43
Ken-ya Hashimoto Chiba University [email protected] http://www.te.chiba-u.jp/~ken Part 7: Basics of RF Circuits Introduction to Surface Acoustic Wave (SAW) Devices April 2, 2019

April 2, 2019 Introduction to Surface Acoustic Wave (SAW

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Ken-ya HashimotoChiba University

[email protected]://www.te.chiba-u.jp/~ken

Part 7: Basics of RF Circuits

Introduction to Surface Acoustic Wave (SAW) Devices

April 2, 2019

•Noise Figure and Non-Linearities•RF Amplifiers•Low Noise Amplifier Design Example

Contents

•Noise Figure and Non-Linearities•RF Amplifiers•Low Noise Amplifier Design Example

Contents

Signal to Noise Ratio (SNR)

frequency

Spec

trum

frequency

Spec

trum

frequency

Spec

trum

(a) Signal +Noise

(b) After Front End Filtering

(c) After Front End Amplifying

ioo

ii

NN

NSNSF 1

//

Noise Figure, NFFNF log10[Power Ratio]

Most Significant!

Cascade Connection

)))((( 321123output NNNNSAAAP ii

21

3

1

21

21

3

1

21 111AA

FA

FFAAN

NAN

NNNF

iii

Si, NiSo, NoA3A2A1

N3N2N1

Si, Ni So, NoA

N

Ni: Input Noise PowerNo: Output Noise PowerN: Thermal NoiseA: Power Gain

Input Power Level (dBm)Out

put P

ower

Lev

el(d

Bm

) Intercept Point

Linear Output (f1)

IMD3 Output (2f1 -f2)Noise Level

3rd order Intercept Point (IP3)

Generation of Jammer signals by Intermodulation

1dB Compression Point (P1dB)

IIP3P1dB+9.6 [dB]

2f1-f2

3rd order Intercept Point (IP3)

P2f1-f2 [dBm] = 2Pf1 [dBm] + Pf2 [dBm] – 2×IP3 [dBm]

P2f2-f1 [dBm] = 2Pf2 [dBm] + Pf1 [dBm] – 2×IP3 [dBm]

P2f2-f1P2f1-f2

Pf1 Pf2

Frequency [Hz]Out

put P

ower

Lev

el(d

Bm

)

2f2-f1f1 f2

Spectrum Regrowth in PA and DPX= Self Mixing of Tx Signals

Jammer Signal Emission to Adjacent Channels

Frequency

f1 f22f2-f12f1-f2

f2-f1

2nd order Intercept Point (IP2)

Pf2f1 [dBm] = Pf2 [dBm] + Pf1 [dBm] –IP2 [dBm]

Pf2+f1Pf2-f1

Pf1 Pf2

Frequency [Hz]Out

put P

ower

Lev

el(d

Bm

)

f2+f1f1 f2

-30 dBm

-15 dBm

-44 dBm

15M

45M

-100 dBm/3.84 MHz

60M

15M

25M

Blocking Test Example (W-CDMA Band II)

-110 dBm/3.84 MHz

Thermal Noise Level

Inter Modulation Distortion in Nonlinear Circuit for WCDMA System

Sign

al in

tens

ity fa

fb2fa-fb(3rd order)

Tx filter

Rx filter

fb+fa(2nd order)

fb-fa(2nd order)

2fa+fb(3rd order)

Rx signal + Nonlinear distortion product

Jammer Jammer

Band1Tx: 1920 - 1980 MHzRx: 2110 - 2170 MHz

190 MHz 1730 - 1790 MHz 4030 - 4150 MHz

5950 - 6010 MHz

Band2Tx: 1850 - 1910 MHzRx: 1930 - 1990 MHz

80 MHz 1770 - 1830 MHz 3780 - 3900 MHz

5630 - 5810 MHz

Jammer Frequency

Jammer Frequency

IP2 Suppression by Balanced Topology

Input

Output

Unbalanced Topology

Input

Output

LNA FilterMixer

Oscillator

Balanced Topology

LNA FilterMixer

Oscillator

+-

+-

+-

+-

+-

+-

+ -

•Noise Figures and Non-Linearities•RF Amplifier•Low Noise Amplifier Design Example

Contents

Capacitor Coupled LF Amplifier

VB

Input

Output

0

eout

RE

RB1

RB2

Cc1

RC

ein

Cc2 DC Cut

Bias Setting

Vias Voltage

Vcc

50 50Adequate for Impedance Matching?

