66
Association Mapping by Local Genealogies Bioinformatics Research Center University of Aarhus http://www.birc.au.dk/~mailund [email protected] Thomas Mailund

Association Mapping by Local Genealogies Bioinformatics Research Center University of Aarhus mailund [email protected] Thomas Mailund

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Association Mapping by Local Genealogies

Bioinformatics Research Center

University of Aarhus

http://www.birc.au.dk/[email protected]

Thomas Mailund

Disease mapping...

--A--------C--------A----G---X----T---C---A------T--------G--------A----G---X----C---C---A------A--------G--------G----G---X----C---C---A------A--------C--------A----G---X----T---C---A------T--------C--------A----G---X----T---C---A------T--------C--------A----T---X----T---A---A----

--A--------C--------A----G---X----T---C---A------A--------C--------A----G---X----T---C---A------A--------C--------A----G---X----T---C---G------T--------C--------A----T---X----T---C---A------A--------C--------A----G---X----T---C---A------A--------C--------G----T---X----C---A---A------A--------C--------A----G---X----C---C---G----

Locate disease locus Unlikely to be among our genotyped markers Use information from available markers

Cases (affected)

Controls (unaffected)

Indirect signal for causal locus

--T--------G--------A----G---X----C---C---A------A--------G--------G----G---X----C---C---A------A--------C--------A----G---X----T---C---A------T--------C--------A----G---X----T---C---A------T--------C--------A----T---X----T---A---A----

--A--------C--------A----G---X----T---C---A------A--------C--------A----G---X----T---C---A------A--------C--------A----G---X----T---C---G------T--------C--------A----T---X----T---C---A------A--------C--------A----G---X----T---C---A------A--------C--------G----T---X----C---A---A------A--------C--------A----G---X----C---C---G----

The markers are not independent Knowing one marker is partial knowledge of others This dependency decreases with distance

--A--------C--------A----G---X----T---C---A----

The Ancestral Recombination Graph

Locally, the genealogy of a small genomic region is the Ancestral Recombination Graph (ARG)

(Hudson 1990, Griffith&Marjoram 1996)

The Ancestral Recombination Graph

Sampled sequences

MRCA

(Hudson 1990, Griffith&Marjoram 1996)

The Ancestral Recombination Graph

Recombination

Coalescence

(Hudson 1990, Griffith&Marjoram 1996)

The Ancestral Recombination Graph

Non-ancestralmaterial Non-

ancestralmaterial

Ancestralmaterial

(Hudson 1990, Griffith&Marjoram 1996)

The Ancestral Recombination Graph

MutationsMutations

1 2

34

(Hudson 1990, Griffith&Marjoram 1996)

(Larribe, Lessard and Schork, 2002)

The unknown ARG, mutation locus and disease status can be explored using statistical sampling methods

This is very CPU demanding!

The Ancestral Recombination Graph

(Lyngsø, Song and Hein, 2005; Minichiello and Durbin, 2006)

The unknown ARG, mutation locus and disease status can be explored using statistical sampling methods

This is very CPU demanding!

Sampling only (near-) minimal ARGs improves matters

Still CPU demanding

The Ancestral Recombination Graph

Local trees

For each “point” on the chromosome, the ARGdetermines a (local) tree:

Local trees

For each “point” on the chromosome, the ARGdetermines a (local) tree:

Local trees

For each “point” on the chromosome, the ARGdetermines a (local) tree:

Local trees

For each “point” on the chromosome, the ARGdetermines a (local) tree:

Local trees

Type 1: No change

Type 2: Change in branch lengths

Type 3: Change in topology

From Hein et al. 2005

Local trees

Recombination rate

From Hein et al. 2005

Tree measure:

M AB=∑i , j

I {i= j }bl i bl j

tbl A tbl B

S AB=M AB

M AA

where

Using the local trees

Tree genealogies Each site a different genealogy Nearby genealogies only slightly different

