20
47 USDA Forest Service Proceedings RMRS-P-44. 2007 In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Terry L. Craigg, Soil Scientist, Deschutes National Forest, Sisters OR. Steven W. Howes, Regional Soil Scientist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Portland, OR. Abstract Forest managers must understand how changes in soil quality resulting from project implementation affect long-term productivity and watershed health. Volcanic ash soils have unique properties that affect their quality and function; and which may warrant soil quality standards and assessment tech- niques that are different from other soils. We discuss the concept of soil quality and how it may be altered by activity-induced soil disturbances. A practical application of the use of soil disturbance categories and physical soil indices used to perform operational soil monitoring on an ash cap soil is also discussed. Introduction Soil disturbance resulting from forest management activities is of concern to both land managers and the public. On National Forest System lands in the Northwest many current projects are being administratively appealed or litigated based on the assumption they will result in soil degradation. Some claim that when implementing ground disturbing activities, the Forest Service commonly exceeds its own standards intended to maintain soil quality. There is a need for objective and accurate measures of change in soil quality caused by management activities. Assessing change in soil quality is difficult and can be influenced by a number of complicating factors. Properties of volcanic ash soils may also require development and application of unique soil quality standards and assessment protocols. Properties of Volcanic Ash Soils that May Affect Quality and Function Many soils in the Inland Northwest have been influenced by ashfall deposits from the eruption of Mt. Mazama (now Crater Lake) as well as other Cascade volcanoes (Harward and Youngblood 1969). These deposits are found in most soils of the Columbia Plateau of central and eastern Oregon and Washington. Soils range in texture from “popcorn pumice” Assessing Quality in Volcanic Ash Soils Terry L. Craigg and Steven W. Howes

Assessing Quality in Volcanic Ash Soils

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Assessing Quality in Volcanic Ash Soils

47USDA Forest Service Proceedings RMRS-P-44. 2007

In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Terry L. Craigg, Soil Scientist, Deschutes National Forest, Sisters OR. Steven W. Howes, Regional Soil Scientist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Portland, OR.

AbstractForestmanagersmustunderstandhowchangesinsoilqualityresultingfromprojectimplementationaffectlong-termproductivityandwatershedhealth.Volcanicashsoilshaveuniquepropertiesthataffecttheirqualityandfunction;andwhichmaywarrantsoilqualitystandardsandassessmenttech-niquesthataredifferentfromothersoils.Wediscusstheconceptofsoilqualityandhowitmaybealteredbyactivity-inducedsoildisturbances.Apracticalapplicationoftheuseofsoildisturbancecategoriesandphysicalsoilindicesusedtoperformoperationalsoilmonitoringonanashcapsoilisalsodiscussed.

Introduction

Soil disturbance resulting from forest management activities is of concern to both landmanagersandthepublic.OnNationalForestSystemlandsintheNorthwestmanycurrentprojectsarebeingadministrativelyappealedorlitigatedbasedontheassumptiontheywillresultinsoildegradation.Someclaimthatwhenimplementinggrounddisturbingactivities,theForestServicecommonlyexceedsitsownstandardsintendedtomaintainsoilquality.There is aneed forobjectiveandaccuratemeasuresof change in soilqualitycausedbymanagementactivities.Assessingchange in soilquality isdifficult andcanbe influencedby a number of complicating factors. Properties of volcanic ash soils may also requiredevelopment and application of unique soil quality standards and assessment protocols.

Properties of Volcanic Ash Soils that May Affect Quality and Function

Many soils in the Inland Northwest have been influenced by ashfall deposits from theeruptionofMt.Mazama(nowCraterLake)aswellasotherCascadevolcanoes(HarwardandYoungblood1969).ThesedepositsarefoundinmostsoilsoftheColumbiaPlateauofcentralandeasternOregonandWashington.Soilsrangeintexturefrom“popcornpumice”

Assessing Quality in Volcanic Ash SoilsTerry L. Craigg and Steven W. Howes

Page 2: Assessing Quality in Volcanic Ash Soils

4� USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

nearCraterLaketosandsandsiltsasdistancefromsourceincreases.Volcanicashsoilshavephysicalandchemicalpropertiesthataffecttheirqualityandfunction;andthatmakethemuniquewhencomparedtoothersoilparentmaterials.

AstudyconductedbyGeistandStrickler(1978)comparedsomephysicalandchemicalpropertiesofvolcanicashsoilstoresidualsoilsderivedfrombasaltintheBlueMountainsofnortheasternOregon.Insummary,volcanicashsoilshad:

• Lowerbulkdensity • Higherporosity • Weakerstructuraldevelopment • Lowercohesion • Lowercoarsefragment(>2mm)content

SuchpropertiesaredescribedindetailbyothersintheseProceedings.Thispaperfocusesonsoilswithadistinct“ashcap”orsurfacelayerofvolca-

nicashdeposits.Suchdepositsvaryfromafewcentimeterstooverameterindepthdependingondistance fromthesource, topography,windpatternsandsubsequenterosion.

Volcanicashsoilshavearelativelyuniformundisturbedsurfacesoilbulkden-sity(0.67)andadisproportionateconcentrationofnutrients(totalOM,N,K)intheupper30cmofthesoilprofile.Thesepropertiestendtomakevolcanicashsoilsmoresusceptibletosurface(sheet,rill,wind)erosionwhenexposed;andtodisplacementbyground-basedequipment.Theystoremorewaterbutyieldalargerproportionofitinthelowsuctionranges.Volcanicashsoilsalsoseemtocompacttothesamedegreeoverawide-rangeofmoisturecontents.

Pumicesoilshavemanyof thesamepropertiesasothervolcanicashsoils.Likeothervolcanicashsoilsthelowdensity,lackofcohesion,andconcentra-tionofsoilnutrientsintheuppersoilprofileofpumicesoils,makepumicesoilssusceptibletosoilcompactionandthelossofnutrientsthroughsoildisplacement.Becauseoftheirlowcohesionbetweenindividualpumiceparticles,compactioninpumicesoilscanresultfrombothcompressionandvibration.Pumicesoilsalsohavebeenfoundtobemostsusceptibletocompactionwhentheyareverydryoratornearsaturation.Soilmoisturecontentsbetweenthesetwoextremesap-peartoprovidesomecohesionbetweensoilparticlesreducingsusceptibilitytocompaction.Amountsofsoilorganicmatterisalsoimportantwhendeterminingtheirsusceptibilitytocompaction.

