11
AstroTalk: Behind the news headlines of August–October 2020 Richard de Grijs () (Macquarie University, Sydney, Australia) Four-hundred-year-old stellar explosions reveal their secrets Astronomers have used NASA’s Chandra X-ray Observatory (CXO) to record material blasting away from the site of an exploded star at speeds faster than 20 million kilometres per hour—about 25,000 times faster than the speed of sound in air on Earth. Kepler’s supernova remnant is the debris from a detonated star located in the constellation of Ophiuchus, about 16,000 light-years away from Earth in our Milky Way galaxy. In 1604 early astronomers, including Johannes Kepler, saw the supernova explosion that destroyed the star. We now know that Kepler’s supernova remnant is the aftermath of a so-called Type Ia supernova, where a small dense star, known as a white dwarf, gains enough mass to exceed a critical limit—the ‘Chandrasekhar’ mass limit, equivalent to 1.44 times the mass of our Sun—after interacting with a companion star and undergoes a thermonuclear explosion that shatters the white dwarf and launches its remains outwards. The latest study, published in August 2020, tracked the speed of 15 small ‘knots’ of debris in Kepler’s supernova remnant, all glowing brightly in X-rays. The fastest knot was measured to have a speed of 37 million kilometres per hour, the highest speed ever detected of supernova remnant debris in X-rays. The average speed of the knots is about 16 million kilometres per hour, and the blast wave is expanding at about 24 million kilometres per hour. These results independently confirm the 2017 discovery of knots travelling at these high speeds in Kepler’s supernova remnant. Researchers estimated the speeds of the knots by analysing X-ray spectra from the CXO, which give the intensity of X-rays at different wavelengths. The observations were already obtained in 2016. By comparing the wavelengths of features in the X-ray spectrum with laboratory values and using the Doppler effect, they measured the speed of each knot along the line of sight from Earth to the remnant. They also used CXO images obtained earlier, in 2000, 2004, 2006 and 2014, to detect changes in position of the knots and measure their speeds perpendicular to our sightline. These two measurements combined to give an estimate of each knot’s true speed in three-dimensional space. The earlier, 2017 work applied the same general technique as the new, 2020 study, but used X-ray spectra from a different CXO instrument. The new study resulted in more precise determinations of the knot’s speeds along the line of sight and, therefore, the total speeds in all directions.

AstroTalk: Behind the news headlines of August–October 2020

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AstroTalk: Behind the news headlines of August–October 2020

AstroTalk:BehindthenewsheadlinesofAugust–October2020RicharddeGrijs(何锐思)(MacquarieUniversity,Sydney,Australia)Four-hundred-year-oldstellarexplosionsrevealtheirsecretsAstronomershaveusedNASA’sChandraX-rayObservatory(CXO)torecordmaterialblastingawayfromthesiteofanexplodedstaratspeedsfasterthan20millionkilometresperhour—about25,000timesfasterthanthespeedofsoundinaironEarth.

Kepler’ssupernovaremnantisthedebrisfromadetonatedstarlocatedintheconstellationofOphiuchus,about16,000light-yearsawayfromEarthinourMilkyWaygalaxy.In1604earlyastronomers,includingJohannesKepler,sawthesupernovaexplosionthatdestroyedthestar.

WenowknowthatKepler’ssupernovaremnantistheaftermathofaso-calledTypeIasupernova,whereasmalldensestar,knownasawhitedwarf,gainsenoughmasstoexceedacriticallimit—the‘Chandrasekhar’masslimit,equivalentto1.44timesthemassofourSun—afterinteractingwithacompanionstarandundergoesathermonuclearexplosionthatshattersthewhitedwarfandlaunchesitsremainsoutwards.

Thelateststudy,publishedinAugust2020,trackedthespeedof15small‘knots’ofdebrisinKepler’ssupernovaremnant,allglowingbrightlyinX-rays.Thefastestknotwasmeasuredtohaveaspeedof37millionkilometresperhour,thehighestspeedeverdetectedofsupernovaremnantdebrisinX-rays.Theaveragespeedoftheknotsisabout16millionkilometresperhour,andtheblastwaveisexpandingatabout24millionkilometresperhour.Theseresultsindependentlyconfirmthe2017discoveryofknotstravellingatthesehighspeedsinKepler’ssupernovaremnant.

