9
ASYMPTOTIC BEHAVIOR OF STOCHASTIC AUTOMATA IN STATIONARY RANDOM MEDIA E. N. Vavilov, S. D. l~idei~man, and A~ I. l~zrokhi UDC 62-507 In this paper we carry out a detailed analysis of the asymptotic behavior of finite (with a number of states 2n) automata B2n(k, v 0, vl) in a stationary random medium C (Pi, P~). Many known automata [1-5] belong to this class. r We establish that a sequence of automata {Ban(k , v0, vi)}n=t has as its limit an infinite (with a countable number of states) automaton B(k, v0, vt) whose probabilistie characteristics of behavior are the limit (for n --- ~) of the probabilistic characteristics of the automaton B2n(k, v0, vl). Due to this we can find simple ex- pressions for the calculation of the important statistical characteristics of the behavior of automata with a large number of states. The analysis of the behavior of an infinite automaton [6] allowed a detailed classification of the asymptotic behavior of finite automata to be carried out. In particular, a sequence of finite automata was considered asymptotically optimal if an optimal automaton was its limit. In this paper we show that inthe eases that are most interesting from a practical viewpoint, where the limit automaton B(k, v0, vl) is optimal, quasioptimal, or attractive (the classification will be given below), there exists no stationary distribution of probabilities of states of the automaton. Thus, an answer is found to the problem posed .by Varshavskii in [2] (p. 57). An important part of the work is the study of the generating functions U (n) (z) and Ua(Z) of probabilities of an action change by automata. Here we present an algebraic method for investigating these functions. The problem being considered by us is a particular case of the problem of one-dimensional random walk on a semi- axis. A detailed investigation of the problem of one-dimensional random walk, making use of another mathe- matical tool, is found in the monographs by ]3orovkov [7], Korolyuk [8], and Takacs [9]. w 1. Determination of Automata Ban(k, Vo, Vl) and B(k, v0, vl) We shall proceed from the description of the behavior of an automaton in a stationary random medium C (Pl, P2) found in [1, 2J. The medium forms the input variable of the automaton (the reaction of the medium), which can assume one of two values: s =- 1 (penalty) and s = +1 (nonpenalty). The states of the automaton are decomposed into two regions L 1 and I e. The region L 1 (Ie) contains states marked by the action fl (f2)" For the action fm the medium C (Pi, P2) imposes a penalty on the automaton with a probability Pm; qm = 1 - Prn is the probability of a nonpenalty, m = 1, 2. For the sake of being definite we shall assume that P2 > Pl- Let the states of the region ~ have numbers -1, -2 ..... -n ..... while the states of the region L a have numbers 0, 1, 2, ... , n- 1 ..... We specify the rule of change of the internal states of automata under the action of the input variable s. We denote by r 0i(n)(t))the number of the state in which the automaton B(k, v0, vl) (B2n(k, v0, v~)) is at the instant t, t = 0, 1, 2 .... , when the signal s(t) is received. Then x~(t q- 1 ) = xp~(t) (1 + s(t2 q- 1)) + q~= (t) (1 ---s 2 (t'nt" 1)) ," ~;t(t) = I~ (t) -- sign g (t) with probability %, [~ (t)q-k sign ~;(t) with probability 1 -- %, ~ (t) = I ~ (t) -- sign ~ (t) with probabi!ity 1 - - %, /~P (t) -~ k sign ~p (t) with probability vl. Here we assume that sign0 = 1. For a finite automaton B2n(k , v0, vl) the rule is the same, but it is additionally required that r = max{-n, rain [n - 1, r Translated from Kibernetika, No. 5, pp. 3-11, September-October, 1977. Original article submitted October 16, 1975. 0011-4235/77/1305- 06o9 807.50 1978 Plenum Publishing Corporation 639

Asymptotic behavior of stochastic automata in stationary random media

Embed Size (px)

Citation preview

Page 1: Asymptotic behavior of stochastic automata in stationary random media

ASYMPTOTIC BEHAVIOR OF STOCHASTIC AUTOMATA

IN STATIONARY RANDOM MEDIA

E. N. Vavilov, S. D. l~idei~man,

and A~ I. l~zrokhi

UDC 62-507

In this p a p e r we c a r r y out a de ta i l ed a n a l y s i s of the a s y m p t o t i c b e h a v i o r of f ini te (with a number of s t a t e s 2n) a u t o m a t a B2n(k, v 0, vl) in a s t a t i o n a r y r a n d o m m e d i u m C (Pi, P~). Many known au tomata [1-5] be long to this c l a s s .

r We es t ab l i sh that a s equence of au toma ta {Ban(k , v0, vi)}n=t has as its l imi t an infinite (with a countab le

n u m b e r of s t a tes ) a u t o m a t o n B(k, v0, vt) whose p robab i l i s t i e c h a r a c t e r i s t i c s of b e h a v i o r a r e the l imi t (for n --- ~) of the p r o b a b i l i s t i c c h a r a c t e r i s t i c s of the a u t o m a t o n B2n(k, v0, vl). Due to this we can f ind s imp le e x - p r e s s i o n s for the calculation of the important statistical characteristics of the behavior of automata with a

large number of states.

