27
17 USDA Forest Service Proceedings RMRS-P-44. 2007 In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Mariann T. Garrison-Johnston and Peter G. Mika are research scientists and Leonard R. Johnson is the director for the Intermountain Forest Tree Nutrition Cooperative, University of Idaho, Moscow, ID. Dan L. Miller is a silviculture manager for Potlatch Corporation, Lewiston, ID. Phil Cannon is the productivity manager for Forest Capital, North, Monmouth, OR. Abstract Data from 139 research sites throughout the Inland Northwest were analyzed for effects of ash cap on site productivity, nutrient availability and fertilization response. Stand productivity and nitrogen (N) fertilizer response were greater on sites with ash cap than on sites without. Where ash was present, depth of ash had no effect on site productivity or N fertilizer response. Site productivity increased with increasing potentially available soil water. Potentially available soil water, in turn, increased with increasing ash depth. Decreasing availability of magnesium (Mg) and calcium (Ca) in the upper 12 inches of soil may have constrained site productivity with increasing ash depth. Soil mineralizable N and ammonium N were unaffected by ash presence or depth but did vary by underlying parent material. Site productivity and N fertilizer response varied by underlying parent material even after accounting for ash presence. Stand volume response to sulfur (S) fertilization decreased with increasing ash depth, suggesting possible S adsorption by ash cap. No growth response or change in foliar K status was discerned following K fertilization. Management recommendations by parent material are provided. Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Mariann T. Garrison-Johnston, Peter G. Mika, Dan L. Miller, Phil Cannon, and Leonard R. Johnson Background Availability to plants of most nutrients besides nitrogen (N) is related primarily to mineral weathering rates and soil physical and chemical properties. Common parent materials of soils in the Inland Northwest include the Columbia River basalt flows, Belt Series metasedimentary rocks, granites, and various glacial deposits. Characteristics that these materials impart to for- est soils significantly affect forest nutrition, productivity and response to fertilization (Moore and Mika 1997; Moore and others 2004). However, surficially deposited parent materials are often neglected during analyses of parent rock effects on forest nutrition. This is particularly true for widespread volcanic ash resulting from the eruption of Mount Mazama (now Crater Lake) in southwestern Oregon. The effects of surficially deposited parent materials on forest nutrition, productivity and response to fertilization are poorly understood.

Ash Cap Influences on Site Productivity and Fertilizer ... · Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • 1�7USDA Forest Service Proceedings RMRS-P-44. 2007

    In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Mariann T. Garrison-Johnston and Peter G. Mika are research scientists and Leonard R. Johnson is the director for the Intermountain Forest Tree Nutrition Cooperative, University of Idaho, Moscow, ID. Dan L. Miller is a silviculture manager for Potlatch Corporation, Lewiston, ID. Phil Cannon is the productivity manager for Forest Capital, North, Monmouth, OR.

    Abstract Datafrom139researchsitesthroughouttheInlandNorthwestwereanalyzedforeffectsofashcaponsiteproductivity,nutrientavailabilityandfertilizationresponse.Standproductivityandnitrogen(N)fertilizerresponseweregreateronsiteswithashcapthanonsiteswithout.Whereashwaspresent,depthofashhadnoeffectonsiteproductivityorNfertilizerresponse.Siteproductivityincreasedwithincreasingpotentiallyavailablesoilwater.Potentiallyavailablesoilwater,inturn,increasedwithincreasingashdepth.Decreasingavailabilityofmagnesium(Mg)andcalcium(Ca)intheupper12inchesofsoilmayhaveconstrainedsiteproductivitywithincreasingashdepth.SoilmineralizableNandammoniumNwereunaffectedbyashpresenceordepthbutdidvarybyunderlyingparentmaterial.SiteproductivityandNfertilizerresponsevariedbyunderlyingparentmaterialevenafteraccountingforashpresence.Standvolumeresponsetosulfur(S)fertilizationdecreasedwithincreasingashdepth,suggestingpossibleSadsorptionbyashcap.NogrowthresponseorchangeinfoliarKstatuswasdiscernedfollowingKfertilization.Managementrecommendationsbyparentmaterialareprovided.

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland

    NorthwestMariann T. Garrison-Johnston, Peter G. Mika, Dan L. Miller, Phil Cannon, and

    Leonard R. Johnson

    Background

    Availabilitytoplantsofmostnutrientsbesidesnitrogen(N)isrelatedprimarilytomineralweatheringratesandsoilphysicalandchemicalproperties.CommonparentmaterialsofsoilsintheInlandNorthwestincludetheColumbiaRiverbasaltflows,BeltSeriesmetasedimentaryrocks,granites,andvariousglacialdeposits.Characteristicsthatthesematerialsimparttofor-estsoilssignificantlyaffectforestnutrition,productivityandresponsetofertilization(MooreandMika1997;Mooreandothers2004).However,surficiallydepositedparentmaterialsareoftenneglectedduringanalysesofparentrockeffectsonforestnutrition.ThisisparticularlytrueforwidespreadvolcanicashresultingfromtheeruptionofMountMazama(nowCraterLake)insouthwesternOregon.Theeffectsofsurficiallydepositedparentmaterialsonforestnutrition,productivityandresponsetofertilizationarepoorlyunderstood.

  • 1�� USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    Ash-capsoilscommontotheInlandNorthwestareknownfortheircapabilitytoholdampleavailablemoisture,whichinturnisthoughttoenhancesitepro-ductivity (BrownandLowenstein1978;Mital1995).Becauseof theimprovedsoilmoisturestatus,foreststandsgrowingonash-capsoilsaregenerallyexpectedto show greater growth response to nitrogen (N) fertilization than stands onsoilswithoutashcap,atleastsolongassomeotherfactorisnotmorelimitingthan moisture and/or N. In a study of 90 Douglas-fir fertilization trial standsacrosstheInlandNorthwest,Mital(1995)foundapositivecorrelationbetweenDouglas-firgrowthresponsetoNfertilizationandashdepthatanapplicationrateof400lbac–1,whiletherelationshipwaslessstrongwhentheapplicationratewas200lbac–1.Inanotherstudy,Geist(1976)reportedthatforageproductiononvolcanicashsoilsshowedstrongfertilizationresponseonforestedrangesitesineasternOregonandWashington.

    Withoutfertilizersorblendingwithorganicmatter,unweatheredash-capsoilsarenotparticularlyfertile,beingcomprisedlargelyofpoorlycrystallinealumi-nosilicatesandiron(Fe)andaluminum(Al)oxides.Theirnutrientcationstoragecapacity is low, suggesting that supply of the nutrient cations potassium (K),calcium(Ca)andmagnesium(Mg)maybepoor(McDanielandothers2005).Furthermore,stronganionadsorptioncapacitybyvolcanicashmayimpedetreefertilizationresponse.Inastudyofsulfur(S)adsorptionpropertiesofandicsoilsintheInlandNorthwest,Kimseyandothers(2005)suggestthatappliedSfertilizersmaybeineffectiveinincreasingS-availabilitytotreesunlessathresholdsorptioncapacityof theashcapisexceeded.Similar interactionsmaybeexpectedfortheanionicformsofotherelements,includingN,phosphorus(P)andboron(B).Suchaphenomenonmayexplain,inpart,thevariablerelationshipbetweenashcapdepthandN-fertilizationratesdescribedbyMital(1995),ifsomethresholdsorptioncapacityhadtobemet(suchasatthe400lbrate)beforetheappliedNbecameavailabletotheforestvegetation.Theashcapmaytakeonnutritionalcharacteristicsofunderlyingresidualsoils,thoughthisperceptionhasnotbeenscientificallytested.

    AstatisticalanalysisofdatafromnutritionalresearchconductedbytheInter-mountainForestTreeNutritionCooperative(IFTNC)from1980tothepresentwasundertakentodeterminewhetherashdepositsaffectedtreeandsoilnutrition,for-estproductivityandfertilizationresponse.Wehypothesizedthatsiteproductivityandfertilizerresponsewouldbegreateronashsitesthannon-ashsitesandthatproductivityandresponsewouldincreasewithincreasingashdepth.