ResearchersestimatedthespeedsoftheknotsbyanalysingX-rayspectrafromtheCXO,whichgivetheintensityofX-raysatdifferentwavelengths.Theobservationswerealreadyobtainedin2016.BycomparingthewavelengthsoffeaturesintheX-rayspectrumwithlaboratoryvaluesandusingtheDopplereffect,theymeasuredthespeedofeachknotalongthelineofsightfromEarthtotheremnant.TheyalsousedCXOimagesobtainedearlier,in2000,2004,2006and2014,todetectchangesinpositionoftheknotsandmeasuretheirspeedsperpendiculartooursightline.Thesetwomeasurementscombinedtogiveanestimateofeachknot’struespeedinthree-dimensionalspace.

Theearlier,2017workappliedthesamegeneraltechniqueasthenew,2020study,butusedX-rayspectrafromadifferentCXOinstrument.Thenewstudyresultedinmoreprecisedeterminationsoftheknot’sspeedsalongthelineofsightand,therefore,thetotalspeedsinalldirections.

Page 2: AstroTalk: Behind the news headlines of August–October 2020

ThehighspeedsinKepleraresimilartothosescientistshaveseeninoptical(visual-light)observationsofsupernovaexplosionsinothergalaxiesonlydaysorweeksaftertheexplosion,wellbeforeasupernovaremnantformsdecadeslater.ThiscomparisonimpliesthatsomeknotsinKeplerhavehardlybeensloweddownbycollisionswithmaterialsurroundingtheremnantintheapproximately400yearssincetheexplosion.

BasedontheCXOspectra,eightofthe15knotsaredefinitelymovingawayfromEarth,butonlytwoareconfirmedtobemovingtowardsit.(Theotherfivedonotshowacleardirectionofmotionalongourlineofsight.)Thisasymmetryinthemotionoftheknotsimpliesthatthedebrismaynotbesymmetricalongourlineofsight,butmoreknotsneedtobestudiedtoconfirmthisresult.

ThefourknotswiththehighesttotalspeedsarealllocatedalongahorizontalbandofbrightX-rayemission.Thesefourknotsareallmovinginasimilardirectionandhavesimilaramountsofelementssuchassilicon,suggestingthatthematterinalloftheseknotsoriginatedfromthesamelayeroftheexplodedwhitedwarf.

Theexplanationforthehigh-speedmaterialisunclear.SomescientistshavesuggestedthatKepler’ssupernovaremnantisfromanunusuallypowerfulTypeIaexplosion,whichmightexplainthefast-movingmaterial.Itisalsopossiblethattheimmediateenvironmentaroundtheremnantisitselfclumpy,whichcouldallowsomeofthedebristotunnelthroughregionsoflowdensityandavoidbeingsloweddownverymuch.

The2017teamalsousedtheirdatatorefinepreviousestimatesofthelocationofthesupernovaexplosion.Thisallowedthemtosearchforacompaniontothewhitedwarfthatmayhavebeenleftbehindafterthesupernova,andlearnmoreaboutwhattriggeredtheexplosion.Theyfoundalackofbrightstarsnearthecentreoftheremnant.ThisimpliedthatastarliketheSundidnotdonatematerialtothewhitedwarfuntilitreachedcriticalmass.Amergerbetweentwowhitedwarfsisfavouredinstead.

Inthesesystems,whenatleastoneofthestars(withthehighestmass)reachestheendofitslifeandbecomesawhitedwarf,theothercanbegintotransfermatteruptotheChandrasekharlimit.Thisprocessleadstothecentralignitionofcarboninthewhitedwarf,producinganexplosionthatcanmultiplyitsoriginalbrightness100,000times.Kepler’ssupernovaisknowntohavearisenfromtheexplosionofawhitedwarfinabinarysystem.Therefore,adifferentteamofresearcherssearchedforthepossiblesurvivingcompanionofthewhitedwarf,whichallegedlytransferredmassuptotheleveloftheexplosion.Theimpactofthisexplosionwouldhaveincreasedthebrightnessandspeedofthemissingcompanion;itcouldevenhavemodifieditschemicalcomposition.Theteam,therefore,searchedforstarswithsomeanomalythatwouldallowthemtoidentifyoneofthemasthecompanionofthewhitedwarfthatexplodedin1604.

Page 3: AstroTalk: Behind the news headlines of August–October 2020

PilarRuizLapuente,researcheratUniversityofBarcelona,Spain,says,

“WewerelookingforapeculiarstarasapossiblecompanionoftheprogenitoroftheKeplersupernova,andwecharacterisedallstarsaroundthecentreoftheremnant,butwehavenotfoundanywiththeexpectedcharacteristics.Soeverythingpointstotheexplosionbeingcausedbythemergingmechanismofthewhitedwarfwithanotherorwiththecoreofthealreadyevolvedcompanion.”

Tocarryoutthisinvestigation,theresearchersstudiedimagestakenwiththeHubbleSpaceTelescope.