Whencompactiondoesoccur,soilstrength(asmeasuredbyresistancetopen-etration)hasbeenfoundtoincreaseexponentiallywithanincreaseinsoilbulkdensity(Chitwood1994).Incompactedsoilssoilstrengthhasalsobeenshowntoincreasequicklyasthesoildriesoutoverthegrowingseason(Craigg2006).Thusmeasurementsofsoilstrengthandsoilbulkdensityareprovidingdifferentinformationaboutchangesoccurringinthesoilwhencompactionoccurs.Sincethereisnotasimplelinearrelationshipbetweenmeasurementsofsoilstrengthandsoilbulkdensitywhensoilconditionschangeitwouldbedifficulttoreadilysubstituteonemeasurementfortheother.

Considerationoftheseproperties,alongwithash/pumicedepthandunderlyingsoilmaterial, is important indeveloping soilmanagementobjectives/prescrip-tions,inevaluatingpotentialimpactsofproposedactivities,andinestablishingmeaningfulsoilqualitystandards.

Page 3: Assessing Quality in Volcanic Ash Soils

49USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

Soil Disturbance and its Relationship to Soil Quality ________________Definitionsofsoilqualitydiffergreatlydependingonwhomoneasks.Most

wouldsaytheyrecognizeahighqualitysoil“when they see it”butwhenaskedtodefinesoilquality,eachwouldmostlikelyprovideadifferentanswerdependingontheirindividualobjectivesandpersonalbiases(Karlenandothers1997).Thequalityofanindividualsoilmayvaryfordifferingpurposes:ahighqualitysoilforproductionoftreesorforagemayhavelowqualityforproductionofcottonorwheat.Tosaythatonesoilisofhigherqualityor“better”thananotherisnotproperwithoutqualification.

Therearesomewhousetheterms“soilquality”and“soilhealth”interchange-ably(Warkentin1995).Eachsoilhasinherentphysical,chemical,andbiologicalpropertiesthataffectitsabilitytofunction asamediumforplantgrowth,toregulateandpartitionwaterflow,ortoserveasaneffectiveenvironmentalfilter.Whenanyoracombinationoftheseinherentfactorsisalteredtoapointwhereasoilcannolongerfunctionatitsmaximumpotentialforanyofthesepurposes,thenitsqualityorhealthissaidtobereducedorimpaired(LarsonandPierce1991).

Manyfactorsenterintomakingdeterminationsofsoilquality.Someofthesefactorscanbechangedbydisturbance (LarsonandPierce1991;Seyboldandothers1997;Grossmanandothers2001).Alterationofsoilproperties throughdisturbancemechanismsisnotnecessarilyharmful.Tillageisanextremeformofsoildisturbanceoftenusedtoimprovesoilqualityor“tilth”forproductionofagriculturalcrops.Inforestryapplications,sitepreparationtoimproveregenera-tionsuccessorsoilrestorationworkofteninvolvesoildisturbancetosomedegree(surface soilexposure, scalping, subsoiling).What sets theseapart fromotherformsofsoildisturbanceisthattheyareplannedandare,orshouldbe,carriedoutwithspecificobjectivesinmindunderprescribedconditions.

Managementactivitiesonforestandrangelandsoftenresultinvariousformsofdisturbancethatcanaltersoilfunction.Commonly,landmanagersareconcernedabouthowchangesinsoilqualityorfunctionresultingfromunplanned,activity-induceddisturbanceaffectthelong-termproductivityandhydrologicresponseofwatersheds.Inwildlandsituations,concernusuallyfocusesondisturbance-relateddeparturesfromnaturalsoilconditions(consideredtobemaximumpotentialorbestpossibleconditions),occurringaseitherlegacyimpactsorthosecausedbycurrentmanagementactivities.Understandably,therearedifferencesofopinionamong soil scientists and landmanagers aboutwhenandwhere “significant”thresholdsarereached.Thisiscomplicatedbythefactthatsoilsdifferintheirabilitytoresistandrecoverfromdisturbanceeffects(Seyboldandothers1999).

Disturbance may have negative, neutral, or even positive effects on a soildependingonitsinherentproperties.Meaningfulsoildisturbancestandardsorobjectivesmustbebasedonmeasuredanddocumentedrelationshipsbetweenthedegreeofsoildisturbanceandsubsequenttreegrowth,forageyield,orsedi-mentproduction.Studiesdesignedtodeterminetheserelationshipsarecommonlycarriedoutaspartofcontrolledandreplicatedresearchprojects.Thepaucityofsuchinformationhascausedproblemsindeterminingthresholdlevelsfor,ordefiningwhen,detrimentalsoildisturbanceexists;andindetermininghowmuchdisturbancecanbetoleratedonagivenareaoflandbeforeunacceptablechangesinsoilfunction(productivepotentialorhydrologicresponse)occur.Givennaturalvariabilityofsoilpropertiesacross the landscape,asinglesetofstandards forassessingdetrimentaldisturbanceseemsinappropriate.

Page 4: Assessing Quality in Volcanic Ash Soils

�0 USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Defining Detrimental Soil Disturbance _____________________________Soildisturbanceexistsinanumberofforms.Inforest,range,andwatershed

managementapplications,itmostcommonlyoccursascompaction,displacement,andpuddlingresultingfromuseofground-basedharvestingandslashdisposalequipment.Theremovalofabovegroundorganicmatterisalsoaresultofthistypeofdisturbance.Soildisturbancecanalsooccurintheformofsheetandrillerosionorcharredsoilinintenselyburnedareas.

Effectsofsoildisturbanceonsiteproductivityorhydrologicfunctionofwa-tershedsisdependentonitsdegree,extent,distribution,andduration(Froehlich1976;SniderandMiller1985;Claytonandothers1987).Degree refers to theamountofchangeinaparticularsoilpropertysuchasporosity,bulkdensity,orstrengthandthedepthtowhichthatchangeoccurs.Extent referstotheamountoflandsurfaceoccupiedbythatchangeexpressedasapercentage of a specified area.Distributionofsoildisturbancewithinamanagementareamaylikelybemoreimportantthantheactualestimatedextent.Disturbancecanoccurassmallevenly-distributedpolygons,orinlargepolygonsinoneorafewlocations.Dura-tionisthelengthoftimedisturbanceeffectspersist.Forexample,compactioneffectshavebeenmeasuredover30yearsfollowingtimberharvestactivitiesonsomesoils(Froehlichandothers1985).

Degreeanddurationofeffectsarelargelydeterminedbyinherentsoilproper-tiesthatinfluenceresistanceto,andabilitytorecoverfrom,disturbance.Extent,distribution,and,insomeinstances,degreeofdisturbancecanbecontrolledbyimposingmanagementconstraintssuchaslimitingseasonofoperation,spacingofskidroadsandtrails,andnumberofequipmentpasses.

