16
Electronic Supplementary Information Nanocrystalline Copper-Chromium-Layered Double Hydroxide with Tunable Interlayer Anions for Supercapacitor Application Akash S. Patil, 1 Jayavant L. Gunjakar, 2 Chandrakant D. Lokhande, 2* Mahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2 Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed To Be University), Kolhapur, 416 006, MS, India. Corresponding author footnote* Prof. Jaydeep S. Bagi, Email: [email protected], Tel: +91 9850441874 Prof Chandrakant . D. Lokhande, Email: [email protected] , Tel: +91 9765788816

ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Electronic Supplementary Information

Nanocrystalline Copper-Chromium-Layered Double Hydroxide with Tunable

Interlayer Anions for Supercapacitor Application

Akash S. Patil,1 Jayavant L. Gunjakar,2 Chandrakant D. Lokhande,2* Mahesh M.

Wagh,1 Jaydeep S. Bagi1*

1Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar,

Kolhapur-416004, (India).

2Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed To

Be University), Kolhapur, 416 006, MS, India.

Corresponding author footnote*

Prof. Jaydeep S. Bagi, Email: [email protected], Tel: +91 9850441874

Prof Chandrakant. D. Lokhande, Email: [email protected], Tel: +91 9765788816

Page 2: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Fig. S1. HR-TEM images of (a, b, c, d) of CuCr-N sample at various magnifications.

Page 3: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Fig. S2. CV curves of CuCr-C supercapacitor electrode at different scan rates ranging from 10 to 100 mVs-1.

Page 4: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Fig. S3. GCD curves of CuCr-N supercapacitor electrode at current densities of 1 to 5 Ag-1

Page 5: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Fig. S4. GCD curves of CuCr-C supercapacitor electrode at current densities of 1 to 5 Ag-1

Page 6: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Fig. S5. Variations of the specific capacitance of (red) CuCr-N and (black) CuCr-C supercapacitor electrode with current density.

Sr.

No.

Materials Electrode Composition /Electrolyte/Current collector

Maximum Specific

Capacitance

(F g-1)

Stability retention (Cyclic

number)

Ref.

1 Cu(OH)2 thin films by CBD Cu(OH)2 thin films/ 1M NaOH/ stainless steel substrate

120 F g-1

(10 mVs-1)

-- 1

2 Cu(OH)2 arrays on copper foil surface oxidation method

Nanowire-like Cu(OH)2 arrays/ 1M KOH/ copper foil

511 F g-1 83% (5000) 2

Page 7: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

(1 Ag-1)

3 CuO nanowires by polymeric electrospinning method

CuO nanowires / 6M KOH/ nickel foam 620 F g-1

(2 Ag-1)

98% (2000) 3

4 Cu(OH)2 nanostructure by electric field enhanced wet

chemical method

Cu(OH)2 / 1 M NaOH/ copper foil 178 F g-1

(20 mVs-1)

-- 4

5 3D highly ordered nanoporous CuO by hydrothermal method

nanoporous CuO / 3 M KOH/ nickel foam 431 F g-1

(3.5 mA cm-2)

93% (3000) 5

6 CuO nanowire arrays (NWAs) CuO NWAs / PVA-KOH solid electrolyte/ copper wire substrate

694 F g-1

(2.5 mA cm–2)

99.5% (2000) 6

7 CuO nanostructures by surface oxidation method

CuO hierarchical nanostructures thin film/ 1 M KOH/ copper foam

807 mFcm-2

(1 Ag-1)

79% (10000) 7

8 Cu(OH)2 nanorods by surface oxidation method

Cu(OH)2 nanorods thin film/ 5 M NaOH/ copper foam

1.7 Fcm-2

(2 mA cm-2)

97.3% (5000) 8

9 Cu2O-Cu(OH)2 -graphene by electrodeposition method

Cu2O-Cu(OH)2 – graphene / 0.5 M Na2SO4 / stainless steel substrate

425 F g-1

(5 Ag-1)