    Methodology ___________________________________________________

    Data Compilation

    Data from139 IFTNC research siteswere compiled.Thedata set included94sitesfromthe1980-1982Douglas-firStudy,8siteseachfromthe1991and1993MixedConiferStudies,and29sitesfromthe1994-1996ForestHealthandNutritionStudy(table1).Soilprofiledescriptionswereusedtoestimateorganichorizondepth,surficialdepositdepthandresidualsoildepthto36inches.Sur-ficial deposits were categorized as ash, loess, glacial deposits, other modern(quarternaryera)deposits,andtertiarydeposits.Residualsoilswerethosederivedfromthebasegeology.Thedivisionbetweensurficialdepositsandbasegeology

  • 1�9USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Tabl

    e 1—

    List

    of

    sele

    cted

    fer

    tiliz

    atio

    n st

    udie

    s es

    tabl

    ishe

    d by

    the

    Int

    erm

    ount

    ain

    Fore

    st T

    ree

    Nut

    ritio

    n C

    oope

    rativ

    e be

    twee

    n 19

    �0 a

    nd 2

    000.

    R

    egio

    ns r

    efer

    to

    nort

    heas

    tern

    Ore

    gon

    (NE

    OR

    ), ce

    ntra

    l Was

    hing

    ton

    (C W

    A), n

    orth

    east

    ern

    Was

    hing

    ton

    (NE

    WA)

    , cen

    tral I

    daho

    (C ID

    ), no

    rthe

    rn Id

    aho

    (N ID

    ) and

    wes

    tern

    M

    onta

    na (W

    MT)

    .

    No.

    of

    Year

    (s)

    Stan

    d

    Tria

    l nam

    e si

    tes

    esta

    blis

    hed

    com

    posi

    tion

    Reg

    ion

    Trea

    tmen

    ts a

    nd r

    ates

    a

    Dou

    glas

    -fir

    trial

    s 94

    19

    �0-1

    9�2

    Dou

    glas

    -fir

    C ID

    , C W

    A,

    cont

    rol;

    200

    lb N

    ; 400

    lb N

    N

    E W

    A, N

    E O

    R,

    N ID

    , W M

    T

    Um

    atill

    a m

    ixed

    con

    ifer

    � 19

    91

    Mix

    ed c

    onife

    r N

    E O

    R

    cont

    rol;

    200

    lb N

    ; 200

    lb N

    + 1

    00 lb

    S

    Oka

    noga

    n m

    ixed

    con

    ifer

    � 19

    9�

    Mix

    ed c

    onife

    r C

    WA

    co

    ntro

    l; 20

    0 lb

    N; 2

    00 lb

    N +

    170

    lb K

    Fore

    st h

    ealth

    and

    29

    19

    94-1

    99�

    Mix

    ed c

    onife

    r C

    ID, C

    WA

    , NE

    19

    94 (1

    2 si

    tes)

    : c

    ontro

    l; �0

    0 lb

    N; 1

    70 lb

    K; �

    00 lb

    N +

    170

    lb K

    nutri

    tion

    W

    A, N

    E O

    R, N

    ID

    199�

    (12

    site

    s):

    con

    trol;

    �00

    lb N

    ; 170

    lb K

    ; �00

    lb N

    + 1

    70 lb

    K;

    �00

    lb N

    + 1

    70 lb

    K +

    100

    lb S

    19

    9� (7

    site

    s):

    con

    trol;

    �00

    lb N

    ; 170

    lb K

    ; �00

    lb N

    + 1

    70 lb

    K;

    �00

    lb N

    + 1

    70 lb

    K +

    100

    lb S

    + �

    lb B

    + 1

    0 lb

    Cu

    +10

    lb Z

    n +

    0.1

    lb M

    o

    All

    year

    s: A

    dditi

    onal

    N+K

    com

    bina

    tions

    rang

    ing

    from

    0 lb

    N a

    nd

    0 lb

    K to

    �00

    lb N

    and

    �12

    lb K

    , per

    exp

    erim

    enta

    l des

    ign

    a R

    ates

    in lb

    ac–

    1 as

    bro

    adca

    st a

    pplic

    atio

    n

  • 140 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    wasnotalwaysclear.Becausethesoildepthparameterforthisstudywaslimitedto36inches,deepsurficialdepositswereoftentheonlyparentmaterialnoted.Therefore,thebasegeologicparentmaterialcategoriesforthispaperincludedbasalt,granite,sedimentaryrock,metasedimentaryrock,glacialdeposit,tertiarysedimentsandmodernsediments.Ashwasconsideredpresentifitwascontinu-ousandmeasurabletoadepthof1inchorgreater.Admixturesofashandothermaterialswerealsocountedasashcapiftheashwasapredominantandidentifi-ablecomponentofthemix.

    Soilwater-holdingcapacitywasdetermined for theupper24 inchesof thesoil profile on 110 sites. Potential plant-available water was calculated as thedifferenceinmoisture-holdingcapacitybetween1/3and15barsforthosesites.Conventionallaboratorysoiltestswereperformedontheupper12inchesofsoilforall139sites,thoughsometestswereperformedononlyasubsetofthesites.AvailablePandKweretestedusingsodiumacetateextraction,whileNH4+andNO3–wereanalyzedusing2MKClextractionwithanalysisbycolorimetry(CaseandThyssen1996a;CaseandThyssen1996d).Sulfate-sulfurwasanalyzedbycalciumphosphateextractionandionchromatography,andBwasanalyzedbycalciumchlorideextractionandspectrophotometricdetermination(Case1996;CaseandThyssen1996c).ExtractableCa,Mg,KandNawereanalyzedby1NammoniumacetateextractionandICP,andmicronutrientsCu,Zn,MnandFebyDTPA(CaseandThyssen1996b;CaseandThyssen2000).

    Twodifferentapproacheswereusedtoestimatesiteproductivity.Thefirstap-proachutilizedDouglas-firsiteindex(SI,Monserud1984),availablefor110ofthe139sites.Wealsoselectedcontrolplotgrowthrate(CGR)asaneasilycal-culatedproductivityestimateavailableforallsitesincludedinthestudy.Controlplotgrowthratewasestimatedastheaveragegrowthrateinft3ac–1yr–1overthefirst6yearsofeachstudy.Fertilizationresponsewasbasedon6-yearcubicfootvolumeresponse(ft3ac–1yr–1)toNfertilizersappliedat200to300lbNac–1.LimiteddatawereavailableforexaminationofvolumeresponsetoSfertilizersappliedat100lbSac–1andKfertilizersappliedat170lbKac–1.

    Treenutritionwasassessedbychemicalanalysisoffoliagecollectedoneyearafterfertilizationfromtheupperthirdofthecrownondominantorco-dominanttrees.Becausefoliagechemistrydiffersfordifferenttreespecies,Douglas-firwasselectedforinclusioninthisanalysisasthespeciesmostcommonlyoccurringacrosstheselectedtestsites.Nutrientdeficiencieswereidentifiedbythecriticallevelsmethod,definedasthepointonayieldcurvewhereanincreaseinnutri-entconcentrationnolongerresultsinincreasedyield.Thus,the“criticallevel”istheoptimumnutrientconcentrationatwhichmaximumyieldisobtainedwithminimumnutrientinput.CurrentlyacceptedcriticallevelsforInlandNorthwestDouglas-firfoliageareshownintable2.

    Data Analysis

    Sites were arrayed in a matrix by geographic region, rock type, vegetationseriesandashcappresenceorabsencetoevaluatesamplesizesineachcategory.Analysisofvariancewasusedtodetecttheeffectsofregion,rocktype,vegetationseriesandashpresenceonsiteproductivity,soilandfoliagecharacteristicsandfertilizationresponse.Thebasicstatisticalmodelusedforthisanalysiswas:

    Yijk=µ+αj+βk+(αβ)jk+εijk (1)

  • 141USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Table 2—Nutritional critical levels for Douglas-fir foliage. Adapted from Webster and Dobkowski (19��).