The analysis of the behavior of an infinite automaton [6] allowed a detailed classification of the asymptotic behavior of finite automata to be carried out. In particular, a sequence of finite automata was considered asymptotically optimal if an optimal automaton was its limit. In this paper we show that inthe eases that are most

interesting from a practical viewpoint, where the limit automaton B(k, v0, vl) is optimal, quasioptimal, or a t t r a c t i v e (the c l a s s i f i c a t i o n will be g iven below), t h e r e ex i s t s no s t a t i o n a r y d i s t r ibu t ion of p robab i l i t i e s of s t a t e s of the au tomaton . T h u s , an a n s w e r is found to the p r o b l e m p o s e d .by Va r shavsk i i in [2] (p. 57).

An i m p o r t a n t p a r t of the w o r k is the s tudy of the g e n e r a t i n g funct ions U (n) (z) and Ua(Z) of p robab i l i t i e s of an ac t ion change by au tomata . H e r e we p r e s e n t an a l g e b r a i c m e t h o d fo r inves t iga t ing these funct ions . The p r o b l e m be ing c o n s i d e r e d by us is a p a r t i c u l a r c a s e of the p r o b l e m of o n e - d i m e n s i o n a l r a n d o m walk on a s e m i - ax is . A de ta i led inves t iga t ion of the p r o b l e m of o n e - d i m e n s i o n a l r a n d o m walk , mak ing use of ano the r m a t h e - m a t i c a l tool , is found in the m o n o g r a p h s by ]3orovkov [7], Koro lyuk [8], and T a k a c s [9].

w 1 . D e t e r m i n a t i o n o f A u t o m a t a B a n ( k , Vo, Vl) a n d B ( k , v0 , v l )

We sha l l p r o c e e d f r o m the d e s c r i p t i o n of the b e h a v i o r of an a u t o m a t o n in a s t a t i ona ry r a n d o m m e d i u m C (Pl, P2) found in [1, 2J. The m e d i u m f o r m s the input v a r i a b l e of the a u t o m a t o n (the r e a c t i o n of the medium) , which c a n a s s u m e one of two va l ue s : s = - 1 (penalty) and s = +1 (nonpenalty). The s t a t e s of the a u t o m a t o n a r e d e c o m p o s e d into two r eg ions L 1 and I e. The reg ion L 1 (Ie) conta ins s t a t e s m a r k e d by the ac t ion fl (f2)"

F o r the ac t ion fm the m e d i u m C (Pi, P2) i m p o s e s a penal ty on the au toma ton with a p robab i l i ty Pm; q m = 1 - Prn is the p robab i l i ty of a nonpenal ty , m = 1, 2. F o r the sake of being definite we sha l l a s s u m e that P2 > Pl- Let the s t a t e s of the r e g i o n ~ have n u m b e r s - 1 , - 2 . . . . . - n . . . . . while the s t a t e s of the r eg ion L a have n u m b e r s 0, 1, 2, . . . , n - 1 . . . . . We spec i fy the ru le of change of the in te rna l s t a t e s of au toma ta under the ac t ion of the input v a r i a b l e s. We denote by r 0i(n)(t))the n u m b e r of the s ta te in which the au toma ton B(k, v0, vl) (B2n(k, v0, v~)) is a t the ins tant t , t = 0, 1, 2 . . . . , when the s ignal s(t) is r ece ived . Then

x~(t q- 1 )= xp~(t) (1 + s(t2 q- 1)) + q~= (t) (1 ---s 2 (t'nt" 1)) ,"

~;t(t) = I~ (t) - - sign g (t) with probability %, [~ (t)q-k sign ~;(t) with probability 1 - - %,

~ (t) = I ~ (t) - - sign ~ (t) with probabi!ity 1 - - %, /~P (t) -~ k sign ~p (t) with probability vl.

H e r e we a s s u m e that s i g n 0 = 1. F o r a f ini te au toma ton B2n(k , v0, vl) the ru le is the s a m e , but it is addi t ional ly r e q u i r e d that r = m a x { - n , rain [n - 1, r

T r a n s l a t e d f r o m Kibe rne t ika , No. 5, pp. 3 -11 , S e p t e m b e r - O c t o b e r , 1977. Or ig ina l a r t i c l e submi t t ed Oc tobe r 16, 1975.

0 0 1 1 - 4 2 3 5 / 7 7 / 1 3 0 5 - 06o9 807.50 �9 1978 P lenum Publ i sh ing C o r p o r a t i o n 639

Page 2: Asymptotic behavior of stochastic automata in stationary random media

I ~ffH)k-1 ___L~o t

[ t . . . .

~/ Region Li 'Region I.e.

~4)k 1- "

N l-~'a

Fig. 1. Graph of the automaton B(k, Vo, ,1) for s = +1.

The graph of the automaton ]3{k, v 0, vl) for s = +1 is p r e s e n t e d in Fig. 1. By the dashed l ines we have shown the b ranches of the graph of the automaton ]32n{k, v 0, v~), n = / k , t = 1, 2 . . . . . In the ca se s = - 1 the graph has the s ame f o r m , only t rans i t ions f rom the reg ions to the single s ta te t a k e p l a c e with a probabi l i ty 1 - vl, while t rans i t ions into the depth of the regions to k s ta tes take place with the probabi l i ty vi.