--T--------G--------A----G---X----C----C-----A----A--------G--------G----G---X----C----C-----A----A--------C--------A----G---X----T----C-----A----T--------C--------A----G---X----T----C-----A----T--------C--------A----T---X----T----A-----A--

--A--------C--------A----G---X----T----C-----A--

AAATTT CCGGCC AAAGAAGGGGGT TTCCTTCCCCCAAAAAAAA nearby tree isan imperfectlocal tree

Tree at disease site: “Perfect” setup Incomplete penetrance Other disease causes

HHHHHHHH DDDDD

HHHHHHHH DDDHD

HDHHHDHH DDDHD

Templeton et al 1987

Using the local trees

At the disease site: A significant clustering of

diseased/healthy

HDHHHDHH DDDHD

Using the local trees

Templeton et al 1987

--T--------G--------A----G---X----C----C-----A----A--------G--------G----G---X----C----C-----A----A--------C--------A----G---X----T----C-----A----T--------C--------A----G---X----T----C-----A----T--------C--------A----T---X----T----A-----A--

--A--------C--------A----G---X----T----C-----A--

AAATTT CCGGCC AAAGAAGGGGGT TTCCTTCCCCCAAAAAAA

Tree at disease site resembles neighbours

Using the local trees

Near the disease site: A significant clustering of

diseased/healthy

HDHHHDHH DDDHD

Using the local trees

Zöllner and Pritchard 2005; Mailund et al 2006 ; Sevon et al 2006

Approach: Infer trees over regions Score the regions wrt

their clustering

HDHHHDHH DDDHDZöllner and Pritchard 2005; Mailund et al 2006 ; Sevon et al 2006

Using the local trees

In the infinite sites model: Each mutation occurs only once Each mutation splits the sample in two A consistent tree can efficiently be inferred

for a recombination free region

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

Use the four-gamete test to find regions, around each locus,that can be explained by a tree

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

Build a tree for each such region

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

Build a tree for each such region

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

Build a tree for each such region

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

Build a tree for each such region

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

Score the tree, and assign the score to the locus

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

If there are too many incompatibilities, we just cheat(but try to keep the cheating low in the tree)

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

If there are too many incompatibilities, we just cheat(but try to keep the cheating low in the tree)

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

If there are too many incompatibilities, we just cheat(but try to keep the cheating low in the tree)

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

If there are too many incompatibilities, we just cheat(but try to keep the cheating low in the tree)

Mailund et al 2006

BLOck aSSOCiation (BLOSSOC)

BLOck aSSOCiation (BLOSSOC)

Ding et al 2007

The tree construction is more complicated – but still possible and still efficient – for un-phased sequence data

The Perfect Phylogeny Haplotyping (PPH) problem

Gusfield 2002; Ding et al 2005 (The “cheating” still requires local

phasing; the most time consuming step)

BLOck aSSOCiation (BLOSSOC)

Ding et al 2007

The tree construction is more complicated – but still possible and still efficient – for un-phased sequence data

The Perfect Phylogeny Haplotyping (PPH) problem

Gusfield 2002; Ding et al 2005 (The “cheating” still requires local

phasing; the most time consuming step)Min markers: 1 2 3 4 5 6 7 8 9Phased: 4 4 4 4 4 4 5 5 7Unphased: 26 66 248 596 905 1194 1419 1624 1844

Scoring trees

Red=casesGreen=controls

Are the case chromosomes significantly overrepresented in some sub-trees?

Mailund et al 2006

Scoring trees

Mailund et al 2006

Scoring trees

Mutation

We can place “mutations” on the tree edges and partition chromosomes into “mutants” and “wild-types”...