    Nutrient Unit of concentration Critical levelNitrogen (N) % 1.40Phosphorus (P) % 0.12Potassium (K) % 0.�0Sulfur (S) % 0.11Calcium (Ca) % 0.1�Magnesium (Mg) % 0.0�Manganese (Mn) ppm 1�Iron (Fe) ppm 2�Zinc (Zn) ppm 10Copper (Cu) ppm 2Boron (B) ppm 10

    Where:

    Yijk=theproductivity,soilorfoliagecharacteristicmeasuredateachsiteµ=populationgrandmeanforproductivity,soilorfoliagecharacteristicαj=effectofregion,parentmaterialorvegetationseriesβk=effectofashpresenceorabsence(dummyvariable)(αβ)jk=effectofregion,parentmaterialorvegetationseriesbyashcapinteractionεijk=theerrorterm~NID(0, σ2)

    BecauseCGRwasafunctionofinitialvolume,analysesofCGRincludedinitialvolumeasacovariateintheabovemodel.Similarly,becausefertilizationresponsedependedonstartingvolumeandstandgrowthrate,thosevariableswereusedascovariatesforthatanalysis.Ashdepthasacontinuousvariablewasalsoincor-poratedintotheabovemodeltoperformregressionanalysisoftheeffectsofashdepthonallvariablesexaminedinthisstudy.Resultswereconsideredsignificantatthe90%confidencelevel(p=0.10).

    Results _________________________________________________________

    Ash Distribution

    SitesinnorthIdaho,northeastWashingtonandnortheastOregonweremorelikelytohaveashthansitesincentralWashington,MontanaandcentralIdaho(table3).Sitesontertiarydeposits,metasedimentaryrocksandglacialdepositsweremorelikelytohaveashthanthoseonbasalt,granite,modernsedimentarydepositsandsedimentaryrocks.Almostallwesternredcedarandwesternhemlockvegetationseriesoccurredonsiteswithash,whileonlyabouthalfthegrandfirseriesandaquarteroftheDouglas-firseriesoccurredonsiteswithashcap.Thestatisticaltermforthispatternwherebyashoccursinconjunctionwithcertaincharacteristicsandnotothersisknownas“confounding.”Confoundingbetweenashpresenceandothersitecharacteristicsmakestatisticalanalysisdifficultbecausewecannotdeter-minewhetherproductivityorresponsedifferencesbetweensitesareduetotheashpresence/absenceortheothersitecharacteristic(vegetationseries,parentrockorgeographicregion).Theoccurrenceofashinconjunctionwithcertainparentrocks

  • 142 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    orgeographicregionsislikelycoincidental,whiletheoccurrenceofashinconjunc-tionwithcertainvegetationseriesismoresuggestiveofacausalrelationship.

    Site Productivity

    Douglas-firSIwasanalyzedfor110sites(SIinformationwasnotavailablefortheForestHealthandNutritionStudysites).Overall,SIwas10.6%greateronsiteswithashcapthansiteswithout.BaseparentmaterialexplainedasignificantamountofSIvariation(R2=0.18),andtheadditionofashpresencetothismodelexplainedsomeadditionalvariationinSI(R2=0.28;fig.1a).Onallparentmaterialtypesexceptbasalt,thepresenceofashcapsomewhatincreasedsiteproductivitycomparedtothenon-ashsites.However,givenashpresence,asubsequentregres-sionanalysisrevealednosignificantinfluenceofashdepthonSI(fig.1b).AverageSIdidvarybygeographicregion(fig.1c);however,ashpresenceorabsencedidnotfurtherexplainvariationinSIoncethegeographicregionwasknown.Similarly,whileasignificantamountofvariationinSIwasexplainedbyvegetationseriesalone(fig.1d),ashpresencedidnotexplainanyfurthervariation.

    Controlplotgrowthratewasavailableforall139sitesincludedintheanalysis,andwashighlycorrelatedwithSI(R2=0.59).Overall,CGRwas29.0%greateronashversusnon-ashsites.AshdepthdidnotaffectCGR(fig.2a).Controlplotgrowthratewassignificantlyaffectedbygeographicregion(R2=0.58;fig.2b),

    Table 3—Number of research sites with and without ash cap by region, underlying geology and vegetation series.

    Ash cap present? Percent sites Region no yes Total with ash cap

    North Idaho � 2� �1 �4%Northeast Washington � 17 2� 74%Northeast Oregon 7 10 17 �9%Central Washington 2� 11 �4 �2%Montana 14 2 1� 1�%Central Idaho 17 1 1� �% Underlying geology

    Tertiary deposits 1 � 7 ��%Metasedimentary rocks � 20 2� 71%Glacial deposits � 17 2� ��%Basalt 2� 1� �� �4%Granite 1� 9 27 ��%Modern deposits 7 2 9 22%Sedimentary rocks � 0 � 0%

    Vegetation series

    Western red cedar 1 22 2� 9�%Western hemlock 1 � � ��%Grand fir 29 24 �� 4�%Subalpine fir � 2 � 40%Douglas-fir �� 14 �2 27% Total sites with and without ash cap: 72 67 139 48%

  • 14�USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Figure 1a—Douglas-fir site index by base parent material and ash cap presence. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 1b—Douglas-fir site index (ft at �0 years) by ash cap depth for sites with ash cap.

    Figure 1d—Douglas-fir site index by vegetation series. Vegetation series include Douglas-fir (DF), grand fir (GF), subalpine fir (SAF), western hemlock (WH) and western red cedar (WRC).

    Figure 1c—Douglas-fir site index by geographic region. Regions include central Idaho (C ID), central Washington (C WA), Montana (MT), north Idaho (N ID), northeast Oregon (NE OR) and northeast Washington (NE WA).

  • 144 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    vegetation series (R2=0.59; fig. 2c) and dominant parent material (R2=0.46;fig.2d).Ashpresencedidnotexplainanyadditionalvariationforthegeographicregionorthevegetationseriesmodels.However,ashpresencedidexplainsomeadditionalvariationinCGRintheparentmaterialmodel(R2=0.57;fig.2e).TheresultsweresimilartothoseforSI,withashpresencesomewhatincreasingCGRformostparentmaterials.AlsosimilartoSI,onceashwaspresentCGRdidnotchangewithashdepth.

    Site Fertility

    Soil moisture—Siteproductivityincreasedwithincreasingpotentiallyavailablewater(fig.3a).Potentiallyavailablewater,inturn,increasedwithincreasingashdepth.Whenarrayedbyvegetationseries,potentiallyavailablewaterwasgreater

    Figure 2a—Control plot growth rate by ash cap depth for sites with ash cap.

    Figure 2b—Control plot growth rate (ft�ac –1yr –1) by geographic region. Regions include central Idaho (C ID), central Washington (C WA),Montana (MT), north Idaho (N ID), northeast Oregon (NE OR) and northeast Washington (NE WA).

  • 14�USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Figure 2e—Control plot growth rate ft�ac –1yr –1) by base parent material and ash cap presence. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), mod-ern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 2c—Control plot growth rate (ft�ac –1yr –1) by vegetation series. Vegetation series include Douglas-fir (DF), grand fir (GF), subalpine fir (SAF), western hemlock (WH) and western red cedar (WRC).

    Figure 2d—Control plot growth rate ft�ac –1yr –1) by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedi-mentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 14� USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    onsitesonwesternredcedarseriescomparedtositesonDouglas-firandgrandfirseries(fig.3b).Whenarrayedbyparentmaterial(fig.3c),siteswithashcapsonbasaltandmetasedimentaryparentmaterialsaveragedhigherpotentialwateravailabilitythanthoseongraniteandglacialtillparentmaterials.However,whenashwasabsent,sitesonglacialtillparentmaterialshadhigherpotentiallyavail-ablewaterthansitesonmetasedimentaryorgraniticrocks.

    Soil Acidity—SoilpHdatawereavailablefor135sites.Overall,pHincreasedwithincreasingashdepth.VegetationserieshadasignificanteffectonpH,withsitesonsubalpinefirserieslessacidthanthoseongrandfirorDouglas-firseries,whichinturnwerelessacidthansitesonwesternredcedarorwesternhemlockseries (fig. 4a). Parent material also affected soil pH, but interacted with ash

    Figure 3a—Control plot growth rate ft�ac –1yr –1) and Douglas-fir site index (ft at �0 years) as a function of potential available water (inches) in the upper 24 inches of soil.

    Figure 3c—Potentially available water (inches) in the upper 24 inches of soil as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite and metasedimentary (metased).

    Figure 3b—Potential available water (inches) in the upper 24 inches of soil as a function of ash depth (inches), by vegetation series. Vegetation series include Douglas-fir (DF), grand fir (GF) and western red cedar (WRC).