“Thegoalwastodeterminethepropermotions(theapparentmotionsintheskyasseenfromEarth)ofagroupof32starsaroundthecenterofthesupernovaremnantthatstillexiststoday,”saysLuigiBedin,researcheratPadovaObservatoryinItaly.

Theyalsouseddataobtainedwiththe8.2m(diameter)VeryLargeTelescope(VLT),attheEuropeanSouthernObservatoryinChiletocharacterisestars,anddeterminetheirdistanceandtheirradialvelocitywithrespecttotheSun.

“ThestarsoftheKeplersupernovafieldareveryweakstars,onlyaccessiblefromtheSouthernHemispherewithalargediametertelescopesuchasVLTtelescopes,”saysJohnPritchard,aresearcherattheEuropeanSouthernObservatory.

“Thereisanalternativemechanismtoproducetheexplosion.Itconsistsofthemergingoftwowhitedwarfs,orthewhitedwarfwiththecarbonandoxygencoreofthecompanionstar,inalatestageofitsevolution,inbothcasesgivingrisetoasupernova,”explainsJonayGonzálezHernándezoftheAstrophysicalInstituteoftheCanaryIslands(Spain).“IntheKeplerfield,wedonotseeanystarthatshowsanomalies.However,wefoundevidencethattheexplosionwascausedbythemergingoftwowhitedwarfsorawhitedwarfwiththecoreofthecompanionstar,possiblyexceedingtheChandrasekharlimit.”

The Kepler supernova is one of five ‘historical’ thermonuclear supernovas.Among theother four, themost famous isTychoBrahe’s supernova.When thestarthatcreatedthissupernovaremnantexplodedin1572,itwassobrightthatitwasvisibleduringtheday.Andalthoughhewasn’tthefirstoronlypersontoobservethisstellarspectacle,theDanishastronomerTychoBrahewroteabookabout his extensive observations of the event, gaining the honour of it beingnamedafterhim.

Inmoderntimes,astronomershaveobservedthedebrisfieldfromthisexplosion—whatisnowknownasTycho’ssupernovaremnant—usingdatafromtheCXO,theKarlG.JanskyVeryLargeArray(VLA),aradiotelescopebasedintheUSA,andmanyothertelescopes.Today,theyknowthattheTychoremnant

Page 4: AstroTalk: Behind the news headlines of August–October 2020

wascreatedbytheexplosionofawhitedwarfstar,thereforealsomakingitpartoftheTypeIaclassofsupernovasusedtotracktheexpansionoftheuniverse.

Sincemuchofthematerialbeingflungoutfromtheshatteredstarhasbeenheatedbyshockwaves—similartosonicboomsfromsupersonicplanes—passingthroughit,theremnantglowsstronglyinX-raylight.AstronomershavenowusedCXOobservationsfrom2000through2015tocreatethelongestmovieoftheTychoremnant’sX-rayevolutionovertime,usingfivedifferentimages.Thisshowstheexpansionfromtheexplosionisstillcontinuingabout450yearslater,asseenfromEarth’svantagepointroughly10,000light-yearsaway.

BycombiningtheX-raydatawithsome30yearsofobservationsinradiowaveswiththeVLA,astronomershavealsoproducedamovie,usingthreedifferentimages.AstronomershaveusedtheseX-rayandradiodatatolearnnewthingsaboutthissupernovaanditsremnant.

Theresearchersmeasuredthespeedoftheblastwaveatmanydifferentlocationsaroundtheremnant.Thelargesizeoftheremnantenablesthismotiontobemeasuredwithrelativelyhighprecision.Althoughtheremnantisapproximatelycircular,therearecleardifferencesinthespeedoftheblastwaveindifferentregions.Thisdifferencewasalsoseeninearlierobservations.

Thisrangeinspeedoftheblastwave’soutwardmotioniscausedbydifferencesinthedensityofgassurroundingthesupernovaremnant.Thiscausesanoffsetinpositionoftheexplosionsitefromthegeometriccentre,determinedbylocatingthecentreofthecircularremnant.Theastronomersfoundthatthesizeoftheoffsetisabout10%oftheremnant’scurrentradius.Theteamalsofoundthatthemaximumspeedoftheblastwaveisabout19millionkilometresperhour.

