈ R400×400 symmetric. f(λ) = λ−1/2

0 5 10 15 20 25 3010

−12

10−10

10−8

10−6

10−4

10−2

100

dimension of approximation space

no

rm o

f e

rro

r

σ(A) = [0.01, 0.9]

0 5 10 15 20 25 3010

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

dimension of approximation space

no

rm o

f e

rro

r

σ(A) = [1, 50]

Uniform spectral distribution

14

Experiment. A ∈ R400×400 normal. f(λ) = λ−1/2

0 5 10 15 20 25 30 35 40 45 5010

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

dimension of approximation space

no

rm o

f e

rro

r

ellipse a1=0.097, a2=0.01, c=0.1

true a=−sqrt(l

1ln)

a optimal

σ(A) on an elliptic curve in C+ with center on real axis

15

Log-uniform spectral distribution.

f(3)(z) = exp(−√z), f(5)(z) = z−1/2, f(7)(z) = z−1/4

100

105

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 3 −1

100

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 3 −2

100

105

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 5 −1

100

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 5 −2

100

105

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 7 −1

100

0

100

200

300

400sp

ace

dim

. a

t co

nve

rge

nce

case 7 −2

shift−invert Lanczos(0.1)

SI Lanczos(γ)Standard Krylov

Extended Krylov

cases *-1: λmin = 10−1 cases *-2: λmin = 10−4 x-axis: λmax = 10k

16

SI-Lanczos and dependence on parameter γ

0 50 100 150 200 250 300

10−10

10−8

10−6

10−4

10−2

100

f(x) = exp(−sqrt(x)), λmin

= 1e−1, λmax

= 1e6

SI(0.1)SI(1) SI(100)

SI(10)

EK

SI(γ)

Lanczos

SI(0.01)

0 50 100 150 200 250 30010

−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

f(x) = exp(−sqrt(x)), λmin

= 1e−4, λmax

= 1e3

SI(0.01)

SI(0.1)

SI(γ)

Lanczos

EK

Log-uniform spectral distribution

17

Comparisons: CPU Time in Matlab

A ∈ R4900×4900: L(u) = − 1

10uxx − 100uyy, in [0, 1]2, hom.b.c.

σ(A) ∈ [9.6 · 102, 1.96 · 106], f(λ) = λ−1/2

Method space dim. CPU Time

Standard Krylov 185 16.02

Rational (Zolotarev) 0.50

SI-Lanczos(0.001) 62 1.00

SI-Lanczos (1e-5) 49 0.60

SI-Lanczos (γ=2e-5) 33 0.32

Extended Krylov 32 0.20

No reorthogonalization. Direct solves. Tol = 10−12.

18

A nonsymmetric matrix. f(z) =√

z

A ∈ R900×900 : L(u) = −100uxx − uyy + 10xux in [0, 1]2, hom.b.c.

0 10 20 30 40 50 60 70 80 90 10010

−10

10−8

10−6

10−4

10−2

100

102

dimension of approximation space

no

rm o

f e

rro

r

SI−Arnoldi(1e−5)

SI−Arnoldi(1e−3)

Extended KrylovSI−Arnoldi(2e−5)

σ(A) ⊂ R, λmin = 9.2 · 102, λmax = 3.6 · 105

Full orthogonalization

19

Conclusions and work in progress

• Great potential of using f(A)v in application problems

• Exploit low cost of using A instead of f(A)

• Further developments in acceleration techniques

• The case of A nonsymmetric (preliminary encouraging tests)

⋆ New implementation of the Extended Krylov method

⋆ Improved convergence bounds for A symmetric

⋆ New convergence results for A nonsymmetric (to be completed)

⋆ Performance:

- Does not depend on parameters

- Competitive for A sym, and nonsym. (preliminary tests)

20

Conclusions and work in progress

• Great potential of using f(A)v in application problems

• Exploit low cost of using A instead of f(A)

• Further developments in acceleration techniques

• The case of A nonsymmetric (preliminary encouraging tests)

⋆ New implementation of the Extended Krylov method

⋆ Improved convergence bounds for A symmetric

⋆ New convergence results for A nonsymmetric (to be completed)

⋆ Performance:

- Does not depend on parameters

- Competitive for A sym, and nonsym. (preliminary tests)

21