  • 147USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    depth(fig.4b).Soilaciditydecreasedwithincreasingashdepthongraniteandperhapsbasaltparentmaterials,andincreasedwithincreasingashdepthonter-tiarysediments,butshowedlittlevariationwithashdepthonotherunderlyingparentmaterials.Intheabsenceofash,soilaciditywasaboutthesameforallunderlyingparentmaterials.

    Nitrogen—Soil mineralizable N data were available for 119 sites, whileammonium-Ndatawereavailable for45sitesandnitrate-Ndata for44sites.Noneof these threemeasuresofsoil-availableNvariedwithashpresenceordepth.However,twoofthevariables,soilmineralizableNandammonium-N,variedbyparentmaterial(fig.5aand5b).Bothmeasuresshowedhighervaluesonmetasedimentaryandtertiarydepositparentmaterials,andlowervalueson

    Figure 4a—Soil pH by vegetation series. Vegetation series include Douglas-fir (DF), grand fir (GF), subalpine fir (SAF), western hemlock (WH) and western red cedar (WRC).

    Figure 4b—Soil pH as a function of ash depth (inches) and base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 14� USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    graniticandbasalticmaterials.InanefforttodeterminewhyparentmaterialwouldaffectsoilmineralizableN,severaladditionalstatisticalanalyseswereperformedusingdataonpercentorganicmatter(29sites)andpercentcarbon(90sites).Min-eralizableNwasstronglyandpositivelycorrelatedwithbothsoilorganicmatter(R2=0.69)andsoilcarbon(R2=0.68),suggestingthatparentmaterialcouldaffectsoilmineralizableNbyaffectingsoilorganicmatterand/orcarboncontent.

    FoliarNconcentrationsofunfertilizedDouglas-firtreeswerebelowthecriticallevelof1.4%formostsites,andweregenerallyunaffectedbyashpresenceordepth.However,foliarNwasaffectedbyunderlyingparentmaterial,withtreesonbasaltparentmaterialsshowinghigherfoliarNconcentrationsthantreesonotherparentmaterialtypes(fig.5c).ExaminationofSIasafunctionoffoliarNshowedapositiverelationship(R2=0.28;fig.5d).Theslopeoftherelationshipdidnotvarybyunderlyingparentmaterial,butSIwashigherontertiarysedimentsandmetasedimentaryrocks.FoliageNconcentrationswerealsoanalyzedasafunctionofsoil-available(mineralizable)N,withtheexpectationthatfoliageNlevelswouldincreasewithincreasingsoilmineralizableNlevels.However,thecorrelationwasveryweak(R2=0.05).Amodelcombiningtheeffectsofrocktype,mineralizableNandelevationbetterdescribedvariationinfoliageN(R2=0.27),withfoliageNpositivelyrelatedtomineralizableNandnegativelyrelatedtoel-evation.Interestingly,thismodelshowedthattreesonbasalt,sedimentaryrockormodernsedimentshadhigherfoliarNconcentrationsthanthoseonglacialtillsormetasedimentaryrocks.Othersitefactorsincludingsoilfertility,soilwaterpotential,aspectandslopewerenotrelatedtofoliageN,andfoliageNdidnotvarybyvegetationtypeorgeographicregion.ThissuggestedthatunderlyingrockdidsomehowinfluencefoliageNnutrition.

    Cations—Extractablecationdatafromsoilsamplesfrom119sitesindicatedthatextractableKwasnotaffectedbyashcappresenceordepth,butwasaffectedbyunderlyingparentmaterial(fig.6a).ExtractableCaandMgbothdecreasedwithincreasingashdepth(Ca:R2=0.30,fig.6bandMg:R2=0.33,fig.6c).Giventhesamedepthofash,CaandMgwerelowestonsiteswithgraniticparentmateri-alsandhighestonbasaltandmetasedimentaryparentmaterials.Incontrastto

    Figure 5a—Soil mineralizable nitrogen (N, ppm) by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedi-mentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 149USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Figure 5b—Soil ammonium-nitrogen (NH4-N, ppm) by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 5d—Site index (ft�ac –1yr –1) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 5c—Douglas-fir foliar nitrogen (N) con-centration (percent) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 1�0 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    soilK,Douglas-fir foliarKwasunaffectedbyunderlyingparentrock,butwasconsistentlyhigherinthepresenceofash(fig.6d).Onceashwaspresent,ashdepthhadnoeffectonfoliarK.Douglas-firfoliarCa(fig.6d)andMg(fig.6e)concentrationsbehavedsimilarlytosoilavailabilityinthatbothdecreasedwithincreasingashdepth.UnderlyingparentmaterialdidnotaffectfoliarCaorMgvalues.FoliarK,CaandMgconcentrationsweregenerallyabovenutritionalcriti-callevels(table2).

    Phosphorus—Soil-availablePdatawereavailableforonly45sites.Soil-availablePwasnotaffectedbyashpresenceordepth,butwasaffectedbyparentmaterial(fig.7a),withglacialdepositsshowingthehighestPavailabilityandmetasedi-mentaryrocksthelowest.Douglas-firfoliarPvaluesweregenerallyabovecriti-callevels(table2),andwerealsounaffectedbyashpresenceordepth.FoliarPconcentrationsdifferedbyparentmaterial,andwerehighestonglacialdeposits

    Figure 6a—Extractable potassium (K, cmol kg–1) by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 6b—Extractable calcium (Ca, cmol kg–1) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 6c—Extractable magnesium (Mg, cmol kg–1) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial de-posit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 1�1USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Figure 6f—Douglas-fir foliar magnesium (Mg) concentration (percent) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedi-mentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 6d—Douglas-fir foliar potassium (K) concentration (percent) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedi-mentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 6e—Douglas-fir foliar calcium (Ca) concentration (percent) as a function of ash depth (inches), by base parent material. Parent materi-als include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 1�2 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    andlowestonmetasedimentaryrocks(fig.7b).NeitherfoliarPconcentrationsnorsoilPtestssuggestedanyeffectofashonPavailabilityduringthisstudy.

    Sulfur, B and Cu—SufficientdatawereavailabletoperformstatisticalanalysesforavailableBandS(45sites)andCu(29sites).Givenashpresence,availableBincreasedwithincreasingashdepth(fig.8a).Therewasnoevidencethatpar-entmaterialorvegetationseriesaffectedsoilBavailability.Incontrast,availableCuwasnotaffectedbyashpresenceordepth,butdidvarybyparentmaterial,ranging from0.46ppmongranitic sites to1.03ppmonmodernsedimentary

    Figure 7a—Available phosphorus (P, ppm) by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 7b—Douglas-fir foliar phosphorus (P) concentration (percent) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), granite, metasedi-mentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 1��USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    deposits(fig.8b).Sulfate-Savailabilitywasnotaffectedbyash,parentmaterialorvegetationseries.

    Douglas-firfoliarBvaluesincreasedwithincreasingashdepth,showinggoodagreementwithsoil-availableBtests(fig.8c).FoliarBwasalsoaffectedbypar-entmaterial,rangingfromabout23ppmongraniticrockstoabout29ppmontertiarysedimentsintheabsenceofash.FoliarCuvalues,incontrast,werenotaffectedbyparentmaterialorashpresenceordepth.FoliarBandCuvaluesweregenerallyabovenutritionalcriticallevels(table2).WhilefoliarSconcentrationswereatorabovecriticallevelmostofthetime,Swasthenextmostlikelyele-ment,afterN,toshowdeficiencylevels.

    Figure 8a—Soil available boron (B, ppm) as a function of ash depth (inches).