Mailund et al 2006

Mutants

Wild-types

Scoring trees

...and assign different risks based on the implied genotypes

Mutants

Wild-types

nA

1−nU

MMnMMA

1−MM n MMU

MWnMWA

1−MW nMWU

WWnWWA

1−WW nWWU

Likelihoods

Haploid data:

MnMA

1−M nMU

WnWA

1−W nWU

Null model:

Diploid data:

Mailund et al 2006

Scoring trees

Generalizes to more mutations in the obvious way

nA

1−nU

Likelihoods

Haploid data:

∏aanaA

1−anaU

Null model:

Diploid data:

Mailund et al 2006

∏ ggn gA

1−gn gU

Wild-types

Mutant A

Mutant B

Scoring trees

s T =maxm , {L m ,−∣∣⋅Dn}

Tree score

Mailund et al 2006

Wild-types

Mutant A

Mutant BLikelihood

Number of parameters

Penalty weight

Depending on penalty weight we getAkaiki Information Criteria, Bayesian Information Criteria,Hanna and Quinn Criteria,...

Scoring trees

s T =maxm , {L m ,−∣∣⋅Dn}

Tree score

Mailund et al 2006

Wild-types

Mutant A

Mutant BLikelihood

Number of parameters

Penalty weight

For efficiency reasons, we only explore the mutationstop down, stopping when the score no longer improves

Scoring trees

Mailund et al 2006; Ding et al 2007

Mutants

Wild-types

nA

1−nU

MMnMMA

1−MM n MMU

MWnMWA

1−MW nMWU

WWnWWA

1−WW nWWU

Likelihoods

Haploid data:

MnMA

1−M nMU

WnWA

1−W nWU

Null model:

Diploid data:

Scoring trees

Using an uninformative Beta prior, β(1,1), we can integrate the risk parameters out

Mailund et al 2006; Ding et al 2007

Mutants

Wild-types

B nA1, nU1

B nMMA 1, nMM

U 1 B nMWA 1, nMW

U 1 B nWWA 1, nWW

U 1

Marginal likelihoods

Haploid data:

B nMA 1, nM

U 1B nWA 1, nW

U 1

Null model:

Diploid data:

Balding 2006 ; Waldron et al 2006

Scoring trees

For the tree, we take the mean score over all edges. The score is the Bayes factor of the tree likelihood vs the null model likelihood.

Mailund et al 2006; Ding et al 2007

Mutants

Wild-types

L0=B n A1, nU1

LT=∑e e ∏g :e

B ngA1, ng

U1

Null model:

Tree model:

Score:

S T=LT / L0

Scoring trees

This generalises to several mutations (more complicated implied genotypes; computationally slower)

Through Bayes factors we can test for the number of mutations.

Mailund et al 2006; Ding et al 2007

LT1=1∑e

e ∏g :eB ng

A1, ngU1

LT2=2 ∑e∑e '

e , e ' ∏g :e , e 'B ng

A1, ngU1

Scoring trees

Generalises to quantitative traitsas well with minor changes tothe scoring approach...

Besenbacher et al. 2007

Fine mapping example...

500 cases / 500 controls100 SNPs on 100 Kbp

2 mutations at same locus with same risk

P(case|aa) = 5% ; GRR = 2

Fine mapping example...

Fine mapping example...

Localization accuracy

1 causal mutationMax BF / min p-val

used as point estimate

Localization accuracy

2 causal mutationsMax BF / min p-val

used as point estimate

Comparison with Margarita

Margarita is the (near-)minimal ARG method of Minichiello and Durbin

Data sets: 1000 cases / 1000 controls 300 markers

Comparisons with both phased and unphased data

Acknowledgment: Experiments done by Yun S. Song

Comparison with MargaritaUnphased data; Min markers: 5

Comparison with MargaritaPhased data; Min markers: 5

Comparison with MargaritaUnphased data; Min markers: 9

Comparison with MargaritaPhased data; Min markers: 9

Comparison with Margarita

How did we do? Generally between single-marker test and

Margarita Depends heavily on the scoring function Quite well on time:

Margarita: phased unphased 118620 300512

Blossoc unphased: -fH -fB -fA -fG -fP -fXm = 1: 26 26 25 26 28 27 m = 2: 66 66 66 66 68 67 m = 3: 248 248 248 248 250 248 m = 4: 596 596 597 596 598 595 m = 5: 905 904 904 904 906 905 m = 6: 1194 1194 1195 1195 1196 1195m = 7: 1419 1418 1416 1415 1419 1416m = 8: 1624 1626 1623 1626 1628 1627m = 9: 1844 1847 1845 1842 1851 1852

Choice of scoring function

Is one scoring function generally better than the rest?