In the following, if there is no need to indicate the ac tual va lues of the quant i t ies k, v0, v l ,we shall use the notation ]3(k, v0, v 1) - ]3 and]32n(k, v 0, ,1) -- B2n- The au tomata B2n defined above a r e au tomata of the l inear type [10] and they contain many known c l a s s e s of au tomata . Thus , for example , the au tomata B2n(1, v0, vl) a r e known in the l i t e r a tu r e as au tomata with quas i l i nea r (selective) tact ics [4, 5]. The automaton ]32n(1, 0, 1 / 2 ) is the Krylov automaton; the au tomaton ]32n(n- 1, 0, 0) is the "naive" automaton ofKr insk i i , andthe automaton B2n(1, 0, 0) is the c l a s s i c a l automaton with l inear tac t ics ( introduced by Tse t l i n ) [1 -3 ] . The au tom- ata B2n(k, 0, 0) a re of the type W{k) in the case of an in teger k (in the p r e s e n t work k does not depend on the p a r a m e t e r s of the m e d i u m , as is a s s u m e d in [11]).

w C l a s s i f i c a t i o n o f t h e A s y m p t o t i c B e h a v i o r o f A u t o m a t a ( n ) _

Let Ua, mtPj) (Ua, m(Pj) ) be the probabi l i ty of a change of the act ion fj of the automaton ]32n(B) a f t e r m cycles with a s t a r t f rom the s ta te of the region Lj with the number a; 7(n)i(Ta,j) is the ave rage t ime up to the change of the act ion fj of the au tomaton B2n('B), j = 1, 2. The s t a t e s of the "region f r o m which a change of action a f t e r a s ingle beat is poss ib l e will be ca l l ed initial and wil l be denoted by u~n)~ (Pi) - u~I(Pj ) , Ui, m(Pj) - Um(Pj), T~,~. ) -

(n) ~' '~ J Tj , Ti, j -- Tj for i = 0 (j =2 ) or i = - - 1 (j =1) . L e t p l < P2 for the sake of being definite. We introduce the following definitions.

Definition 1. A sequence of finite au tomata has as its l imi t an infinite automaton if for any m, ~,n~m(Pj)- g ~

Ua,m(Pj ) as n ~ r162 j = 1, 2.

Definition 2. An infinite au tomaton in a s t a t ionary random medium p o s s e s s e s the following p rope r t i e s :

I t is opt imal (antioptimal) if with a probabi l i ty equal to one it l eaves a region with a g r e a t e r ( lesser) p robabi l i ty of a penal ty and i f w i t h a p o s i t i v e probabi l i ty it does not leave a region with a l e s s e r (greater) probabi l i ty of a penalty; it is s t r i c t ly opt imal (antioptimal) if h e r e the a v e r a g e wander ing t i m e until a change of the action f2 (ft) is finite;

it is quas iop t ima l ( an t i -quas iop t ima l ) if with a probabi l i ty equal to one it leaves both r eg ions , but the a v e r a g e wander ing t i m e among the s t a t e s of the reg ion with a l e s s e r (greater) probabi l i ty of a penalty is infinite;

i t is a t t r ac t ive if with a pos i t ive probabi l i ty it does not leave each reg ion and r epu l s ive if with a a probabi l i ty equal to one it leaves both regions and the a v e r a g e t imes up to the change of act ion a r e f ini te , and it does not m a t t e r whether the p robabi l i t i e s of the change of act ion and the a v e r a g e t imes up to the change a r e equal.

Definition 3. A sequence of finite au tomata is sa id to be asympto t ica l ly opt imal , a sympto t ica l ly q u a s i - op t imal , a sympto t i ca l ly a t t rac t ive , o r asympto t ica l ly repu ls ive , if t h e l i m i t infinite automaton p o s s e s s e s the co r respond ing p r o p e r t y .

If the a v e r a g e t imes up to the change of act ion a r e f in i te , then the ma thema t i ca l expecta t ion (MEX) of the penal ty of the automaton by the m ed i um af te r a s~ngle e y c l e o f f u n c t i o n i n g i s c a l c u l a t e d by the t rad i t iona l exp re s s ions [1-5].

In addit ion, it is cons ide red as natura l to de te rmine as follows the a v e r a g e d MEX of the penalty with the a s sumpt ion tha t absorp t ion can take p lace in one of the regions:

640

Page 3: Asymptotic behavior of stochastic automata in stationary random media

l

M (B, C) = "-2 2 (ptr!'~ + P~r~'l)" (l) i=O, -- I

Here r is the probabil i ty that absorpt ion in the region Lj o c c u r r e d with the condition that in the initial instant the automaton was in a state with the numbers i, i = 0, - 1 . At the same time we a s sume that the initial s tates a re equally probable.

Definition 4. We shall say (according to [1-3]) that the automaton B has expedient behavior in a statior, a ry random medium C(PI, P2) if the inequality M(B, C) < (Pl + P 2 ) / 2 holds.

w 3. B a s i c R e s u l t s

We introduce the following notation: pj = (1 - ul)pj + u0qj; cij = 1 - l~j; 5j = l~j - kqj;Q = ( [k / (k+l) ] ~0)/(1 -

v 0 -- ul).

THEOREM 1. The infinite automaton B(k, v0, vl) is the l imit of the sequence of finite automata {Bzn(k, Uo, uI)}~=I- H e r e ; ( 2 ~ < +~; for 5 i > 0 , l i m - c , ~ ! = T . , , < - t - ~ ; for 6 , 40 ,1 imT(~)=T~ . /= -{ - co .

n . ~ a , l a,1

For the p roof of Theorem, 1 we note at to show that for n -- % Uatn)(z) -- U a (z), I zl <

t ] ~ ~' (z) =

once that by vir tue of the continuity theorem [12] it is necessary 1, where u(n)(z) and Ua(z ) a r e generat ing functions of the form

Z rn

m----O rn=0

THEOREM 2. A sequence of automata {B2n(k , Vo, vi)}n~=l in C(Pl, P2) posses ses the followit~g behavior ; Fo r v 0 + vl < 1 it is expedient, for u 0 + vl = 1 it is unimportant, and for % + vi > 1 it is n0nexpedie~.