Achallengehasbeentoestablishmeaningfulsoilqualitystandardsgiventheinherentvariabilityofsoilsacrossthelandscape.Simplystatingasinglethresholdbeyondwhichdetrimentalsoilconditionsarethoughttoexistmaynotbeenough.Mostforestlandmanagersdonotwishtodamagetheirproductivebaseorcauseimpairedwatershedfunction.However,theyalsodonotwanttounnecessarilylimitmanagementopportunities.

Current Status and Needs ________________________________________Soilqualitycanbeimproved,maintained,ordegradedbyforestmanagement

activities.Inordertoidentifyandquantifysuchchanges,ascientificallyrigorousprotocolisrequired.Itmustquantifytypesandamountsofsoildisturbanceswithinaspecifiedarea;andidentifyareasofdisturbanceconsideredtobedetrimental.Protocolsmustbe:

• Statisticallyvalid • Relativelyeasytoimplement • Costeffective • Usableatdifferentscales • Abletodetermineifsoilqualityisbeingmaintained,improvedordegraded.

Numerousmethodsexistforsamplingsoildisturbanceinbothoperationalandresearchsettings.Methodsdifferwithrespecttosamplingobjectives,soilvariablesconsidered,andassessmentprotocols.Inconsistentapplicationofsoildisturbancemeasurementtechniquesacrossavarietyoflandownershipshasled,insomecases,tounreliableandincomparableresults.Moreeffectiveandefficient(cost,

Page 5: Assessing Quality in Volcanic Ash Soils

�1USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

utilityofdata) soildisturbanceassessmentandmonitoringprogramscouldbeachievedthroughuseofcommonsoildisturbanceclassdefinitionsandconsistentuseofstatisticallyreliablesamplingprotocols(Curranandothers2005).

Definedsoildisturbancecategoriesmustberelatedtophysicalindicesofsoilqualityanddocumentedchangesinvegetationgrowthorhydrologicfunction.Adeterminationneedstobemadeif,infactoratwhatpoint,thesedisturbancecat-egoriesrepresent“detrimental”changesinsoilfunction.Inordertoevaluateimpactsofforestmanagementactivitiesonsoilquality,threedistinctlevelsofinformationareneeded.Thefirsttwoarecommonlygeneratedthroughagencyorcompanysoilmonitoringprograms.Thelastoneisprimarilyaresearchfunction.

Initialassessmentscanbeassimpleasdeterminingifspecifiedsoilconserva-tionorbestmanagementpractices(BMP)havebeenimplementedasplannedorifcontractual/legalrequirementsrelatingtosoildisturbancehavebeenmet.Thisisoftenreferredtoascomplianceorimplementationmonitoring.

After the initial compliance monitoring, soil disturbance assessment andmonitoringprojectsarecommonlydonetoevaluateeffectivenessofmanagementpractices.Theseassessmentsevaluatepre-determined,usuallyprovisional,soildisturbancestandardsorobjectivesbasedonbestavailableknowledge.Thisiscommonlyreferredtoasoperationaloreffectivenessmonitoring.

Soildisturbancestandardsorobjectivesmustalsobe testedorvalidated todetermineiftheyresultinunacceptablereductionsinproductivityorwatershedfunction,areappropriateforlocalsiteconditions,orifadjustmentsareneeded.Thisprocess isusually referred toasvalidationmonitoring.Validation isbestaccomplishedinaresearchenvironmentundercarefullycontrolledconditions.Ideally, research would be completed before standards were developed andimplemented.

Cost-effectiveapproachesareneededforoperationalsoildisturbanceassess-ments or monitoring that provides statistically valid and scientifically relevantdata.Monitoringmustmeetspecifiedquality-controlstandardsandcontributetoregionalstrategicdatabasesrelatingtreegrowthorhydrologicfunctiontodefinedclassesofdisturbance.Ourcurrentabilitytocompareresultsfromoperationaland research studies requiresmore commonor standardized soil disturbancedefinitionsandassessmentprotocols.

Tobecost-effective,operationalsoildisturbancemonitoringprotocolsmustmeet several criteria. Protocols (1) must provide scientifically and technicallysoundinformation,(2)mustbereliable,pertinent,andobtainedwithminimuminvestments,(3)mustbeclearlycommunicatedandunderstoodbyallaffectedparties,and (4)mustbeconsistentlyandefficiently implemented (Curranandothers2005).

USDA Forest Service Approach to Operational Soil Monitoring _______InForestServiceRegion6,initialassessmentsofactivity-inducedchangesin

soilqualityaretypicallymadethroughastratificationprocessinwhichvisuallyrecognizablesoildisturbancecategoriesanddisturbancesthatcanbeeasilyde-tectedbyprobingthesoilaredescribedandquantifiedwithinanactivityarea.Thisiscommonlyaccomplishedusingapointgridsystemincombinationwithpointobservationsalongaseriesofrandomlyorientedtransects.ThisprocessisdescribedindetailbyHowesandothers(1983).

Morerecently,pointobservationsarebeingreplacedbyvisualsoildisturbancecategories, developed and used to describe areas with a combination of soil

Page 6: Assessing Quality in Volcanic Ash Soils

�2 USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

disturbancesthatrepeatacrossanactivityareaandwhicharelikelylargeenoughinextentanddistributiontoaffectsoilfunction.Visualcategoriesalsoaccountforthefactthatvariousformsofdisturbancearenotmutuallyexclusive.Forex-ample,compactionanddisplacementoftenoccurtogether.AninterimprotocolofthisprocessthatisbasedonproceduresdescribedbyScottandothers(1979)iscurrentlybeingusedonnationalforestsintheBlueMountains.

Theprocessofquantifyingdifferentsoildisturbancecategoriesacrossaland-scapeprovidesarelativelyrapidandinexpensivemethodforquantifyingdiffer-enttypesofsoildisturbancesoverlargeacreagesandisrecognizedbytheFSasanessentialstepinthesoilassessmentprocess.This process, however, is often stopped at this point and the incorrect assumption made that any soil distur-bance is detrimental.

Toavoidthispotentialproblem,visualsoildisturbancecategoriesmustbefurtherevaluatedtodetermineiftheydo,infact,adequatelyrepresentdetrimentalsoilconditions.Thefirststepinevaluatingadisturbancecategoryistoidentifythesoilfunction(s)thatmaybenegativelyaffectedbyasoildisturbance.Forexample,ifsurfacesoilshavebeendisplaced,asoil’sabilitytosupplynutrientsmaybereduced.Incompactedskidroadsandlandings,changesinsoilresistancetorootpenetrationaswellasairandwatermovementinthesoilmaybethemostimpor-tantconsideration.Identificationofsoilfunction(s)affectedbydisturbanceallowsfortheselectionofthemostappropriatesoilindicatorswhichcanthenbeusedtoassessachangeintheabilityofthesoiltofunction.Caremustbetakenwhendevelopingandinterpretingsuchindices.Environmentalfactorssuchasmacro-andmicro-climatecanmaskchangesinsoilfunctionduetodisturbance.