    Figure 8b—Available copper (Cu, ppm) by base parent mate-rial. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), mod-ern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

    Figure 8c—Douglas-fir foliar boron (B) concentration (ppm) as a function of ash depth (inches), by base parent material. Parent materials include basalt, glacial deposit (glacial), gran-ite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 1�4 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    Fertilization Response

    Nitrogen Fertilizer Response—Acrossallgeographicregions,baseparentma-terialsandvegetationseries,6-yeargrossvolumeresponsetoNfertilizerofstandsonash-capsiteswas49.6%greateronaveragethanfertilizerresponseofstandsonnon-ashsites.However,onceashwaspresent,ashdepthhadnoeffect.Thecombinedeffectofparentmaterialandashpresencemoreeffectivelydescribedvariationinresponsethanashcapalone.Ashpresenceincreasedvolumeresponseby87%onglacialdeposits,76%ontertiarysediments,48%onmodernsedimentsand34%onbasalts(fig.9a).Ashpresencedidnotaffectvolumeresponseonmetasedimentaryorgraniticparentmaterials.Vegetationseriesdidnotdescribeanyadditionalfertilizationresponseonceashpresencewasaccountedfor.Amodelcombiningparentmaterialandvegetationserieswasmoreeffectiveatexplain-ingvariationinresponse(fig.9b)thantheparentmaterialandashmodel.SitesonwesternredcedarvegetationseriesandbasaltorglacialtillparentmaterialsshowedthehighestNfertilizerresponse,whilesitesonDouglas-firvegetationseriesandmetasedimentaryparentmaterialsshowedthelowestresponse,withothersitesfallinginbetween.Eventhoughthisrelationshipbetweenresponseandvegetationseriessuggestedthatsoilmoisturemayaffectresponse,therelationshipbetweenvolumeresponsetoNfertilizationandpotentiallyavailablewaterintheupper24inchesofsoilwasstatisticallynonsignificant.

    VolumeresponsetoNfertilizerdecreasedwithincreasingsoilmineralizableN(R2=0.34;fig.9c)andammonium-N.However,volumeresponsetoNfertilizershowednorelationshiptounfertilizedfoliarNlevels.ChangesinfoliarNcon-centrationcausedbyNfertilizationwereinverselyrelatedtounfertilizedfoliarNconcentrations(fig.9d).Inotherwords,thelowertheuntreatedfoliarNlevels,thegreaterthechangeinfoliarNresultingfromNfertilization.Neitherashpresencenordepthinfluencedthischange,thusthepresenceofashdidnotappeartoaffecttheavailabilityofappliedNtotrees.Furthermore,neithervegetationseriesnorrocktypeaffectedthefertilization-inducedchangeinfoliarNconcentration.

    Figure 9a—Six-year nitrogen (N) fertilization response (ft�ac –1yr –1) by base parent material and ash cap presence. Parent materials include basalt, glacial deposit (glacial), granite, metasedimentary (metased), sedimentary (sed), modern sedimentary deposits (mod sed) and tertiary sedimentary deposits (tert sed).

  • 1��USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Figure 9d—Change in Douglas-fir foliar nitrogen (N) concentration (percent) following N fertilization as a function of control plot (unfertil-ized) foliar N concentration (percent).

    Figure 9b—Six-year nitrogen (N) fertilization response (ft�ac –1yr –1) by base parent material and vegetation series. Parent materials include basalt, glacial deposit (glacial), granite and metasedimentary (metased). Vegetation series include Douglas-fir (DF), grand fir (GF) and western red cedar (WRC).

    Figure 9c—Six-year nitrogen (N) fertilization response (ft�ac –1yr –1) as a function of soil mineralizable nitrogen (N, ppm).

  • 1�� USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    Discussion ______________________________________________________

    Ash distribution

    Ashpresencegenerallyexplainedthesamevariationasgeographicregion,par-entmaterialandvegetationseries.Theconfoundingwithvegetationserieswasnotunexpected.Ithaslongbeenknown,forexample,thatwesternredcedarhabitattypesarehighlylikelytohaveashcap.ItisalsoknownthatashcapismorewidelydistributedinnorthIdaho,northeastWashingtonandnortheastOregonandlesscommonlyfoundincentralWashingtonandcentralIdaho.Theconfoundingofashpresencewithunderlyingparentmaterialtypeisperhapslessintuitive,butislikelyrelatedtothegeographicdistributionofthoseparentmaterials.Siteslocatedontertiarysedimentarydeposits,metasedimentaryrocksandglacialdepositsaremorelikelytooccurinnorthIdahoandnortheastWashington,whilesiteslocatedonbasalts,granites,moderndepositsandsedimentaryrocksaremorelikelytooccurincentralWashingtonandcentralIdaho.

    Site Productivity

    WhileSIwasavailableforonly110sitesandCGRforall139sites, thetwovariableswerehighlycorrelated(R2=0.59),suggestingthatbothvariablesbehavedsimilarlyasdescriptorsofsiteproductivity.Forbothvariables,ashpresenceatadepthof1inchorgreatersignificantlyincreasedsiteproductivityrelativetonon-ash sites. The increasewasgreater forCGR, suggesting that this variablewasamoresensitiveindicatoroftheeffectofashpresenceonsiteproductivity.However,additionalashdepthhadnoeffectoneitherofthesiteproductivityvariables.Thus,onceashwaspresent,itdidnotappeartomatterhowdeeptheashwasintermsofpredictingsiteproductivity.

    Even though potentially available water was positively correlated with ashdepthandsiteproductivity,siteproductivitywasunaffectedbyincreasingashdepth.Thismeantthatsomethingabouttheashbesidespotentiallyavailablewaterwasaffectingsiteproductivity.Decreasednutrientavailabilitywasonepossiblefactorlimitingsiteproductivity.Foliageandsoil-availableMgandCagenerallydecreasedwithincreasingashdepth.Decreasedavailabilityoftheseelementsonsiteswithdeeperashcapscouldhelpexplainthelackofacorrespondingincreaseinsiteproductivityeventhoughpotentiallyavailablewaterwashigheronsuchsites.PositiverelationshipsbetweenashandnutrientavailabilityofB,PandKsuggestedthat theseelementswerenotlikelygrowth-limitinginthepresenceofash.

    Site Fertility

    Soil Moisture—Potentialavailablewaterisadescriptorofthecapabilityofasitetoretainandsupplymoisturetotheplantsgrowingonthatsite.Potentiallyavailablewaterincreasedwithincreasingashdepth,asseemedreasonablebasedonourexperiencewithash-capsoils.ThefindingthatpotentiallyavailablewaterwasgreateronwesternredcedarseriesthanongrandfirorDouglas-firseriesalso seemed reasonable, given that most western red cedar sites occurred inconjunctionwithash-capsoils.However,variationinpotentiallyavailablewaterbyvegetationseriesandashdepth(fig.3b)suggestedthatsitesonwesternred

  • 1�7USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    cedarvegetationseriesstillhadhigheravailablewaterthansitesongrandfirorDouglas-fir series evenafter accounting for ash.Thus, somethingbesides ashpresenceanddepthaffectedpotentiallyavailablewaterandtheresultingvegeta-tionseries.Factorsbesidesashlikelytoaffectsoilmoistureandvegetationseriesareclimate,soiltemperatureregime,soildepth,soiltexture,parentmaterialandtopographicposition(slope,aspect,andelevation).

    Someofthevariationinpotentiallyavailablewateramongparentmaterialsinthepresenceofashlikelyreflecteddifferencesinunderlyingsoiltextureaswellasashdepth.Basaltandmetasedimentaryrocksweathertofinersize-classsoilswithinherentlyhigherpotentialmoistureavailabilitycomparedtothecoarser-grainedandmorepermeable soilsderived fromgranitic rocksandglacialde-posits.However,theinteractionbetweenashpresenceandparentmaterialwaslesseasilyexplained.Sitesongraniticrocksandglacialdepositsshowedhighermoistureavailabilityintheabsenceofashthaninthepresenceofashallowashlayer(fig.3c).Sitesongraniticrocksneededabout7inchesofashandglacialsitesabout16inchesofashtoachievethesamepotentiallyavailablemoistureasthenon-ashsitesonthesesamerocktypes.Aftermeetingthesethresholdlevels,potentiallyavailablemoisturecontinuedtoincreasewithincreasingashdepthonbothrocktypes.Perhapssomedegreeofsoilmixingoccurredbetweenashandtheunderlyingresidualsoilsthatnegativelyimpactedmoisture-holdingcapacityattheshallowerashdepths.

    Soil Acidity—SoilpHtendedtoincreasewithincreasingashdepth.However,acomplexrelationshipbetweenparentmaterialandashdepthsuggeststhatthisincreasewasdrivenprimarilybydatafromsitesongraniticandbasalticsubstrates,whereincreasingashdepthledtoincreasedpH.Onallotherparentmaterials,whichweresedimentaryinorigin,ashdepthhadnoeffectonsoilpH.Therea-sonsforthisbehaviorarenotentirelyclear.SoilpHlevelsoftheresearchsitesincludedinthisstudywerewithinarangewherenutrientavailabilityanduptakeofappliedfertilizerelementsshouldnotbeadverselyaffected.