4 If ~0 + vl < 1 v 0 < k / ( k + 1), then the sequence of automata LB2n}n=l in C (Pl, P2) for Pl < Q - P 2 is a s y m p - totically optimal , for pl < Q < P2 it is asymptot ical ly s t r ic t ty optimal, for pl = Q < Pz it is asymptot ical ly quas iopt imal , for Pl < P2 < Q it is asymptot ical ly a~tractive, and for Q < Pl < P2 it is asymptot ical ly r e - pulsive.

If v 0 + vl > 1, u 0 > k / ( k + 1), then the sequence of automata {B2a}n= 1 in C(Pl, P2)for Pl - Q < 02 is asymptot ical ly antiopt~mal, for p~ < Q = [92 it is asymptot ical ly anti-quasioptimal, for Q < p~ < �89 i r i s asymto- t ica l ly at t ract ive, and for Pi < 132 < Q it is asym0tot ical ly repulsive.

eo If u 0+ vl < 1, v 0 ~ k / ( k + l ) ( v 0 + vt > l , v 0_< k / ( k + l ) ) , then the sequence of automata{Bzn}n= i in

C @l, Pz) is asymptot ica l ly repuls ive (asym0tot ical ty at tract ive) .

The resul ts just p resen ted allow us to formulate the conditions of asymptot ic optimality for known c lasses of automata.

Automata with select ive tactics [4,5] form an asymptot ical ly s t r ic t ly optimal sequence in C (Pi, P2) when the conditions

1 1 2 Vo

re-I- v t < 1, r e < T ' P i< "1 ~ ( v o + vi) <p~

a r e satisfied. Hence, in pa r t i cu la r , it follows that a sequence of Krylov automata does not possess asymptot ic optimality in C (Pl, P2) (t31, P2 ~ 1). Automata B2n(k, 0, 0) form an asymptot ical ly optimal sequence if Pl < k / ( k + 1) _< P2. We note that automata of the type WC~:) possess asymptot ical ly s t r i c t optimali ty, since in [ t l ] in the role of k the value of In (q2/qI) / In (Pl/P2) was taken.

Automata with l inear tactics B2n(1, 0, 0) form an asymptot ical ly s t r ic t ly optimal sequence in C (!ol, P2) if Pl < 1 / 2 < P2; they form an asymptot ical ly at tract ive sequence for PI, P2 < ! / 2 , an asymptot ical ly repulsive sequence f o r P2, t~ > i / 2 , and an asymptot ical ly quasiopt imal sequence for Pt = 1 / 2 < P2-

w D i s c u s s i o n o f t h e B a s i c R e s u l t s

Our approach to the study of the asymptotic behavior of a sequence of finite automata differs f rom the approach expounded in the well-known works [1-5, 10-15]. We not only study the behavior of the probabil is t ic cha rac t e r i s t i c s when the memory capaci ty is increased, but also establish the existence of a l imiting infinite automaton. The c lass i f ica t ion of such automata in fact provides the descript ion of the possible asymptotic

641

Page 4: Asymptotic behavior of stochastic automata in stationary random media

behav io r of a sequence of finite au tomata . H e r e s ide by side with the probabi l i ty of the change of act ion we f indthe a v e r a g e w a n d e r i n g t i m e s _(n) and the i r l imi ts for n ~ oo ' a , j

All this al lows us to give a comple te p ic tu re of the asympto t ic behav ior of au tomata B2no In p a r t i c u l a r , the conditions of asympto t ic opt imal i ty obtained by us a r e s t r i c t e r than in [1-5], where it was a s s u m e d that the au tomata f o r m an asympto t i ca l ly opt imal sequence in C (Pl, P2) for Pl < Q, i .e . , for Pl < (I/2 - v0)/[1 - (v0 + vl)], v0 + vl < 1, v 0 < 1 / 2 for au tomata with se lec t ive tac t ics and for Pl < 1 / 2 for au tomata with l inear t ac t i cs . The sequences of au tomata of Kry lov , Kr insk i i , and Robbins w e r e c o n s i d e r e d asympto t ica l ly opt imal in a l l med ia C{Pl, P2). However , the condit ion Pl < Q guaran tees only a t t rac t ion of the automaton into an opt i - m a l reg ion , and it is n e c e s s a r y to s t ipulate addit ionally that the a t t rac t ion condit ion is not fulfi l led in a "bad" reg ion (P2 -> Q). We note that in [1t] fo r au tomata W(k) the re a r e p r e s e n t e d p r e c i s e l y such two-s ided opt i - mal i ty condit ions.

In [1-5] no dis t inct ion was made be tween sequences of asympto t ica l ly a t t rac t ive and asympto t ica l ly opt i - m a l au tomata , s ince the condition

lira -- 0, Pt<Pz, (2)

was fulf i l led for them. But for the a sympto t i ca l ly opt imal au tomata B2n(k, v 0, v~), lira v~ " )= 67 ~ (see Sec. 6), r t - ~ oo

r(n) - - n while for a sympto t i ca l ly a t t r ac t ive au toma ta i n c r e a s e s as P2 , i .e . , with an i n c r e a s e in n it rapidly goes to infinity. F o r a l imi t ing a u t o m a t a i n t h i s c a s e t h e w a n d e r i n g over a "bad" region may not end at all and the m a t h e m a t i c a l expecta t ion of the penalty is M(B, C) ~ Pl.