87% (2000) 9

10 Cu–Cu(OH)2/RGO by electrophoretic deposition

Cu–Cu(OH)2/RGO / 0.5 M NaNO3 / stainless steel substrate

492 F g-1

(5 Ag-1)

97% (500) 10

11 3D Cu(OH)2 nanoporous nanorods by anodization

process

Cu(OH)2 nanoporous nanorods / 2 g PVA+1.12 g KOH gel electrolyte / copper

foil substrate

802 F g-1

(5 mVs-1)

92% (5000) 11

12 Cu(OH)2@RGO by hydrothermal method

Cu(OH)2@RGO/ 1 M KOH/ nickel foam 602 F g-1

(0.2 Ag-1)

45% (2000) 12

13 CuO/ Cu(OH)2 hybrid thin films by SILAR method

CuO/ Cu(OH)2 hybrid thin films/ 2 M KOH/ stainless steel substrate

459 F g-1

(5 mVs-1 )

88 % (2000) 13

14 CuCr-LDH-NO3 by chemical coprecipitation method

CuCr-LDH-NO3/ 2 M KOH/ stainless steel substrate

843 F g-1

(1 Ag-1)

85% (1500) Present work

Table S1. Brief literature survey of electrochemical data of CuO and Cu(OH)2 based

electrodes

Sr.

No.

Materials Electrode Composition /Electrolyte/Current collector

Maximum Specific

Capacitance

(F g-1)

Stability retention (Cyclic

number)

Ref.

1 CoAl-LDH by direct coprecipitation method

CoAl-LDH / 1 M KOH/ nickel foam 145 F g-1

(2 Ag-1)

- 14

Page 8: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

2 CoAl-LDH/rGO composite by simple refluxing method

GNS/CoAl-LDH composite/6 M KOH/ nickel foam

712 F g-1

(1 Ag-1)

100% (6000) 15

3 CoAl-LDH/CF composite by in situ hydrothermal method

CoAl-LDH composite/ 1.0 M LiOH/ flexible carbon fibers

442 F g-1

(1 Ag-1)

98.2% (6000) 16

4 CoAl-LDH by hydrothermal synthesis method

CoAl-LDH nanoflake arrays/ 2 M KOH/ nickel foam

742 F g-1

(4 Ag-1)

88.9% (2000) 17

5 NiAl LDH by hydrothermal synthesis method

NiAl LDH NPAs hybrid / 1 M KOH/ conductive fabric

627 F g-1

(2 mVs-1 )

88.9% (2000) 18

6 NiAl-LDH/rGO composite by liquid phase deposition method

GNS/ NiAl-LDH hybrid /6 M KOH/ nickel foam

869 F g-1

(1 Ag-1)

106% (1500) 19

7 NiAl-LDH by in situ growth method

NiAl-LDH /6 M KOH/ nickel foam 701 F g-1

(10 mA cm-2)

94% (4000) 20

8 NiCo-LDH/NF composite by coprecipitation method

NiCo-LDH/NF composite/ 6 M KOH/ nickel foam

804 F g-1

(3 Ag-1)

-- 21

9 NiCo-LDH grown on CNTs by CBD method

NiCo-LDH@CNTs / 1 M KOH/ stainless steel substrate

502 F g-1

(10 mA cm-2)

83% (5000) 22

10 NiCo-LDH/ CNTs composite by thermal chemical vapor

deposition method

NiCo-LDH@CNTs/ 1 M KOH/ nickel foam

762 F g-1

(1 Ag-1)

78% (1200) 23

11 CoNi-LDH/ rGO composite by direct heterostaching approach

CoAl-LDH@rGO/ 1 M KOH/ graphene 650 F g-1

(5 Ag-1)

97% (2000) 24

12 CoNiAl-LDH/carbon nanohybrids composite

CoNiAl-LDH /1 M KOH/ carbon black 501 F g-1

(5 Ag-1)

91% (1000) 25

13 CuCr-LDH-NO3 by chemical coprecipitation method

CuCr-LDH-NO3/ 2 M KOH/ stainless steel substrate

843 F g-1

(1 Ag-1)

85% (1500) Present work

Table S2. Summary of LDH-based materials and their electrochemical performances.