Soilindicatorsorindicesaresoilparametersthatcanbequantitativelymea-suredusingstandardizedmethodsandcomparedbetweendisturbedandundis-turbedsites.OnNationalForestSystemlandsintheNorthwest,soildisturbanceisconsideredtobedetrimentalwhenasoilindexiseitherhigherorlowerthanadefinedthreshold.

Development and Application of Forest Service Soil Quality Standards ______________________________________________________

TheUSDAForestServiceisdirectedbylawtosustainproductivityatcurrentorenhancedlevelsandtoprotectandimprovethesoilsforwhichitisresponsible.Recognizingthisresponsibility,thePacificNorthwestRegion(R6)issuedaForestServiceManualSupplementdealingwithsoilproductivityprotection in1979.Ithasbeen revisedanumberof times since then (current versionFSM2520.R-6Supplement2500.98-1,EffectiveAugust24,1998).Thisdirectionspecifiesthresholdvalues(degree)forestimatingwhendetrimentalsoildisturbanceoccursandalsosetsarealimits(extent)fordetrimentalsoildisturbanceonanactivityareabasis.MostnationalforestswithinR6haveincorporatedthesevalues,withminormodifications,asstandardsintheirforestlandandresourcemanagementplans.OtherForestServiceRegionssubsequentlydevelopedsimilarpolicyanddirection (Powersandothers1998).Thresholds forestimatingdetrimentalsoilcompaction,displacement,puddling,andseverelyburnedsoilsweredevelopedbasedonapplicableresearchresultsavailableatthetime.

Standards emphasize both observable and measurable soil characteristicsthat field personnel can use to monitor effectiveness of activities in meeting

Page 7: Assessing Quality in Volcanic Ash Soils

��USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

soilmanagementobjectives.Allformsofdetrimentalsoildisturbance,includingpermanentfeaturesofthetransportationsystemsuchasroadsandlandings,arelimitedinextenttonomorethan20percentofanactivityarea.Inactivityareasthatexceed thisextent limiteitherasaresultofpreviousorcurrentactivities,restorationplansmustbeinplacebeforenewprojectsareimplemented.These standards are applied to all soils regardless of their inherent properties and ability to resist or recover from disturbance. Theonly special considerationgivenvolcanicashsoilsisanallowable20percentincreaseinsoilbulkdensitybeforetheyareconsidereddetrimentallycompacted.Thereasonforthisistheirrelativelylowundisturbedbulkdensitieswhencomparedtosoilsdevelopedinotherparentmaterials.

Application of Operational Soil Monitoring Techniques _____________Thefollowingisanexampleoftheuseofanoperationalsoilmonitoringproce-

durethatwasusedtoevaluatetheeffectsofaforestthinningoperationonthesoilresource.Theprocedureillustratestheapplicationofsoildisturbancecategoriesandphysicalsoilindices.

Overview

Duringthewinterof2005,theSistersRangerDistrictoftheDeschutesNationalForest in central Oregon implemented a thinning project designed to reducehazardousfuelsinpinestandswithinthewildlandurbaninterface.ATimberjackcut-to-lengthharvesterandaTimberjackforwarderwereusedtoremovetrees12inchesindiameterandsmaller,resultinginastandwithirregulartreespacingofabout20x20ft.

Projectobjectivesincluded:

• ReduceriskofwildfiretothenearbycommunityofBlackButteRanch. • Promoteresidualtreegrowthandmovestandtowardlargerdiametertrees. • Produceabiomassproductthatcouldbeusedtohelpoffsetthecostofthe

thinningoperation.

ThinningoperationsoccurredduringFebruaryandMarchof2005.Duringmuchofthistime,thesurface2to4inchesofsoilwasfrozen.Therewere,however,timeswhentemperaturesroseandsoilsweremoistbutnotfrozen.Severalsnowstormsalsooccurredduringthisperiod,depositingfromafewinchestooverafootofsnow.Soilconditionswerefavorableformostofthetwomonthperiodduringwhichoperationsoccurred.

Soilfunctionspotentiallyaffectedbytheprojectincluded:

• Abilityofthesoiltosupplywaterandnutrientstoresidualtrees. • Abilityofthesoiltoabsorbandtransmitwater. • Ability of the soil to resist other detrimental soil impacts including

displacement,puddling,severeburning,andsurfaceerosion.

Mitigationmeasuresused to reducepotentiallydetrimental soil impacts in-cludedoperatingoverfrozenground,snow,andslash;useofharvestequipmentdesignedtohavelowgroundpressure;designatingspacingofequipmenttrails;andhandpilingslash.

Page 8: Assessing Quality in Volcanic Ash Soils

�4 USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Forestmanagerswishedtoknowifthesepracticeswereeffectiveinmeetingsoilqualityobjectivesonthisandothersimilarprojects.Inthiscase,managerswished toknow if soildisturbance resulting from theabovesuiteofpracticesexceeded20percentoftheactivityarea.Theyalsowishedtoknowifdifferentcategoriesofdisturbancecontaineddetrimentalsoilimpactsasdefinedin(FSM2520.R-6Supplement2500.98-1).

Project Area Soils

SoilsintheprojectareaweremappedaspartoftheSoilSurveyoftheUpperDeschutesRiverArea,Oregon(NRCS2002).TheyaredescribedastheSisters-Yapoahcomplex0-15percentslopes.Soilsareclassifiedas:

Sisterssoilseries–Ashyoverloamy,mixed,frigidHumicVitrixerandsYapoahsoilseries–Ashy-skeletal,frigidHumicVitrixerands

Harvester/Forwarder Transportation System

TheTimberjackcut-to-lengthharvesterusedinthisoperationwasequippedwithacuttingheadmountedona30footboom.Thisallowedtheharvestertocutandprocessmaterialswhilemakingparallelpassesacrosstheharvestunitataspacingofapproximately60feet.Harvestedmaterialsarepositionedsotheycanbereachedfromalternateharvestertrailsbytheforwardermachine.Thisresultsintwotypesoftrailswithintheharvestunit(1)thosethatbeendrivenacrossonlyonetimebytheharvester(ghosttrails)and(2)trailsthathavebeendrivenacrossbytheharvesterfollowedbytheforwarder(harvester-forwardertrails).Becausetreesarelimbedandtoppedatthetimeoffellingtherearenolandingswithintheharvestunit.Oncetheforwarderhascollectedharvestedmaterialstheyarepilednexttoahaulroadpriortoloadingonlogtrucks.