In analyzing the e igenvalues of the Markov chain assoc ia ted with an automaton in C (Pl, P~), T s e r t s v a d z e [14, 15] (see a lso [2]) e s t ab l i shed that for Krylov au tomata and au tomata with l inear tac t ics (for Pl < P2 < 1 / 2 ) the re ex is t s an e igenvalue which exponential ly with r e s p e c t to n tends to 1 (there is s t i l l one eigenvalue equal to 1, while the r e s t a r e bounded by a constant a , a < 1). These e s t i m a t e s " . . . enable us to have doubts about the ergodic i ty of the co r re spond ing cha ins , i .e . , the independence of the final dis t r ibut ion of the initial s t a te , when n - - ~. The quest ion of uniqueness of a stationary, d is t r ibut ion of p robabi l i t i e s of s ta tes for n ~ ~ r e m a i n s open" [2] {p. 57). The ana lys i s c a r r i e d out in the p r e s e n t work shows, in p a r t i c u l a r , that the Krylov automaton and the automata with l inear tac t ics ffor Pl < P2 < 1 / 2 ) f o r m asympto t i ca l ly a t t r ac t ive sequences , while for the l imi t ing automaton a s t a t iona ry d i s t r ibu t ionof s ta te p robabi ! i t i es does not exis t at a l l , and the behavior is subs tant ia l ly de t e rmined by the s ta r t ing s ta te .

The a igebra ic methods p re sen ted below allow us to study [16] the asympto t ic behav io r in fact of a b r o a d e r c l a s s of au tomata B2n(k, m , v0, vl), for which t rans i t ions into the depth of the region I~ (L 2) to k s ta tes and f r o m the region ~ (L 2) to m s t a t e s a r e poss ib le , during one cyc le .

The p ropos i t ions of T h e o r e m s 1 and 2 will be va l id if k is r ep l aced by k / m , 6j = ml~j - kqj. Analogous r e su l t s a r e va l id a l so for au tomata for which t rans i t ions into the depth of the reg ion to any number of s ta tes up to k and f r o m the reg ion to may num ber of s t a t e s up to m a re poss ib le .

w 5. C o n s t r u c t i o n a n d A n a l y s i s o f t h e G e n e r a t i n g F u n c t i o n s o f

P r o b a b i l i t i e s o f C h a n g e o f A c t i o n . P r o o f o f T h e o r e m 1

We inves t iga te the wander ing of the au tomaton B o v e r the s t a t e s of the reg ion L 2 up to the change of act ion f2- F r o m the ru le of behav ior of an infinite automaton it follows that

Ua.m+= (Pz) ~- P~U,~-l.rn (P=) "4" q~.ua+~,,.n (p,,), (3) r n = 1 ,2 . . . . ,

u_~ ,0=l , u~,0=O, a----O,l ,2 . . . . . (4)

Multiplying (3) by z m+l and summing over all m , we obtain the di f ference equation for the genera t ing function,

U,, (z)="p~zU,,_~ (z) + ~zU,,+,,(z), a = O, 1, 2 . . . . . (5)

and the boundary condition

U - I (z) = 1. (6)

The solut ion of Eq. (5) wil l be sought in the f o r m U a (z) = X a+l (z). Then re la t ive to X(z) we obtain the equation

~(z) = ~ z + ~z~ TM (z). (7)

642

Page 5: Asymptotic behavior of stochastic automata in stationary random media

T h e probabil iLv or2, of i n t e r e s t to us , tha t the a u t o m a t o n changes tlle ac t ion f2, s t a r t i n g f r o m the initial s t a te of the reg ion L2, equals ~2 = U(1). F o r z = 1 Eq. (7) a s s u m e s the f o r m ( X - 1)iX k + xk+l + . . . + X - (P2/q2)} =0. One r o o t of this equat ion is X = 1. We sha l l d e t e r m i n e w h e t h e r the equa t ion

q2

ha s r e a l r oo t s on the s e g m e n t [0 ,1 ] . Since on this s e g m e n t ~)'(X) > 0, ~I,{0) < 0, al l is d e t e r m i n e d by the sigr~ of ~(-s Ifl~ 2 < k / ( k + 3.), then Eq. (8) has a s ing le roo t ~ ~ (0, 1). Unity and cr cons t i tu t e the p o s s i b l e va lues of the gene ra t i ng funct ion Mz) for z = 1. We sha l l s e e k the so lu t ion of Eq. (7) in the f o r m

(z) = zF (w), w = z ~+~ . (9)

Subst i tu t ing (9) into (7), we a r r i v e at the fol lowing a l g e b r a i c equat ion fo r F(w):

F (w) = p~ + q~w(F (w)) , (!0)

We have to f ind a so lu t ion of (10) which is a Mac l au r in s e r i e s with nonnegat ive coe f f i c i en t s tha t eowcerges fo r w = 1.

We denote x = F , r = 132 + c~2wx k+l. T h u s , we m u s t so lve the equat ion x = ~(x); i .e . , we have to f ind the f i x e d p o i n t s of the mapp ing y = if(x). The fol lowing p r o p o s i t i o n [6] is val id .