Page 9: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

Electrode Rs

(Ωcm-2)

Rct (R1+R2)

(Ωcm-2)

Q1

(F)

Q2

(F)

W

(Ωcm-2)

CuCr-N 0.46 6.14 0.05187 1.5429 0.02457

CuCr-C 0.59 7.26 0.02516 1.8972 0.04905

Table S3. Electrochemical impedance spectroscopic fitted circuit parameters

Page 10: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

10 20 30 40 50 60 70

(110

)

(009

)(006

)

In

tens

ity (a

.u.)

2

(003

)

Fig. S6. Powder XRD patterns of CuCr-N supercapacitor electrodes before (black)

and after (red) CV stability cycles.

Page 11: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

References

1. K. V. Gurav, U. M. Patil, S. W. Shin, G. L. Agawane, M. P. Suryawanshi, S. M. Pawar, P.

S. Patil, C. D. Lokhande, J. H. Kim, Room temperature chemical synthesis of Cu(OH)2 thin

films for supercapacitor application, J. Alloy Compd. 573 (2013) 27-31.

https://doi.org/10.1016/j.jallcom.2013.03.193.

2. P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, G. Wang, D. Cao, One-step synthesis of

copper compounds on copper foil and their supercapacitive performance, RSC Adv. 46

(2015) 36656-36664. https://doi.org/10.1039/C5RA04889C.

3. B. Vidyadharan, I. Misnon, J. Ismail, M. Yusoff, R. Jose, High performance asymmetric

supercapacitors using electrospun copper oxide nanowires anode, J. Alloy Compd. 633

(2015) 22-30. https://doi.org/10.1016/j.jallcom.2015.01.278.

4. S. Sepahvand, S. Ghasemi, Z. Sanaee, Electric field enhanced synthesis of copper

hydroxide nanostructures for supercapacitor application, Nano 12 (2017) 1750010-1750019.

https://doi.org 10.1142/S1793292017500102.

5. S. Ebrahim, M. El-Kady, M. Rhmanifar, R. Kaner, M. Mousavi, Designing 3D highly

ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors, ACS

Appl. Mater. Interfaces 7 (2015) 4851-4860. https://doi.org/10.1021/am508816t.

6. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D. Evans, X. Duan, A

flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double

hydroxide core–shell nanoarrays, Nano Energy 20 (2016) 294-304.

https://doi.Org/10.1016/j.nanoen.2015.12.030.

7. D. He, S. Xing, B. Sun, H. Cai, H. Suo, C. Zhao, Design and construction of three-

dimensional flower-like CuO hierarchical nanostructures on copper foam for high

performance supercapacitor, Electrochim. Acta 210 (2016) 639-645.

http://dx.doi.org/10.1016/j.electacta.2016.05.196.

8. D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, Facile route to achieve mesoporous

Cu(OH)2 nanorods on copper foam for high performance supercapacitor electrode,

J. Alloy Compd. 699 (2017) 706-712. https://doi.org/10.1016/j.jallcom.2016.12.398.

Page 12: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

9. S. Ghasemi, M. Jafari, F. Ahmadi, Cu2O-Cu(OH)2-graphene nanohybrid as new capacitive

material for high performance supercapacitor, Electrochim. Acta 210 (2016) 225-235.

https://doi.org/10.1016/j.electacta.2016.05.155.

10. F. Ahmadi, S. Ghasemi, Electrophoretic deposition of copper–copper hydroxide/graphene

oxide nanocomposite for supercapacitor, J. Mater. Sci.: Mater. Electron. 29 (2018) 9067-

9076. https://doi.org/10.1007/s10854-018-8933-3.

11. J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Facile and scalable fabrication of three-

dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors, J. Mater. Chem. A

3 (2015) 17385-17391. https://doi.org/10.1039/C5TA04164C.

12. A Pramanik, S. Maiti, S. Mahanty, Reduced graphene oxide anchored Cu(OH)2 as high

performance electrochemical supercapacitor, Dalton Trans. 44 (2015) 14604-14612.

https://doi.org/10.1039/C5DT01643F.