Description of Visual Soil Disturbance Categories

Acombinationofvisualobservationsandprobingofthesoilwithatilespadeormetalrodwasusedtoidentifyanddescribefourcategoriesofsoildisturbancewithinactivityareas.Thesecategoriesare:

Condition Class 1:Undisturbedstate,natural. • Noevidenceofpastequipmentoperation. • Nowheeltracksordepressionsevident. • Litteranddufflayersintact. • Nosoildisplacementevident.

Condition Class 2:Trailsusedbytheharvestermachineonly.Ghost trails. • TwotracktrailscreatedbyonepassofaTimberjack cut-to-lengthharvester. • Faintwheeltrackswithaslightdepressionevidentandare<4inchesdeep. • Litteranddufflayersintact. • Surface soil has not been displaced and shows minimal mixing with

subsoil.

Condition Class 3:Trailsusedbybothharvesterandforwarder. • TwotracktrailscreatedbyoneormorepassesofaTimberjackcut-to-length

harvesterandoneormorepassesofaTimberjackforwarder.

Page 9: Assessing Quality in Volcanic Ash Soils

��USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

• Wheel tracksevidentandare4 to6 inchesdeepwith theexceptionofareaswhereoperatorwasabletolaydownenoughslashtomitigatesoilimpacts.

• Litteranddufflayersarepartiallyintactormissing.

Condition Class 4:Skidtrailsfrompreviousentries.Allwerere-usedduringcurrententry. • Oldskidtrailscreatedintheearlypartof20thcenturywhenselectivehar-

vestoccurred. • Trailsappeartohavehighlevelsofsoilcompactionacrosstheentiretrail. • Evidenceoftopsoilremoval.

Soil Functions Affected by Soil Disturbances

Based on visual observations described above, it was determined that soilcompactionwasthemostprevalentformofsoildisturbancewithintheharvestedarea.Whencompactionoccurs,therearealterationsofbasicsoilpropertiessuchassoildensity,totalporevolume,poresizedistribution,macroporecontinuity,andsoilstrength(GreacenandSands1980).Soilsvaryintheirsusceptibilitytocompaction(Seyboldandothers1999).Onceasoilbecomescompacted,theconditioncanpersistfordecades(Froehlichandothers1985).This,inturn,af-fectssoilfunction.

Anumberofresearchershavemeasuredreductionsinsiteproductivityattributedtosoilcompaction(Froehlichandothers1986;CochranandBrock1985;HelmsandHipken1986).Effectsofsoilcompactiononsiteproductivity,however,arenotuniversallynegative.Gomezandothers(2002)lookedatarangeofforestsoiltypesinCaliforniaandfoundcompactiontobedetrimental,neutral,orbeneficialdependingonsoiltextureandwaterregime.

Quantifying Visual Soil Disturbance within an Activity Area

Toassistwithquantifying theamountof soilcompaction,a recordingpen-etrometerwasusedtodeterminetheaveragewidthofcompactedsoilsacrossboththeghosttrailsandtheharvester-forwardertrails(figs.1and2).Athresholdlevelfortheincreasedsoilstrengthof2.5MPawasusedtoidentifycompactedareas.Soilstrengthsbeyondthislevelwereconsideredtobehighenoughtobegintoinhibitplantrootgrowth.Basedonresultsharvesterghosttrailswereinitiallyconsideredtoconsistoftwodetrimentallycompactedtracks,eachapproximatelythreefeetinwidth.Harvesterforwardertrailswereconsideredtoconsistoftwodetrimentallycompactedtracks,eachapproximatelyfourfeetwide.

Arandomlyorientedsquaregridwithonegridintersectioneverytwoacreswasnextoverlainontheactivityareaandusedtolocatesamplepointsfordetermin-ingarealextentofsoildisturbancecategories(fig.3).Ateachofthegridinter-sections,arandomlyoriented,100-fttransectwasestablished.Thefourdefineddisturbancecategoriesweremeasuredalongeachtransectandlengthsoccupiedbyeachcategoryrecorded.Ameanforeachcategorywasthencomputedfortheentireactivityarea.Samplinginthismannerensuredanunbiased,representativesample.Itwasdeterminedthat17percentoftheactivityareawasoccupiedbysoildisturbance(totalofcategories2-4).A95percentconfidenceintervalaroundthisestimatewascalculatedtobeplusorminus2percent.

Page 10: Assessing Quality in Volcanic Ash Soils

�� USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Figure 1—Average soil resistance measured for the 10 to 2� cm soil depth. Measurements were made perpendicular to the harvester ghost trails.

Figure 2—Average soil resistance measured for the 10 to 2� cm soil depth. Measurements were made perpendicular to the harvester forwarder trails.

Use of Soil Indices to Interpret Visual Soil Disturbance Categories

ThreephysicalsoilindicesusedbytheForestServicetoassesschangesinsoilphysicalpropertiesattributedtocompactionareincreasesinsoilbulkdensity,increases in soil strength (resistance topenetration),andchanges in soilporesizedistribution.

Soil Bulk Density

Soilbulkdensityisdefinedasthemassperunitvolumeofsoilandrepresentstheratioofthemassofsolidstothetotalorbulkvolumeofthesoil(SoilSurveyStaff1996).ThedirectmeasurementofanincreaseinsoilbulkdensityfromsoilcompactionrequiresaminimumamountofsamplingequipmentandisthemostcommonlymademeasurementofsoilcompactionusedbytheForestService.Physical factors that affect soil bulk density and compactability include soil

Page 11: Assessing Quality in Volcanic Ash Soils

�7USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

Figure 3—Example of a pre-established grid (randomly oriented) with transects oriented along random azimuths.

particlesizesanddensity,organicmattercontent,andmineralogy(Howardandothers1981).

Soilbulkdensitysampleswerecollectedinthespringoftheyearusingaham-mer-drivensoilcoresampler.Table1showssoilbulkdensitiesreportedforboththewholesoilandfor thefinefractionofsoil (soilparticles<2mmremoved).DeterminingsoilBDbasedonthefinefractionofsoilresultsinalowerBDvaluecomparedtothatdeterminedonawholesoilbasis.Thisisduetothehigherweighttovolumeratioofsoilcoarsefragmentsinthesoilcore,comparedtoanequalvolumeofsoilmaterial.Whendeterminedonawholesoilbasis,soilcompactionresultedinasignificantincreaseinsoilbulkdensityinboththeghosttrailsandtheforwardertrails.Soilbulkdensitiesdeterminedforthefinefractionsofsoilweresignificantlygreaterintheforwardertrailsbutnotintheghosttrails.

Table 1—Soil bulk density measurements determined based on the whole soil (including soil coarse fragments >2mm) and based on the fine fraction of soil.