LEMMA 1. y = ~(x) f o r Iwl <_ 1 is a c o m p r e s s i v e mapp ing of the s e g m e n t ~ , p2((k + 1 ) / k ) ] if P2 < k / i k + 1) and of the s e g m e n t [t~, 1] i f t32 _> k / ( k + 1).

F r o m the l e m m a it fol lows that t h e r e ex i s t s a unique so lu t ion of Eq. (10) which can be obta ined by the i t e ra t ion method . Hav ing t a k e n ~ i n t h e ro l e of F 0 and d e t e r m i n e d a s equence which tends to the r e q u i r e d Soiutlon F n = ~ + ~2W(Fn_l) k+l, we find tha t the so lu t ion d e t e r m i n e d by the i t e r a t i on me thod is a M a c i a u r i n s e r i e s with nonnega t ive coe f f i c i en t s . Subst i tu t ing F(w) into the e x p r e s s i o n (9), we obta in the r e q u i r e d so lu t ion Mz) of Eq . (7).

F r o m L e m m a 1 it a l so fol lows that fo r P2 < k / ( k + 1),(r 2 _ [t~2(k + 1 ) ] / k < 1; h o w e v e r , in the c a s e t~ 2 _> k / (k + 1), a 2 = 1, s ince Eq . (10) fo r w = 1 has the unique so lu t ion F(1) = 1, which is ob ta inable by the i t e ra t ion method . T h u s , Ua(z) = ~a+l(z) is a g e n e r a t i n g funct ion which s a t i s f i e s Eq. (5) and the boundary condi t ion (6).

Below we s tudy the s ingle ana ly t ica l so lu t ion ~l(z) of Eq. (7). The fol lowing p r o p o s i t i o n is va l i d r e l a - t ive to al l so lu t ions of this equat ion.

LEMMA 2. F o r {z[ < l , ] X l ( z ) [ < 1, [Ai(z)l > X, i = 2 . . . . . k + t . I f [ z l = i , t h e n f o r t ~ j > k / ( k + t ) , L l =

1, lXil > 1, i = 2 . . . . . k + 1; f o r l~j = k / ( k + l ) , k 1 =X 2 = 1 , IXil > 1, i = 3 . . . . , k + l ; fo r l~j < k / ( k + 1), ~i < 1, A2 = 1 , I~i] > 1, i = 3 . . . . , k + i .

T h e p r o o f is~based on_ the Rouche t h e o r e m . Le t [ z I < 1. We denote ~1 (X) = q2 ~k+t, ~o2~X )~ = ~ - l~2(z), I ~o2 (X) [IM=I -> 1 - P21 z I > q2 = I cpl (X) i iM= t. T h e r e f o r e , the funct ions ~0 2 (X) - ~1 (~) and r (X) have in the c i r c l e [M < 1 the s a m e n u m b e r of z e r o s , i .e . , up to a s ing le z e r o .

F o r z = 1 we r e a s o n ana logous ly . If l~j > k / ( k + 1), then we take the c i r c l e ! X I < 1 + e, w h e r e the sma l l e Ca > 0) is then c h o s e n in an a p p r o p r i a t e m a n n e r . Ifl~j < k / ( k + 1), then the ana lys i s is c a r r i e d out in the c i r c l e tX{ < 1 - e . F i n a l l y , for l3j = k / ( k + l ) in the c i r c l e ~Xl < 1 - e we have to c o n s i d e r the funct ions ~2(X)=

k and %(M = X X ' . g ~ l

T h e w a n d e r i n g of the f ini te a u t o m a t o n Bzn a m o n g the s t a t es of the r e g i o n L 2 is d e s c r i b e d by the s a m e d i f fe rence equat ion , and a l so by the fo l lowing cond i t ions :

u~ .0 (p~)= l , u(~) t -~=O, a = O , 1, n - - l ; a , 0 k P ' $ l " " "~

U in) I n . ] - - tn ,,_~ . . . . . . - u , , ~ _ ~ (p~), i = 1~ � 9 k , m = 1, 2 , . . . .

H e n c e , it fol lows that the g e n e r a t i n g funct ion Ua(n)(z) is the so lu t ion of the p r o b l e m

( n ) _ _ ~ ( n ) U,~ (z) -- p~zUa_l (z) + q~zU~_,, (z), (11)

V ~ (z) = 1, Utn) U ('~ n-~ ( z )= ~+i_~(z), i = 1 . . . . ,k. (12)

643

Page 6: Asymptotic behavior of stochastic automata in stationary random media

We seek the solution of the di f ference equation 0-1) in the form ,~a+t (z). Relat ive to ;~(z) we obtain Eq. (7). F o r I zl < 1 all roots of this equation a r e s imple. Indeed, jointly solving the equations P(A) -c~2zi~k+l (z) + l~2z - Mz) = 0 and P,(A) - (k + 1)4zz)~k(z) - 1 = 0, we a r r i v e at the conclusion that they have a genera l solution only for z t f o r which

za+~= (k'-~-]-) ( i k + l ) .