× Power Dissipation× Noise Generation

RF Amplifier Configuration

LD

RL

VDD

einMatching + Filter eout

Transmitting specific frequencies

Matching + Filter

RF Choke(DC Through)

RF Choke (DC Through)VGS

Transmitting specific frequencies

VGS VDS

Bias-TMeasurement of Transistor S Parameters

Small Signal Measurement for Given Bias Condition

(For R0=50 )

Signal Source

Load

Bias-T

LS

M1

LD

LG

VDD

eout

ein

CGS

GSSG

GS

mS

GSGin

1)(

11

CiLLi

CgL

CigLi

CiLiZ

GS

mS

LG, LS Impedance Matching

LD RF Choke

Common Source Amplifier

Large Voltage Gain

→0

→50

vn- +

in -+

CB

EE

S11 S12

S21 S22

rb

ibib

B

C

E

Noise GenerationThermal Noise (Resistance Origin)

+ Shot Noise (Junction Origin)

Small Signal Model (Linearize)

Input Referred Noise

n2n 4kTBRv

u2u 4kTBGi

ucn iii ic: correlated with vn (Ycvn)iu: not-correlated with vn

B: Frequency Bandwidth

Rollet Stability (K) Factor

Unconditionally Stable When K>1

||2||||||1

1221

221122211

222

211

SSSSSSSSK

1.0

0.5

0.2

0.0

2 5 10

0.2

-0.2

0.5

1.0

2

5

10

-10

-5

-2

-1.0

-0.5

Constant G Plot

Constant NF Circle S11 S22

Element (1)Element (2)

Stability Circle

Matching Circuit Design Using Smith Chart

(1)

(2)

111

12112

22

SSSS

S

Design Point

•Finding Target Point•Designing Input Matching Circuit•Designing Output Matching Circuit•Verification (Often S11 and S22 are NOT acceptable

Gain and NF are Dependent on Bias Current (Voltage)

Power Efficiency of Class A AmplifierVcc

VLein

t

Vcc

0

VL

Vcc/2

2

cc

o

0o

cccc

L

0

2o

L

)/2sin(2

11

)/2sin(11

VV

dtTtVVVTR

dtTtVTR

T

T

Maximum 25% (at Vo=Vcc/2)

VL

ein

+Vcc

-Vcc

t

VL

+Vcc

-Vcc

0

Class A

Input

Output

0 Class B

cc

o2/

0occ

L

2/

0

2o

L

4)/2sin(21

)/2sin(21

VV

dtTtVVTR

dtTtVTR

T

T

Power Efficiency of Class B Amplifier

Maximum 78.5% (at Vo=Vcc)

VDS

t

t

t

t

ID

ID

ID

VDD

Class A

Class B

Class C

Efficiency Distortion

Good Bad

max=50% for RF

max=78.5%

max=100%

(At P=0)

Power Amplifier

VDD

M1L1 eoutRLC1 Harmonics

Suppression

ein

Vb

L2

C2

C1

RF Choke

Rejecting RF LeakageDC Cut Capacitor

VDD

M1

M2

LDLD

RLein

Vb

VDD

Driver + Main Amplifier

Z Matching + Z Conversion

Pre-distortion

DetectorPower Amp.WaveformGeneration

Linear High Efficiency PAFeedback Compensation

Memory Effect (Hysteresis) Problem

-+

Error Detection and Compensation

Feed-Forward PAPower Amp.

Delay

ATT

Amplifier

Delay+

-

Linear Amplifier with Non-linear Components (LINC)

where (t)=cos-1(A(t)/Amax) Constant Amplitude

Non-Linear PA Applicable

max

( ) ( )sin( ( ))

[cos( ( ) ( )) cos( ( ) ( ))]2

c

c c

E t A t t tA t t t t t t

+

PA-2

PA-1

-WaveformGeneration

•Noise Figures and Non-Linearities•RF Amplifiers•Low Noise Amplifier Design Example

Contents

Use of High Speed Transistor BFP620Design Low Noise Amplifier at 2.488 GHz. Vcc=1.5 V and Ic=5 mA. Low NF and Return Suppression Mandatory. How High Gain Achievable?

Step 1 Bias Circuit Design

Step 2 S Parameter Simulation

Caution!

S Simulation Result

S21

S22

S11

NF

NFmin

NFmin: Achievable minimum NF at the given frequency

Impact of Emitter Degeneration Inductor

Simulation ResultsL=0 nH L=1 nH

L=2 nH L=3 nH

Simulation Results

L=0 nHL=1 nH

L=2 nH L=3 nH

Step 3 Design Matching Circuits

Procedure

After Adding Designed Matching Circuit

Simulated Results

S11 and S22 Suppression

Astable?

Q Reduction

Step 4 Stabilization

Z IncreaseZ Increase

Stabilized

Simulation Results

Step 5 Transient Analysis

Simulation Results Pin=-10 dBm

Pin=-5 dBm

Step 6 Two Tone Analysis

Two Tone Test Result

P2ab [dBm]=2×Pa [dBm] + Pb [dBm] - 2×OIP3 [dBm]

-40.1=2×(-4.39) + (-4.5) - 2×OIP3

OIP3 =13.4 [dBm]