% Volume Soil Soil Bulk Density Soil Bulk DensitySoil Condition Class Coarse Fragments Whole Soil (Mg/m3) Fine Fraction Soil (Mg/m3)

1 1 0.9�a 0.92a 2 2 1.02b 1.00ab � 2 1.0�b 1.0�b Columns within a soil bulk density analysis method are not significant at p = 0.05 if followed by the same letter. n = 3

Page 12: Assessing Quality in Volcanic Ash Soils

�� USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Inthiscase,fewcoarsefragmentswereencounteredandtherewaslittledif-ferenceinsoilBDbetweenresultsobtainedusingcoreswithandwithoutcoarsefragments.Iftherehadbeenmorecoarsefragmentsincoresoralargevariationincoarse fragmentsbetweencores, itwouldhavehadagreater influenceoncalculatedsoilbulkdensitiesandonthewayinwhichthesoilfunctions.Tocor-rectlyinterpretsoilbulkdensitymeasurements,itisnecessarytoreportsoilbulkdensitiesforwholesoilandthefinefractionofsoil.Itisalsonecessarytoknowtheamountsofcoarsefragmentsinthesoilcores.

ForestServicesoilqualitystandardsidentifyachangeinsoilbulkdensityof20percentormoreaboveundisturbedlevelsasathresholdfordeterminingdetrimentalcompactioninAndisols(soilsderivedfromvolcanicash).Whencalculatedonbothawholesoilandfinefractionofsoilbasis,nomeasuredincreasesinsoilbulkdensityexceededthe20percentrelativeincreasethreshold.Therefore,noneofthesoilbulkdensitychangesinanyofthevisualsoildisturbancecategoriesmettheForestServicedefinitionofadetrimentallycompactedsoiltable2.

Soil Strength

Soilstrengthdescribesthesoilhardnessorthesoilsresistancetopenetration.Soilprobesandspadescanbeusedtodetectchangesinsoilstrengthresultingfromsoilcompaction.Thistechniquecanbequantifiedbyusingarecordingsoilpenetrometer.Measuredsoilstrengthscanvarydependingonsoilparticlesizedistributionandshape,clayandorganicmattercontent(ByrdandCassel1980).Withinasoiltypechangesinsoilwatercontentandstructurecanalsoaffectsoilstrength(Gerard1965).

Changesinsoilstrengthresultingfromsoilcompactionweremeasuredwithindifferentdisturbancecategoriesusingarecordingsoilconepenetrometer,whichiscapableofrecording,atpredeterminedintervals, theforcerequiredtopushaconeintotheground(Millerandothers2001).Measurementsweremadeinearlyspring,shortlyafterharvestoperationswerecomplete.Fieldmeasurementsofgravimetricsoilmoisture,basedonthefinefractionofsoil,rangedfrom0.19to0.22g/gandwereslightlylessthanthe0.23g/gestimateofsoilfieldcapacitythatwasobtainedfromsoilcoresamplesusedtodeterminesoilporesizedistri-bution.Thepenetrometerwassettorecordsoilresistanceat1.5cmincrementsbetween0and60cmsoildepth.ReadingswerethendownloadedtoaMicrosoftExcelSpreadsheetforanalysis.

Table 2—Absolute and relative percentage increase in soil bulk density as a result of soil compaction.

Absolute Increase Relative % Soil Bulk Density Soil Bulk in Soil Bulk Increase in Soil Condition Class Determination Method Density (Mg/m3) Density (Mg/m3) Soil Bulk Density

1 Whole Soil 0.9� 2 Whole Soil 1.02 0.09 10 � Whole Soil 1.0� 0.1� 1�

1 Fine Fraction 0.92 2 Fine Fraction 1.00 0.0� 9 � Fine Fraction 1.0� 0.14 1�

Page 13: Assessing Quality in Volcanic Ash Soils

�9USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

Soiltextureandseasonalchangesinsoilmoisturecangreatlyinfluencesoilstrengthmeasurements.Resistancetopenetrationhasbeenshowntoincreaseforbothuncompactedandcompactedsoilsas theydryoutover thegrowingseason.Theincreaseinresistancetopenetrationwithdecreasingsoilmoisture,however,tendstooccurmorerapidlyincompactedsoilsthaninuncompactedsoils(Craigg2006).Therefore,soilmoisturerelationshipsshouldbeconsideredwheninterpretingsoilresistancemeasurements.

Measurementsofsoilresistanceintheundisturbedareasgraduallyincreasedwithsoildepthreachingaresistanceof1MPainthefirst10cmandafinalsoilresistanceof2MPaatapproximately60cmsoildepth.Intheforwardertrailssoilresistanceincreasedmuchfaster,reachingaresistanceof3MPawithinthefirst10cmsoildepthandretainingthathighstrengththroughoutthe60cmdepth.Increasesinsoilresistanceintheghosttrailswerehigherthantheundisturbedbutlessthantheforwardertrails(fig.4).Duringthethinningoperationeffortsweremadetolimbharvestedtreesontheequipmenttrailsandthendriveontheslashmattomitigatesoilcompaction.Soilpenetrometermeasurementsindicatedthattheslashmatdidhaveatleastsomeaffectonmitigatingsoilcompaction(fig.5).

Currently,ForestServiceRegion6doesnothaveasoilqualityindexthresh-oldforincreasesinsoilresistanceresultingfromcompaction.Researchresultssuggestthatsoilresistancesof2MPaandgreatercanbegintoaffectplantrootgrowth(Siegel-Issemandothers2005).Thustheseresultssuggestdifferencesinsoilfunctionbetweenthedifferentsoilconditionclasses,inparticulartheabilityofrootstopenetratecompactedsoils.

Figure 4—Soil strength measured in the spring of 200� for different soil disturbance classes. Horizontal bars indicate one standard error. n = 30.

Page 14: Assessing Quality in Volcanic Ash Soils

�0 USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Soil Pore Size Distribution

Soilporespaceaccountsforapproximatelyhalfofthetotalvolumeofmineralsoil.Changesintotalsoilporosityandporesizedistributionthatmayresultfromsoilcompactioncanaffectsoilfunctionsbyalteringairandwaterflowintoandthroughthesoil.Changesinsoilporositycanalsoaffecttheamountsofwaterstorageinthesoil(Scott2000).

Measuringafullrangeofsoilporesizesrequiresrelativelysophisticatedlabora-toryequipmentcomparedtothatneededformeasuringsoilbulkdensityorsoilstrength.Althoughtotalsoilporositycanbeestimatedfrombulkdensityandsoilparticledensity,thiscalculationprovidesnoinformationaboutporesizedistri-butionchangesoccurringinthesoil.Tobetterunderstandchangesinsoilporesizedistributionresultingfromsoilcompaction,arelativelysimplemethodwasusedwhichdoesnotrequiretheuseofsophisticatedlaboratoryequipment.Thistechniquemeasuresmainlytheporositychangesoccurringinthelargersoilporesizes(soilpores>30μm).