Unfortunately not Simulations show a (small) trend:

Small datasets (<1000 individuals) -fP Medium datasets (~1000 individuals) -fH Larger datasets (>1000 individuals) -fA

Comparison with HPM

(Toivonen et al. 2000)

Comparison with HapMiner

P(case|AA)=15%; P(case|Aa)=10%; P(case|aa)=5%

200 markers, rho=40, 500 cases / 500 controls, P(A)=18-22% P(case|AA)=20%; P(case|Aa)=8%; P(case|aa)=5%

(Li and Jiang 2005)

Comparison with HapMiner

P(case|AA)=15%; P(case|Aa)=10%; P(case|aa)=5%

200 markers, rho=40, 500 cases / 500 controls, P(A)=18-22% P(case|AA)=20%; P(case|Aa)=8%; P(case|aa)=5%

(Li and Jiang 2005)

Blossoc: ~5 sec per data setHapMiner: ~40 min per data set

Comparison with HapCluster

(Waldron et al. 2006)

Implementation freely available

Homepage: www.birc.au.dk/~mailund/Blossoc

Command line andgraphical user interface...

The end

Thank you!

More at http://www.birc.au.dk/~mailund/association-mapping/

References A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping – A.R.

Templeton, E. Boerwinkle, and C.F. Sing; Genetics 117 343-351 1987 Gene genealogies and the coalescent process – R.R. Hudson; Oxford Surveys in Evolutionary Biology 7 1-44 1990 Ancestral inference from samples of DNA sequences with recombination – R.C. Griffith and P. Majoram; J Comput Biol 3:4

479-502 1996 Data Mining Applied to Linkage Disequilibrium Mapping – H.T.T. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H.

Mannila, M. Herr and J. Kere; Am J. of Human Gen 67 133-145 2000 Gene mapping via the ancestral recombination graph – F. Larribe, S. Lessard, and N.J. Schork; Theor Popul Biol 62:2 215-229

2002 Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions – D. Gusfield; RECOMB 2002 166-175

2002 Gene genealogies, variation, and evolution – J. Hein, M.H. Schierup, and C. Wiuf; Oxford University Press 2005 Coalescent-based association mapping and fine mapping of complex trait loci – S. Zöllner and J.K. Pritchard; Genetics 169:2

1071-1092 2005 Minimum Recombination Histories by Branch and Bound – R.B. Lyngsø, Y.S. Song and J. Hein; WABI 2005, LNCS 3692 239-

250, 2005 A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem – Z. Ding, V. Filkov and D. Gusfield; RECOMB

2005 585-600 2005 Haplotype-based linkage disequilibrium mapping via direct data mining – J Li and T Jiang; Bioinformatics 21(24) 4384-4393

2005 Fine mapping of disease genes via haplotype clustering – E.R.B. Waldron, J.C. Whittaker, and D.J. Balding; Genet Epidemiol

30:2 170-179 2006 Whole genome association mapping by incompatibilities and local perfect phylogenies – T. Mailund, S. Besenbacher, and

M.H. Schierup; BMC Bioinformatics 7:454 2006 TreeDT: Tree pattern mining for gene mapping – P. Sevon, H. Toivonen, V. Ollikainen; IEEE/ACM Transactions on

Computational Biology and Bioinformatics 3 174-185 2006 A tutorial on statistical methods for population association studies – D.J. Balding; Nat Rev Genet 7:10 781-791 2006 Mapping Trait Loci by Use of Inferred Ancestral Recombination Graphs – M. Minichiello and R. Durbin; Am J. of Human Gen

2006 Using unphased perfect phylogenies for efficient whole-genome association mapping – Z. Ding, T. Mailund and Y.S. Song; In

preparation 2007