    Nitrogen—FoliarandsoilmeasuresofNavailabilitysuggestedthatNwasaffectedbyparentmaterial,butunaffectedbyashpresenceordepth.Soilmineraliz-ableNandavailableammonium-Nwereconsistentlyhigheronmetasedimentaryandtertiarydepositsitesandlowerongraniticandbasalticsites.Incontrast,foliaranalysessuggestedthatNuptakewasgreatestonsiteswithbasaltparentmaterials.Thissuggeststhattreesgrowingonbasaltparentmaterialswerebet-terabletotakeadvantageofsoil-availableNthantreesonotherrocktypes,orconverselythattreesonmetasedimentaryandtertiarysedimentarydepositswerelessabletoutilizesoil-availableN.

    Reasonsforthecontrastingeffectsofparentmaterialonsoil-availableNpoolswerenotclearfromthisanalysis.ParentmaterialcouldpositivelyaffectNsupplybyimpartingsoiltexturalorchemicalconditionsthatareconducivetoincreasedN-mineralizationrates.Conversely,parentmaterialmaynegativelyaffectplantuptakeofNthroughintroductionofamoresignificantgrowth-limitingfactor,suchaslowmoistureavailability(affectedbysoiltexture)orlownutrientavailability(affectedbyparentmaterialmineralogy).EitherscenariocouldcontributetoanincreaseinthesoilmineralizableNpool.MineralizableNwasstronglycorrelatedwithsoilorganicmatterandsoilcarbon,suggestingthatN-mineralizationrateswerealsogovernedbyorganicmatteravailability.Climaticconditionsmayaffectorganicmatterproductionbyaffectingproductivityand/orbyaffectingconditions

  • 1�� USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    conducivetoNmineralization.WhilefoliarNwasonlyweaklycorrelatedwithmineralizableN,itwasnegativelycorrelatedwithelevation,suggestinggreaterNavailabilityonwarmer,lowerelevationsites.Othersitefactorsincludingsitefertility,soilwaterpotentialandtopographicfactorshadnoeffectonfoliageNconcentrations.

    Cations—LikeN,cationswerealsoaffectedbybaseparentmaterials,thoughinamorepredictablefashion.Intheabsenceofash,soil-extractableCaandMgconcentrationsintheupper12inchesofsoilwerehigheronbasaltparentmaterialsandlowerongranites.BecausebasaltsarehigherinCa-andMg-bearingmineralsthangranites,thisfindingisplausible.However,onceashwaspresent,availableCaandMgdecreasedwithincreasingashdepthonbothbasaltsandgranites.ThissuggeststhatCaandMgstorageinashispooreveninthepresenceofCa-andMg-richunderlyingparentmaterials,andthatsoilCaandMgavailabilitymaybeloweronsiteswithdeeperashcaps.Thismayreflectthedilutionofresidualsoilswithincreasingashpresence,andaresultingdilutionofCaandMgpoolsintheupper12inchesofsoil.Foliarchemistryalsosuggestedthatplantuptakeofbothelementsdecreasedatincreasingashdepths.

    IncontrasttoCaandMg,soil-extractableKwasunaffectedbyashpresenceordepth,andwasonlyaffectedbyparentmaterial.Theparentmaterialeffectwasdrivenbybasalt,whichshowedhigherextractableKthanotherrocktypes.However,foliarKwasunrelatedtoparentmaterial,andwaspositivelyaffectedbyashpresence(butnotaffectedbydepth).Thelackofarelationshipbetweensoil-extractableKandfoliarKcouldindicatethateitherthesoilorfoliartestforKwasinadequate.TheseresultscouldalsosuggestthatashpresencesomehowfacilitatedtreeuptakeofK,eventhoughsoil-extractableKappearedunaffectedbyashpresence.ThismayalsobeanindicatoroflowcationretentionbyashsoilsandthehighmobilityoftheK+ion.

    Phosphorus—DespiteconcernsofpossiblePadsorptionbyashsoils,soilandfoliartestssuggestedthatPavailabilityanduptakewereunaffectedbyashpresenceordepth.Onallsites,foliarPconcentrationswereatorabovenutritionalcriticallevels,suggestingthatsufficientPwasavailablefortreegrowthandfunction.

    Boron, Cu and S—Boronshowedincreasingsoilavailabilityandfoliarconcen-trationwithincreasingashdepth.ThispositiverelationshipsuggeststhatashmayprovideefficientstorageforB,andalsothatashdoesnotadsorbBtoanextentthatmakestheBunavailableforplantuptake.AshdidnotaffectsoilorfoliarCuvalues.Soil-availableCushowedsomevariationbyparentmaterialthatwaslikelyrelatedtotracemineralsinthevariousparentmaterials.However,therewaspooragreementbetweensoil-availableandfoliarCuconcentrationsinthatfoliarCushowednocorrespondingparentmaterialeffect.Soil-availableSwasunaffectedbyashpresenceordepth,orbyparentmaterial.

    Fertilization Response

    Nitrogen—Overall,volumegrowthresponsetoNfertilizationwasmuchbetteronsiteswithashthanonsiteswithout.IncludingbaseparentmaterialinthemodelwithashcontributedanadditionaldegreeofpredictabilityofvolumeresponsetoNfertilization.Ashwasparticularlyvaluableinincreasingfertilizationresponseonthesedimentarydeposits(includingglacialdeposits)andsomewhatlesssoonthebasalt,graniteandmetasedimentaryrocks.

  • 1�9USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    TherelationshipoffertilizationresponsetosoilmineralizableNsuggestedthatthelowerthemineralizableN,thehigherthefertilizationresponse.Thissupportsthe idea thatN-deficient sites should showahigherdegreeof response toNfertilization.Similarly,thechangeinfoliarNconcentrationfollowingfertilizationshould indicate theeffectivenessof the fertilization treatment inchanging theamountofNavailabletothetreesforgrowth.However,unfertilizedfoliarNcon-centrations,whileinverselyproportionaltothechangeinfoliarNconcentrationfollowingNapplication,didnotshowanyrelationshiptofertilizationresponse.Thus,whilelowerfoliarNlevelswerepredictiveofagreaterincreaseinfoliarNafterfertilization,theywerenotnecessarilypredictiveofagreaterNfertilizationresponse.IncreasesinfoliarbiomassfollowingNfertilizationhavebeenshowntobemorepredictiveoffuturevolumeresponsethanchangesinNconcentrationalone(WeetmanandFournier1986;HasseandRose1995;Brockley2000).

    Sulfur and K—SiteswithashgenerallyrespondedbettertoSfertilizationthanthosewithout.However,onceashwaspresent,thetrendwasdecreasingresponsewithincreasingashdepth,suggestingpossibleSadsorptionbyash-capsoils.Noevidencewas foundtosuggest thatashpresenceaffectedgrowthresponseorfoliarKstatusfollowingKfertilization.

    Nutritional Characteristics of Ash

    Anionadsorptionmaybeanissueofconcerninashsoilsduetothecharacter-isticvariablechargeofash(McDanielandothers2005;Kimseyandothers2005).ThedecreaseintreegrowthresponsetoSfertilizationwithincreasingashdepthsuggestspossiblesulfateretentionbyashsoils.HowevernoevidenceofnitrateretentionappearedfollowingNapplicationasureaorammonium.Foliar testssuggestedthatappliedNwastakenupbythetrees,and6-yeargrowthresponsesuggeststhatN-fertilizationdidincreasebiomassandvolumeproduction.Phos-phorusandBwerenotappliedduring these fertilization trialsbecause foliagetestsindicatedthattheseelementswerenotdeficient.Ourresultsalsosuggestedthatashdidnothaveanyeffectonsoil-availableorfoliarP,implyingthatPisnotlikelyagrowth-limitingelementonash-capsoils.Boronavailabilityappearedtoincreasewithincreasingashdepthaccordingtobothsoil-availableandfoliagetests.WhileinsufficientdatawereavailabletotestforthefateofBfollowingap-plication,Badsorptiondidnotseemtobeagrowth-limitingcharacteristicofashsoilsduringthisanalysis.