Intactsoilcoresformeasuringsoilporesizedistributionwerecollectedusingthesamehammer-drivencoresamplerusedtosamplesoilbulkdensity.Follow-ingcollectionofintactsoilcores,soilporesizedistributionwasdeterminedus-ingamodificationofthewaterdesorptionmethoddescribedin(DanielsonandSutherland1986).Briefly,ahangingwatercolumnwascreatedbyconnectingaBuchnerfunnelwithaporousceramicplateinthebottomtoapproximately3metersofplastictubingwithaburetteconnectedtotheotherend.Asoilcorewas thenplaced in the funnelandsaturatedwithwaterbyraising theburette

Figure 5—Soil strength measured in the spring of 200� for different soil dis-turbance classes with measurements on harvester forwarder trails separated depending upon whether or not slash was present. Horizontal bars indicate one standard error. n = 30 (undisturbed and ghost trails)n = 15 (forwarder trails)

Page 15: Assessing Quality in Volcanic Ash Soils

�1USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

andcreatingaslightheadofwater.Aseriesofsuctionswerenextappliedtothesaturatedsoilcorebyraisingthefunnelaboveapredeterminedmarkonthebu-rette.Volumesofwaterremovedfromthesoilcoreswererecordedforaseriesofappliedsuctionsandtheequivalentradiusofthelargestsoilporesfilledwithwaterdeterminedbythecapillaryequation(Scott2000).

Resultsindicatedashiftinsoilporesizedistributionfromlargerporesizesormacropores(soilpores>30μm)tosmallerporesizes(soilpores<30μm)whensoilsbecamecompacted(fig.6).Whilesoilcompactiondidresultinasignificantdecreaseinmacroporesandasignificantincreaseinsmallersoilporesizes,therewasnotasignificantchangeintotalsoilporositybetweenthedifferentdisturbancecategories(table3).AlthoughstandardshavebeenestablishedinForestServiceRegion6formacroporespacereductionsinresidualsoils,nonehaveyetbeenestablishedforash-derivedsoils.

Figure 6—Shift in soil pore size distributions for different soil disturbance classes following soil compaction.

Table 3—Changes in soil pore size distribution and total soil porosity resulting from soil compaction.

Pore volume Pore volume Total pore volumeSoil condition Class >30µm (cm3/cm3) <30µm (cm3/cm3) (cm3/cm3)

1 0.��a 0.24a 0.�9a 2 0.29b 0.27b 0.��a � 0.2�b 0.�0c 0.��a n = 3 Columns within a pore size class are not significant at p = 0.05 if followed by the same letter.

Page 16: Assessing Quality in Volcanic Ash Soils

�2 USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Interpretation of Results

Extentofsoildisturbancewithintheprojectareawasinitiallydeterminedbyfirstdescribingandquantifyingvisualsoildisturbancecategoriesandthenmea-suringasuiteofindiceswithineachcategory.Soilindexmeasurementsthatweremadewithindisturbedareaswerethencomparedtothosemeasurementsmadeinundisturbedareas.Degreeofchangeinspecifiedsoilindiceswasnextcomparedtodefinedthresholdsfordeterminingifthechangeisconsidered“detrimental”or“undesirable.”

AllmeasuredincreasesinsoilbulkdensitywerebelowthresholdvaluesdefinedbythePacificNorthwestRegionforsoilsderivedfromvolcanicash.Althoughin-creasesinsoilstrengthweremeasuredforghosttrailsandforharvester-forwardertrails,nothresholdvalueorsoilqualitystandardhasyetbeenestablishedinthePacificNorthwestRegionforsoilstrength.Reductionsinmacroporespacewerealsomeasured in ghost trails and forharvester-forwarder trails. Forest ServiceRegion6doesnotcurrentlyhaveasoilqualityindexthresholdestablishedformacroporespacereductionsinash-derivedsoils.Soilstrengthandreductionsinmacroporespaceappeartobereliableandeasilymeasurableindicesofsoilfunc-tion.Theyalsoprovideadditionalinformationaboutchangesoccurringinthesoilwhencompactionoccurs.Validationworkneedstobecompletedtodetermineappropriatethresholdsforeachoftheseindices.

Summary ______________________________________________________Soilqualitycanbedefined inanumberofwaysdependingonone’spoint

of view. For forest practitioners, management-induced changes in soil qualityareofconcernwhensiteproductivity ismeasurably reducedorwaterqualityisimpaired.Soildisturbancecanbeaccuratelydescribedandquantifiedusingconsistentvisualcategoriesandsound,cost-effectivesamplingprotocols.Assess-mentsofsoilqualitymustrelatevisualdisturbancecategoriestochangesintheabilityofthesoiltoprovidenutrientsortoabsorbandtransmitwater.Anumberofphysicalsoilindices(soilbulkdensity,soilstrength,soilporesizedistribution)areavailabletohelpdefinesuchrelationships.

Soilsvaryacrossthelandscapeandresponddifferentlytomanagementprac-tices.Caremustbetakenwhenmakingsoilqualityassessmentstoselectthemostappropriate soil indices, to followproper samplingprotocols, and to interpretresultscorrectly.Finally,withoutknowingeffectsofsoildisturbanceonsitepro-ductivityandsedimentyield,meaningfulassessmentsofsoilqualitycannotbemade.Validationofsuchcauseandeffectrelationshipsisastepintheprocessthatisoftennevercompleted.

References ______________________________________________________Byrd,C.W.;Cassel,D.K.1980.Theeffectofsandcontentuponconeindexandselectedphysical

properties.SoilScience.129:197-204.Chitwood,L.1994.SoilcompactionstudyphaseA,DeschutesNationalForest.DRAFTreport.Clayton, J.L.;Kellogg,G.;Forrester,N.1987.Soildisturbance-treegrowthrelations incentral

Idahoclearcuts.ResearchNoteINT-372.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainResearchStation.6p.

Cochran,P.H.;Brock,T.1985.Soilcompactionandinitialheightgrowthofplantedponderosapine.PacificNorthwestExtensionPublication-PNW434.3p.

Page 17: Assessing Quality in Volcanic Ash Soils

��USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

Craigg,T.L.2006.SoilSciences.Unpublished.Davis,CA:UniversityofCalifornia,Davis.MastersThesis.

Curran,M.P.;Miller,R.E.;Howes,S.W.;Maynard,D.G.;Terry,T.A.;Heninger,R.L.;Niemann,T.;vanRees,K.;Powers,R.F.;Schoenholtz,S.H.2005.Progresstowardmoreuniformassess-mentandreportingofsoildisturbanceforoperations,research,andsustainabilityprotocols.J.For.Ecol.Manage.220:7-30.