But on the right we have a quantity which is g r e a t e r than 1 for t~2 ~ k / ( k + 1) and equal to 1 for 1~2 = k / ( k + 1).

k + l

Thus , the genera l solution of Eq. (11) gives the express ion U~")(z) = ~,~ A~(z)~+~(z). We satisfy the condi- t=1

t ions 0-2). Then re la t ive to Ai(z ) we obtain a sys tem of a lgebra ic equations having for Izl < 1 a nonzero de t e r - minant of the sys tem

]~ A,(z) = i, ~., A, (z)ZT(z)(~(z)-- 1)= 0, l = 1 , . . . , k t = l i=1

We find A i(z) and subst i tute it into the express ion for u(n)(z). We obtain

U~ "~ (z) A,~+~_,, (z) = a . . _ . ( z ) '

where

(13)

Ll (z) - - 1 . . . . . . . . ~k+l(Z)--I

A, (z) = ~(z) - - 1 . . . . . . . . ~ + l ( z ) - I

F o r z = l , i~ 2 ~ k / ( k + l ) one of the solutions of Eq. (7) equals 1 ; t h e r e f o r e , U ( n ) ( 1 ) = l f o r a n y a ~ 0 . I f z = l , t~ 2 = k / ( k + 1), then Eq. (7) has a mult iple root a n d w e cannot use the express ion 0-3) immediate ly . But by s imple arguments it is poss ib le to es tabl ish that in this case Ua(n)0- ) = 1. Thus , the probabil i ty of a change of act ion by a finite automaton B2n is 1 for any initial s tate.

We shall now prove that in accordance with our definition the automaton B is the l imit of the sequence of automata {B2n~n= 1. We go in Eq. (13) to the l imit for n ~ o o , assuming that Izt < 1. Then, using Lemma 2, we obta in

lira U(~ n) (z) = ~.~+~ (z) = U~ (z), I zl < 1.

On the basis of the continuity theorem this s ignif ies , as was a l ready noted, that lira u( ~)~ = u~,~ for any m.

w 6. C a l c u l a t i o n o f T a , j , ~.(n) T h e A s y m p t o t i c B e h a v i o r o f ~-(n) �9 . a . , j " a , ~

F o r the analysis of the behavior of automata it is necessa ry to calculate the mathemat ica l expectat ion of the t ime the automaton spends in the region Lj up to the change of action. The quantity ra, j is given by the ex -

p r e s s i o n %.i = ~ mua.m(p~) _--U~(1). F r o m Eqs. (9) and (10) it follows that h~(z) = F(w) + (k + l )wF'(w), F'(w)(1 -

w(k + 1)qjFk(w)) = qjFk+l (w). Now tel l~j > k / ( k + 1). In this c a se F0-) = 1, F'(1) = qjSj "1. T h e r e f o r e ,

xa,i = --a67 l, ~=.2 = (a ~- 1) 8~-1 (14)

If l~j = k / ( k + 1), then -ra, j = ~; i .e . , the number of cycles o f func t ion i rgof the automaton B preceding the change of the act ion fj has an infinite MEX. In the case pj < k / ( k + 1) the infinite automaton B with a posi t ive p r o b - abili ty does not change the act ion fj a t a l l

(n) We p r o c e e d to f ind Ta, j . We shall cons ider in m o re detail the finite Markov chain O:ff~ which descr ibes the behavior of the automaton B2n in C (Pi, P2). F r o m a s ta te with the number i, with a posi t ive probabi l i ty , we can reach any other s ta te with the number j a f ter a finite number of s teps. Consequentiy, the Markov chain

644

Page 7: Asymptotic behavior of stochastic automata in stationary random media

(both f in i te and infinite) is not t r a n s f e r a b l e . A f ini te M a r k o v cb~ain ~/~ h a s no p e r i o d i c or a b s o r b i n g s t a t e s and , c o n s e q u e n t l y , c o n s i s t s of e rgod ie s t a t e s .

F o r such a e h a i n t h e r e ex i s t s [121the u n i q u e s t a t i o n a r y d i s t r i bu t i on x n = {Xn, i}, i = - n . . . . . 0 . . . . . n - 1 of the p r o b a b i l i t i e s of s t a t e s of the au toma ton . At the s a m e t i m e xn , i > 0. F r o m this and f r o m the w e l l - k n o w n

_(n) t h e o r e m s on Markov cha ins [12] it fo l lows tha t ~a,j a r e a lways f in i te quan t i t i e s . To d e t e r m i n e t h e m we f ind the

d i f f e r e n c e equa t ion fo r ~'~).=~.~ u~")~,m (pj).m. F r o m (4) we have the equa t ion (m + )an ,m+ i = mp2ua , i , rn + mqz x r n = 0

(n) ~ u(n) ~ (n) Hence us ing the fac t tha t fo r f in i te M a r k o v cha ins ~ u(~ = t we a r r i v e a t Ua+k,m + P2 a - l , m + q2Ua+k,m �9 , ~.~ ,

2 a+k,2

H e r e the bounda ry condi t ions f o r the p r o b a b i l i t i e s U(a,n) l e ad to the fo l lowing condi t ions fo r r(n)'a,2"

~1,~ = 0; ~22~,~ = ~2-r ~ = 1, 2 , . . . , k. 0 -a)