13. S. Shinde, D. Dubal, G. Ghodake, D. Kim, V. Fulari, Nanoflower-like CuO/Cu(OH)2

hybrid thin films: Synthesis and electrochemical supercapacitive properties J.

Electroanal. Chem. 732 (2014) 80-85. https://doi.org/10.1016/j.jelechem.2014.09.004.

14. L. Su, X. Zhang, Effect of carbon entrapped in Co–Al double oxides on structural

restacking and electrochemical performances, J. Power Sources 172 (2007) 999-1006.

https://doi:10.1016/j.jpowsour.2007.04.091.

15. L. Zhang, X. Zhang, L. Shen, B. Gao, L. Hao, X. Lu, F. Zhang, B. Ding, C. Yuan,

Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide

composites as electrode material for supercapacitors, J. Power Sources 199 (2012) 395-401.

https://doi:10.1016/j.jpowsour.2011.10.056.

16. J. Zhao, Z. Lu, M. Shao, D. Yan, M. Wei, D. G. Evans, X. Duan, Flexible hierarchical

nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high

performance supercapacitors, RSC Adv. 3 (2013) 1045-1049.

https://DOI:10.1039/c2ra22566b.

17. G. Pan, X. Xia, J. Luo, F. Cao, Z. Yang, H. Fan, Preparation of CoAl layered double

hydroxide nanoflake arrays and their high supercapacitance performance, Appl. Clay Sci. 102

(2014) 28-32. http://dx.doi.org/10.1016/j.clay.2014.10.003.

Page 13: ars.els-cdn.com · Web viewMahesh M. Wagh, 1 Jaydeep S. Bagi 1* 1 Energy Technology Division, Department of Technology, Shivaji University, Vidyanagar, Kolhapur-416004, (India). 2

18. X. Liu, C. Wang, Y. Dou, A. Zhou, T. Pan, J. Han, M. Wei, A NiAl layered double

hydroxide@carbon nanoparticles hybrid electrode for high performance asymmetric

supercapacitors, J. Mater. Chem. A 2 (2014) 1682-1685. http://dx.DOI:10.1039/c3ta14350c.

19. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. S. Hui, K. N. Hui, 3D porous layered double

hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials, J.

Mater. Chem. A 1 (2013) 9046-9053. http://dx.DOI:10.1039/c3ta11755c.

20. J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, Z. Jiang, In situ Ni/Al

layered double hydroxide and its electrochemical capacitance performance, Energy Fuels 24

(2010) 6463-6467. http://dx.DOI:10.1021/ef101150b.

21. X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, Morphology controlled high

performance supercapacitor behaviour of the Ni-Co binary hydroxide system, J. Power

Sources 238 (2013) 150–156. http://dx.doi.org/10.1016/j.jpowsour.2013.03.069.

22. R. R. Salunkhe, K. Jang, S. Lee, S. Yu and H. Ahn, Binary metal hydroxide nanorods and

multi-walled carbon nanotube composites for electrochemical energy storage applications J.

Mater. Chem. 22 (2012) 21630–21635. http://dx.DOI: 10.1039/c2jm32638h.

23. X. Li, J. Shen, W. Sun, X. Hong, R. Wang, X. Zhao, X. Yan, A super-high energy density

asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double

hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with

commercial level mass loading, J. Mater. Chem. A 3 (2015) 13244-13253.

http://dx.DOI:10.1039/c5ta01292a.

24. R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, molecular-scale heteroassembly of

redoxable hydroxide nanosheets and conductive graphene into superlattice composites for

high-performance supercapacitors, Adv. Mater. 26 (2014) 4173-4178.

http://dx.DOI:10.1002/adma.201400054.

25. C. Yu, J. Yang, C. Zhao, X. Fan, G. Wang, J. Qiu, Nanohybrids from NiCoAl-LDH

coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon,

Nanoscale 6 (2014) 3097-3104. http://dx. DOI: 10.1039/c3nr05477b.