    Theinabilityofpure,unweatheredashtostoreandsupplycationsmayalsobeanissueofconcerninandicsoils(McDanielandothers2005).Despitethedegreeofmixingandweatheringexhibitedbytheash-capsoilsinourstudy,storageandsupplymaystillhavebeenanissueforMg2+andCa2+.Bothelementsshoweddecreasedsoilavailabilityandfoliarconcentrationwithincreasingashdepth.ThisoccurredevenwhentheunderlyingparentmaterialswerehighinCaandMg,suggestingpossibledilutionofresidualsoilnutrientpoolsbyash.Incontrast,soil-extractableKwasunaffectedbyashpresenceordepth,andwasonlyaffectedbyparentmate-rial.Thus,ashsoilsappearedcapableoftakingontheKcharacteristicofunderlyingparentmaterial,butnottheCaorMgcharacteristic.ThiscouldoccurbecauseK+isamoremobileionandislikelytobetakenupbyplantsanddepositedonthesoilsurface.Also,foliarKwaspositivelyaffectedbyashpresence,suggestingthatashsoilswerebetterabletosupplyK,thoughnotnecessarilystoreit,comparedtonon-ashsoils.Thus,cationstorageandsupplyornutrientpooldilutionofthe

  • 1�0 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    divalentcationsappearedpotentiallyproblematicinashsoils,whilethemonovalentKionwaslessaffectedbyashretentionanddilutionissues.

    Management Recommendations _________________________________Site Nutrition and Nutrient Management

    “Nutrient management” refers to silvicultural activities as they affect thenutrientcapitalofaforeststand.Itcanincludefertilizationtreatmentsandac-tivitiesthatretainnutrientsonsiteduringsilviculturalactivities.Becausemostnutrientsareheldinlimbsandfoliage(Coleandothers1967;Pangandothers1987;Millerandothers1993;Moller2000),aconservativenutrientmanage-mentstrategywouldbetoleavethetopsandlimbsofharvestedtreeson-sitethroughavarietyofbole-onlyharvestingtechniques.Whole-treeoperationsinlatefallandwinter,whenbreakageismorelikely,shouldalsobeeffectiveatretainingsomenutrientsonthesite.Speciesdifferinnutrientdemand(Gordon1983;Gowerandothers1993;Millerandothers1993;Mooreandothers2004).Therefore,plantingnutritionallychallengedsiteswithless-demandingspeciesand favoring less-demanding species during silvicultural operations are alsoconservativenutrientmanagementstrategies.

    Testsoffoliageandsoilchemistrymaybeperformedassitespecificindicatorsofproductivityandpotentialfertilizationresponse.FoliarNwasabetterpredictorofsiteproductivity,whilesoilmineralizableNwasabetterpredictoroffertilizerresponse.Ifsatisfactoryinformationonsiteproductivityisavailableandtheparentmaterial/ashcombinationsuggeststhatthesitemayberesponsivetofertilization,managersshouldconsiderfocusingontestsofsoilmineralizableN.Ifmineraliz-ableNisbelow70ppm,thesiteshouldshowa6-yearvolumeresponseof10%ormore,withthepotentialresponseincreasingasmineralizableNdecreases.FoliarNmaybetestedasanindicatorofoverallsiteproductivity;however,theeffortandexpenseofthistestmakeitlessdesirablethanperformingsimplesiteheight/agemeasurements.

    Nutrient Management Recommendations by Parent Material and Ash Presence

    Basalts, Glacial and Modern Deposits—Sitesonbasalts,glacialdepositsandmodern sedimentarydeposits showednochange in siteproductivity in termsofCGRinthepresenceofash.Howeverthesesitesdidshowmoderate(basaltandmodernsedimentary)tohigh(glacialdeposit)increasesinvolumegrowthresponsestoNfertilizationwhenashwaspresent.ThissuggeststhatsitesontheseparentmaterialsshouldrespondreasonablywelltoNfertilizationwithoutash,andrespondevenbetterwhenashispresent.Therewasweakevidencethatonbasaltparentmaterials,thepresenceofashinhibitedvolumeresponsetoSfertiliza-tion.However,otherIFTNCstudieshaveshownthatSissometimesnecessarytostimulateagrowthresponsetoNfertilizationonbasaltparentmaterials(Garrisonandothers2000).WhileallparentmaterialsinthiscategoryshouldrespondwelltofertilizationwithNonly,strongergrowthresponsesmightbeinducedbymulti-nutrientfertilizationthatincludesS.Conservativenutrientmanagementstrategiesshouldbeevaluated,butmaybelesscrucialontheseparentmaterialscomparedtootherparentmaterials.

  • 1�1USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Metasedimentary and Granite—Metasedimentaryparentmaterials showedrelatively lower site productivity and granites showed moderate productivitycomparedtootherparentmaterials.Siteproductivityincreasedinthepresenceofashonbothparentmaterialtypes,withmetasedimentaryproductivitydoublingintermsofCGR.However,N-fertilizerresponsewasunaffectedbyashpresenceforeitherparentmaterial.Thissuggeststhat(1)treesgrowbetteronmetasedimentaryandgraniticrockswhenashispresent,and(2)fertilizationwithNalonewillnotincreaseproductivityonashsitesoverthatofnon-ashsitesonmetasedimentaryorgraniticrocks.TherewasweakevidencethatmetasedimentaryandgraniticsiteswithashmayrespondpositivelytoSfertilization.Preliminaryresultsofre-centfertilizationscreeningtrialsonbothparentmaterialtypesshowedgenerallypoorgrowthresponsetofertilizationwithNalone,andstrongerresponsetoacombinedtreatmentofN,K,S,andBwhenashwaspresent(Garrison-Johnstonandothers2005,unpublisheddata).Thus,multinutrientfertilizationismorelikelytostimulategrowthresponseonashsoilsonmetasedimentaryandgraniticparentmaterials.Generalnutritionalchallengesofthesesitessuggestuseofconservativenutrientmanagementstrategies.

    Tertiary Sedimentary Deposits—Tertiarysedimentaryparentmaterialsbehavedsomewhatdifferentlythantheotherparentmaterialsinthatbothsiteproductiv-ityandNfertilizationresponsewereenhancedinthepresenceofash.Becausetheavailabledatafortertiarysedimentarysiteswassparse,theseresultsforthisdeposittypeshouldbeviewedcautiously.However,thissuggeststhatifstandsontertiarysedimentsaregrowingwell,theyshouldrespondwelltoNfertilizationintheabsenceofash,andevenbetterwhenashispresent.Somecautionshouldbeexercisedinapplyingfertilizer,however,asfieldexperiencehasalsoshownthattertiarysedimentarydepositscaninherentlybequitevariableincomposition.Pendingfurtherinvestigation,useofconservativenutrientmanagementstrategiesisalsorecommended.

    Conclusions _____________________________________________________Standproductivitywasgreateronsiteswithashcapthanonsiteswithout;how-

    everonceashwaspresent,changesinashdepthdidnotaffectsiteproductivity.Becauseashpresenceorabsencetendedtocoincidewithparticularvegetationseriesandgeographicregions,ashpresencedidnotfurtherexplainvariationinsiteproductivitybeyondthatdescribedbythosevariables.Whileashpresencealsotendedtocoincidewithparticularparentmaterialtypes,ashpresencestillexplainedsomevariation insiteproductivitybeyond thatexplainedbyparentmaterial.Ashpresencewasmostlikelytoincreasesiteproductivityonmetasedi-mentaryrocks,granitesandperhapstertiarysediments.

    Althoughsiteproductivitywaspositivelycorrelatedwithpotentiallyavailablewaterandpotentiallyavailablewaterwaspositivelycorrelatedwithashdepth,therewasnocorrelationbetweensiteproductivityandashdepth.Thissuggeststhatsomethingelseabouttheash,suchaspoornutrition,affectedproductivity.Soil-availableandfoliarMgandCadecreasedwithincreasingashdepth.Thus,whileincreasingashdepthmayhaveapositiveeffectonsoilmoisturepotential,itmayhaveanegativeeffectonnutrientavailability,particularlyforMgandCa,andthereforeonsiteproductivity.

  • 1�2 USDA Forest Service Proceedings RMRS-P-44. 2007

    Garrison-Johnston, Mika, Miller, Cannon, and Johnson Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest

    SoilNavailability (mineralizableandammonium)and foliageNconcentra-tionswerenotaffectedbyashpresenceordepth,butwereaffectedbyparentmaterial.Reasonsfortheparentmaterialeffectwerenotentirelyclear,howeverthesiteproductivityandsoil texturalandchemicalconditionsassociatedwithparticularunderlyingparentmaterialslikelyaffectedorganicmatterproductionandcycling.SoilorganicmatterandcarboncontentwerehighlycorrelatedwithsoilNavailability.ClimateandelevationlikelyinteractedwithparentmaterialstohaveaneffectonNavailability,aswell.