Danielson,R.E.;Sutherland,P.L.1986.Porosity.In:Klute,A.,ed.Methodsofsoilanalysis.SSSABookSeries:5Part1–Physicalandmineralogicalmethods.Madison,WI:SSSA.

Froehlich,H.A.1976.Theinfluenceofdifferentthinningsystemsondamagetosoilandtrees.Proceedings;XVIIUFORWorldCongressDivisionIV;Norway:UUFRO:333-334.

Froehlich,H.A.;Miles,D.W.R.;Robbins,R.W.1985.SoilbulkdensityrecoveryoncompactedskidtrailsincentralIdaho.SoilSci.Soc.Am.J.53:946-950.

Froehlich,H.A.;Miles,D.W.R.;Robbins,R.W.1986.GrowthofyoungPinus ponderosaandPinus contortaoncompactedsoilincentralWashington.ForestEcologyandManagement.15:285-294.

Geist,J.M.;Strickler,G.S.1978.PhysicalandchemicalpropertiesofsomeBlueMountainsoilsinnortheastOregon.Res.PapPNW-236.Portland,OR:U.S.DepartmentofAgriculture,ForestService,PacificNorthwestForestandRangeExperimentStation.19p.

Gerard,C.J.1965.Theinfluenceofsoilmoisture,soiltexture,dryingconditions,andexchange-ablecationsonsoilstrength.SoilSci.Soc.Amer.J.29:641-645.

Gomez,A.;Powers,R.F.;Singer,M.J.;Horwath,W.R.2002.Soilcompactioneffectsongrowthofyoungponderosapinefollowinglitterremoval inCalifornia’sSierraNevada.SoilScienceSoc.Amer.J.66:1334-1343.

Greacen,E.L.;Sands,R.1980.Compactionofforestsoils.Aust.J.Res.18:163-189.Grossman,R.B.;Harms,D.S.;Seybold,C.A.;Herrick,J.E.2001.Couplinguse-dependentanduse-

invariantdataforsoilqualityevaluationintheUnitedStates.J.SoilWaterConserv.56(1):63-68.Harward,M.E.;Youngberg,C.T.1969.SoilsfromMazamaashinOregon:identification,distri-

butionandproperties.Pedologyandquaternaryresearchsymposium:proceedings;1969May13-14,Edmonton,AB:UniversityofAlberta:163-178.

Helms,J.A.;Hipken,C.1986.EffectsofsoilcompactiononheightgrowthofaCaliforniapon-derosapineplantation.West.J.Appl.For1:121-124.

Howard,R. F.; Singer,M. J.; Franz,G.A.1981. Effectsof soil properties,water content, andcompactiveeffortoncompactionofselectedCaliforniaforestandrangesoils.SoilSci.Soc.Amer.J.45(2):231-237.

Howes,S.;Hazard, J.;Geist, J.M.1983.Guidelines forsamplingsomephysicalconditionsofsurfacesoils.R6-RWM-146-1983.Portland,OR:U.S.DepartmentofAgriculture,ForestService,PacificNorthwestRegion.

Karlen,D.L.;Mausbach,M.J.;Doran,J.W.;Cline,R.G.;Harris,R.F.;Schuman,G.E.1997.SoilSci.Soc.Am.J.61(1):139-49.

Larson,W.E.;Pierce,F.J.1991.Conservationandenhancementofsoilquality.In:EvaluationofSustainableLandManagementintheDevelopingWorld.Int.Bangkok,Thailand:BoardforSoilRes.andManagement:175-203.

Miller,R.E.;Hazard, J.;Howes,S.2001.Precision,accuracy,andefficiencyof four tools formeasuring soilbulkdensityor strength.Gen.Tech.Rep.PNW-RP-532.U.S.DepartmentofAgriculture,ForestService,PacificNorthwestResearchStation.16p.

NaturalResourcesConservationService(NRCS).2002.SoilSurveyofupperDeshutesriverarea,Oregon,includingpartsofDeschutes,Jefferson,andKlamathCounties.Report.U.S.Depart-mentofAgriculture,NaturalResourcesConservationService.515p.

Powers,R.F.;Tiarks,A.E.;Boyle,J.R.1998.Assessingsoilquality:practicalstandardsforsus-tainable forest productivity in theUnited States. In: The contributionof soil science to thedevelopmentandimplementationofcriteriaandindicatorsofsustainableforestmanagement.SSSASpec.Publ.53.Madison,WI:SSSA:53-80.

Scott,W.;Gillis,G.C.;Thronson,D.1979.Groundskiddingsoilmanagementguidelines.Wey-erhaeuserCompanyInternalReport.FederalWay,WA:WTC.34p.

Scott,D.H.2000.Soilphysicsagriculturalandenvironmentalapplications,IowaStateUniversityPress,FirstEdition.421p.

Seybold,C.A.;Mausbach,M.J.;Karlen,D.L.;Rogers,H.H.1997.QuantificationofSoilQual-ity.In:Stewart,B.A.;Lal,R.,eds.AdvancesinAgronomy.ProceedingsfromanInternationalSymposiumonCarbonSequestrationinSoil.LewisPubl.53-68.

Page 18: Assessing Quality in Volcanic Ash Soils

�4 USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Seybold,C.A.;Herrick,J.E.;Bredja,J.J.1999.Soilresilience:afundamentalcomponentofsoilquality.SoilSci.164(4):224-234.

Siegel-Issem,C.M.;Burger,J.A.;Powers,R.F.;Ponder,F.;Patterson,S.C.2005.Seedlingrootgrowthasafunctionofsoildensityandwatercontent.SoilSci.Soc.Am.J.69:215-226

Snider,M.D.;Miller,R.F.1985.EffectsoftractorloggingonsoilsandvegetationineasternOr-egon.SoilScienceSocietyofAmericaJournal.49:1280-1282.

SoilSurveyStaff.1996.Soilsurveylaboratorymethodsmanual.SoilSurveyInvestigationsReportNo.42version3.0.

Warkentin,B.P.1995.Thechangingconceptofsoilquality.J.SoilWaterCons.50:226-228.

Timberjack cut-to-length harvester

Timberjack forwarder machine

Page 19: Assessing Quality in Volcanic Ash Soils

��USDA Forest Service Proceedings RMRS-P-44. 2007

Assessing Quality in Volcanic Ash Soils Craigg and Howes

Harvester forwarder trail

Quantification of soil disturbance categories using randomly oriented 100 foot transects.

Page 20: Assessing Quality in Volcanic Ash Soils

�� USDA Forest Service Proceedings RMRS-P-44. 2007

Craigg and Howes Assessing Quality in Volcanic Ash Soils

Measuringsoilresistanceusingtherecordingsoilpenetrometer.