Offsetssuchasthisbetweentheexplosioncentreandthegeometriccentrecouldexistinothersupernovaremnants.UnderstandingthelocationoftheexplosioncentreforTypeIasupernovasisimportantbecauseitnarrowsthesearchregionforasurvivingcompanionstar.Anysurvivingcompanionstarwouldhelpidentifythetriggermechanismforthesupernova,showingthatthewhitedwarfpulledmaterialfromthecompanionstaruntilitreachedtheChandrasekharmasslimitandexploded.Thelackofacompanionstarwouldfavourtheothermaintriggermechanism,wheretwowhitedwarfsmergecausingthecriticalmasstobeexceeded,leavingnostarbehind.

Thesignificantoffsetfromthecentreoftheexplosiontotheremnant’sgeometriccentreisarelativelyrecentphenomenon.Forthefirstfewhundredyearsoftheremnant,theexplosion’sshockwassopowerfulthatthedensityofgasitwasrunningintodidnotaffectitsmotion.Thedensitydiscrepancyhasincreasedastheshockmovedoutwards,causingtheoffsetinpositionbetweentheexplosioncentreandthegeometriccentretogrowwithtime.So,iffutureX-rayastronomers,say1,000yearsfromnow,dothesameobservation,theyshouldfindamuchlargeroffset.

Page 5: AstroTalk: Behind the news headlines of August–October 2020

Figure1:CXOimageoftheTychosupernovaremnant.InthelowerleftregionofTychoisabluearcofX-rayemission.Severallinesofevidencesupporttheconclusionthatthisarcisduetoashockwavecreatedwhenawhitedwarfexplodedandblewmaterialoffthesurfaceofanearbycompanionstar.(Credit:NASA/CXC/ChineseAcademyofSciences/F.Luetal.)

Page 6: AstroTalk: Behind the news headlines of August–October 2020

Figure2:Artist’simpressionshowinganexplanationfortheoriginoftheblueX-rayarcinTycho’ssupernovaremnant.ItisbelievedthatmaterialwasstrippedoffthecompanionstarbytheexplosionofthewhitedwarfintheTypeIasupernovaexplosion,formingtheshockwaveseeninthearc.Thearchasblockeddebrisfromtheexplosion,creatinga‘shadow’behindthearc.Theforceoftheexplosionimpartedakicktothecompanionstar,andthiscombinedwiththeorbitalvelocityofthecompanionbeforetheexplosiontogivethe‘observed’motionofthecompanion.Previously,studieswithopticaltelescopeshaverevealedastarwithintheremnantthatismovingmuchmorequicklythanitsneighbours,showingthatitcouldbethecompaniontothesupernova.Thesizeofthecompanion’sorbitisnotshowntoscalehere:theseparationbetweenitandthewhitedwarfbeforetheexplosionisestimatedtohaveonlybeenaboutamillionthofalight-year,whilethefullscaleoftheillustrationisover10light-years.(Credit:NASA/CXC/M.Weiss)

Page 7: AstroTalk: Behind the news headlines of August–October 2020

Figure3:ThisimageshowsirondebrisinTycho’ssupernovaremnant.Thesiteofthesupernovaexplosionisshown,asinferredfromthemotionofthepossiblecompaniontotheexplodedwhitedwarf.Thepositionofmaterialstrippedoffthecompanionstarbytheexplosion,andforminganX-rayarc,isshownbythewhitedottedline.ThisstructureismosteasilyseeninanimageshowingX-raysfromthearc’sshockwave.Finally,thearchasblockeddebrisfromtheexplosioncreatinga‘shadow’inthedebrisbetweenthereddottedlines,extendingfromthearctotheedgeoftheremnant.(Credit:Credit:NASA/CXC/ChineseAcademyofSciences/F.Luetal.)

Page 8: AstroTalk: Behind the news headlines of August–October 2020

Figure4:Kepler’ssupernovaremnant.(Credit:NASA/CXC/UnivofTexasatArlington/M.Millardetal.)

Page 9: AstroTalk: Behind the news headlines of August–October 2020

Figure5:Kepler’ssupernovaremnant.Thered,greenandbluecoloursshowlow,intermediateandhigh-energyX-raysobservedwiththeCXO;thestarfieldisfromtheDigitizedSkySurvey.(Credit:X-rays:NASA/CXC/NCSU/M.Burkeyetal.;infrared:NASA/JPL-Caltech)

Page 10: AstroTalk: Behind the news headlines of August–October 2020

Figure6:JohannesKepler’soriginaldrawingfromDeStellaNova(1606)depictingthelocationofthesupernova,markedwithanN.

Page 11: AstroTalk: Behind the news headlines of August–October 2020

Figure7:TypeIasupernovae.(Credit:NASA/CXC/M.Weiss)

Figure8:Artist’sconceptionofawhitedwarfslowlyaccretingmatterfromacompanionstar.(Credit:DavidA.Hardy&STFC)