    Possiblenutrientadsorptionandsupplybyashwerealsoconsidered.AdsorptionofappliedNdidnotappeartooccurinash-capsoilsinthisstudy.Incontrast,decreasing growth response to S-fertilization at greater ash depths suggestedthatadsorptionofappliedSmayhaveoccurred.Foliageandsoil-availabilityofPandBeithershowednochange(P)orincreasedavailability(B)withincreasingashdepth,suggestingthatavailabilityoftheseelementsmaynotbeanissueofconcerninash-capsoils.LackofsoilMgandCastorageandsupplyatgreaterashdepths,orperhapsdilutionofMgandCasupplybyincreasingquantitiesofash,didappeartooccur.SoilKwasunaffectedbyashpresenceordepth,whilefoliarKconcentrationsincreasedwhenashwaspresent,suggestingthatKsupplywasperhapsenhancedbyashpresence.

    Averagevolumeresponse toN fertilizationwasalmost50%greateronashcomparedtonon-ashsites.Howeverchangesinashdepthdidnotfurtheraffectvolumeresponse.AshpresenceincreasedvolumeresponsetoNfertilizationonglacialdeposits, tertiarysediments,modernsedimentsandbasalts,butnotongraniteormetasedimentaryparentmaterials.Volumeresponsewasgreatestonwesternredcedarvegetationseries,followedbygrandfirandthenDouglas-firvegetationseries.Howeverashpresenceordepthdidnotfurtheraffectvolumeresponseoncevegetationserieswasknown.Parentmaterialcombinedwithveg-etationseriesbestdescribedvolumeresponsetoN-fertilization.

    References ______________________________________________________Brockley,R.P.2000.Usingfoliarvariablestopredicttheresponseoflodgepolepinetonitrogen

    andsulphurfertilization.CanadianJournalofForestResearch.30:1389-1399.Brown,H.G.;Lowenstein,H.1978.Predictingsiteproductivityofmixedconiferstandsinnorth-

    ern Idahofromsoilandtopographicvariables.SoilScienceSocietyofAmerica Journal.48:910-913.

    Case, T. E. 1996. Sulfate-sulfur in soils. Analytical Sciences Laboratory Standard MethodsSMM.85.090.03.Moscow,ID:UniversityofIdaho.4p.

    Case,T.E.;Thyssen,B.C.1996a.Availablephosphorusandpotassiuminsoilssodiumacetatemethod. Analytical Sciences Laboratory Standard Methods SMM.85.050.04. Moscow, ID:UniversityofIdaho.6p.

    Case, T. E.; Thyssen,B.C. 1996b. Extractable andexchangeable cations.Analytical SciencesLaboratoryStandardMethodsSMM.85.100.03.Moscow,ID:UniversityofIdaho.4p.

    Case,T.E.;Thyssen,B.C.1996c.Soilboron,pouchmethod.AnalyticalSciencesLaboratoryStandardMethodsSMM.85.060.02.Moscow,ID:UniversityofIdaho.5p.

    Case,T.E.;Thyssen,B.C.1996d.Soilnitrateandammoniumnitrogenextractionmethod.Analyti-calSciencesLaboratoryStandardMethodsSMM.85.080.03.Moscow,ID:UniversityofIdaho.6p.

    Case,T.E.;Thyssen,B.C.2000.Zn,Mn,Cu,Fe,Pb,Cd,NiandAsinsoils—DTPAMethod.AnalyticalSciencesLaboratoryStandardMethodsSMM.85.110.04.Moscow,ID:UniversityofIdaho.4p.

  • 1��USDA Forest Service Proceedings RMRS-P-44. 2007

    Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest Garrison-Johnston, Mika, Miller, Cannon, and Johnson

    Cole,D.W.;Gessel,S.P.;Dice,S.F.1967.Distributionandcyclingofnitrogen,phosphorus,po-tassiumandcalciuminasecond-growthDouglas-firecosystem.In:Symposiumontheprimaryproductivityandmineralcyclinginnaturalecosystems:proceedings:1967;EcologicalSocietyofAmerica,AmericanAssociationfortheAdvancementofScienceAnnualMeeting:197-232.

    Garrison,M.T.;Moore,J.A.;Shaw,T.M.;Mika,P.G.2000.Foliarnutrientandtreegrowthre-sponseofmixed-coniferstandstothreefertilizationtreatmentsinnortheastOregonandnorthcentralWashington.ForestEcologyandManagement.132:183-198.

    Geist, J.M.1976.ForestedrangefertilizationineasternOregonandWashington.Rangeman’sJournal.3:116-118.

    Gordon,A.G.1983.NutrientcyclingdynamicsindifferingspruceandmixedwoodecosystemsinOntarioand theeffectsofnutrient removals throughharvesting. In:Wein,R.W.;Riewe,R.R.;Methven,I.R.ResourcesandDynamicsoftheBorealZone:proceedings;1982August;Thunder Bay, Ontario. Ottawa, Canada: Association of Canadian Universities for NorthernStudies:97-118.

    Gower,S.T.;Reich,P.B.;Son,Y.1993.Canopydynamicsandabovegroundproductionoffivetreespecieswithdifferentleaflongevities.TreePhysiology.12:327-345.

    Hasse,D.L.;Rose,R.1995.Vectoranalysisanditsusefor interpretingplantnutrientshifts inresponsetosilviculturaltreatments.ForestScience.41:54-66.

    Kimsey,M.;McDaniel,P.;Strawn,D.;Moore, J.2005.Fateofappliedsulfateinvolcanicash-influencedforestsoils.SoilScienceSocietyofAmericaJournal.69:1507-1515.

    McDaniel,P.A.;Wilson,M.A.;Burt,R.;Lammers,D.;Thorson,T.D.;McGrath,C.L.;Peterson,N.2005.AndicsoilsoftheInlandPacificNorthwest,USA:propertiesandecologicalsignifi-cance.SoilScience.170(4):300-311.

    Miller, J.D.;Cooper, J.M.;Miller,H.G. 1993.A comparisonof above-ground componentweightsandelementamountsinfourforestspeciesatKirktonGlen.JournalofHydrology.145:419-438.

    Mital,J.M.1995.Relatingsoil,vegetation,andsitecharacteristicstoDouglas-firresponsetonitrogenfertilizationintheInlandNorthwest.Moscow,ID:UniversityofIdaho.PhDDissertation.

    Moller,I.S.2000.Calculationofbiomassandnutrientremovalfordifferentharvestingintensities.NewZealandJournalofForestScience.30(1/2):29-45.

    Monserud,R.A.1984.HeightgrowthandsiteindexcurvesforinlandDouglas-firbasedonstemanalysisdataandhabitattype.ForestScience.30:943-965.

    Moore,J.A.;Mika,P.G.1997.InfluenceofsoilparentmaterialonthenutritionandhealthofestablishedconiferstandsintheInlandNorthwest.In:Haase,D.L.;Rose,R.ForestSeedlingNutritionFromtheNurserytotheField:proceedings;Corvallis,Oregon:NurseryTechnologyCooperative,OregonStateUniversity:144-153.

    Moore,J.A.;Mika,P.G.;Shaw,T.M.;Garrison-Johnston,M.T.2004.Foliarnutrientcharacter-isticsoffourconiferspeciesintheInteriorNorthwestUnitedStates.WesternJournalofAppliedForestry.19(1):13-24.

    Pang,P.C.;Barclay,H.J.;McCullough,K.1987.AbovegroundnutrientdistributionwithintreesandstandsinthinnedandfertilizedDouglas-fir.CanadianJournalofForestResearch.17:1379-1384.

    Webster,S.R.;Dobkowski,A.1983.Concentrationsoffoliarnutrientsfortreesandthedosagefrequencyoffertilizertrials.WeyerhaeuserResearchReportNo.1;Project050-3920/3.25p.

    Weetman,G.F.;Fournier,R.M.1986.Constructionandinterpretationoffoliargraphicaldiagnostictechnique.In:Interiorforestfertilizationworkshop:proceedings;Kamloops,BritishColumbia:55-76.