F o r the so lu t ion of the p r o b l e m 0-5), (16) we use the f ac t tha t (this c a n be p r o v e d i m m e d i a t e l y ) Eq. (15) has the

p a r t i c u l a r so lu t ion (a + 1)52-1; t h e r e f o r e , f o r I~ 2 ~ k / ( k + 1), ~")~,~ = (a + 1)57 ~ + ~ B}")~ +~. is d e t e r m i n e d

f r o m the s y s t e m of a l g e b r a i c equa t ions

i=1 g= l

F r o m the s y s t e m (17) we f ind that B} n) = D: n)x~n/A_n(1), w h e r e D~ n) is ob ta ined f r o m A-t 0.) by r e p l a c e m e n t of the i - th c o l u m n by the c o l u m n of the f r e e t e r m s of the s y s t e m 0.7). Since a m o n g X i t h e r e is a lways 1, A_n(1 ) does not depend on n, whi le a m o n g the c oeffic ients D{ n) only the coe f f i c i en t wi th the n u m b e r p o s s e s s e d by the roo t of Eq. (8) equa l to 1 depends on n. Le t 1~2 > k / ( k ~(1). Then by L e m m a 2 X l = 1, l Xil > 1, i = 2 . . . . . k + ~. T h e r e f o r e , limB~=)=0, i = 2 . . . . . k + 1., wh i l e l im& ) = 0 , s i n c e in the d e t e r m i n a n t D{ n) a l l e l e m e n t s of the

f i r s t row Lend to z e r o f o r n ~ ~r T h u s , lira ~(~.~) = (a + 1) 5~ -t , which co inc ides with (14L

Le t now/~2 < k / ( k + l ) . Then by L e m m a 2 Xl < 1, X 2 = 1 , fa i l > 1, i = 3 , . . . , k + l . T h e r e f o r e , fo r i : 3 . . . . . k + l , l imB~" '=0. We now s tudy the b e h a v i o r of the s e q u e n c e O n = B/n) .~ +* + B (n) fo r n - - ~. An

r/-)'oo

e l e m e n t a r y e a ! c u l a t i o n shows tha t | = AXl"n[ 1 - X f +* + en], w h e r e A is a p o s i t i v e c o n s t a n t , whi le lira e= = 0.

F r o m what has b e e n j u s t s a i d it fo l lows tha t r(,nl fo r n - ~ tends to ~ exponent ia l ly r e l a t i v e to n. In this c a s e , as we e s t a b l i s h e d f o r the l imi t ing au toma ton , the w a n d e r i n g o v e r the r eg ion Lj with a pos i t i ve p r o b a b i l i t y does not end a t a l l .

We f inal ly c o n s i d e r the m o s t e o m p l e x c a s e : i~ 2 = k / ( k + 1). In th is c a s e Eq. (8) has a mu l t i p l e r o o t X, = = 1 , t),il > 1 i = 3 . . . . k + l whi le Eq. (15) has the p a r t i c u l a r so lu t ion r(n) = (a + l ) 2 / k a a d t h e g e n e r a l

' ' a,2

so lu t i on of the f o r m .(~,.~.~ = (a +k 1)' FNi,,+N(n)(a4 -" 1)+2Nin'~.~+L w h e r e N~ n) a r e d e t e r m i n e d by the s y s t e m of

i ~ 3

algebraic equa t ions

k+1 k+~

= - - V - - . ~ , ~ = I , .,k. (18)

T h e d e t e r m i n a n t of the s y s t e m (18) C (n) is ob t a ined f r o m A_a(1) by r e p l a c e m e n t of the f i r s t c o l u m n with

the c o l u m n 0 , and the s e c o n d w i t h the c o l u m n 1 , N n) = 2n)~n[C n ) / c i = 3, k, w h e r e C~ n)

0 k

has a f in i t e l imi t fo r n ~ ~. T h u s , lira N~ n) = 0 , i = 3 . . . . , k. But then f r o m the f i r s t equat ion of the s y s t e m

(18) we f ind tha t lirnNl~)_0. F i n a l l y , N (n) = 2n[CJn) /C (n)] and Ca (n) has a f in i te p o s i t i v e Limit fo r n - - ~ T h u s , n->o o *

845

Page 8: Asymptotic behavior of stochastic automata in stationary random media

T a ( , n • --* ~ for n ~ ~ , f o r n . Th i s resu l t c o r r e s p o n d s to the fact that a v e r a g e wander ing t ime of the l imi t ing the automaton B ove r the reg ion Lj up to a change is infinite.

T h u s , T h e o r e m 1 is comple te ly proved.

In conclusion, we cons ider the ca se k = 1. Then for I~ 2 ~ 1/2, ~a,2(n) = (a + 1)6~ 1 + ([(~+l _ 1)6~.l~.n]/ ( 1 - k t ) ) . I f v 0= vi = 0 , a = 0 , then~-2 (n)= (1-X~'n)5~ "i. F r o m (8) f o r k = l w e f i n d h = p 2 / q 2 . Thus , T2(n)= [(q2/P2) n - 1]/(q2 - P2) coincides with the known re su l t (see, for example , [10]). Fo r P2 = 1 / 2 , v 0 = vl = 0, T(,n~ = ( 2 n - - a ) ( a + 1).

w 7. A n a l y s i s o f t h e B e h a v i o r o f t h e I n f i n i t e A u t o m a t o n

B ( k , v 0, v l ) in a S t a t i o n a r y R a n d o m M e d i u m

This ana lys i s is ba sed on the r e su l t s p r e s e n t e d in Sec. 6, L e m m a l , and the wel l -known t h e o r e m s on infinite Markov chains [12, 17]. We shal l cons ider the following case .

Str ict ly Optimal Automata B(k, v 0, vi). F o r s t r i c t opt imal i ty of an automaton it is n e c e s s a r y , by def ini- t ion, to have ~t < 1 and ~2 = 1, ~2 < +~ . This c o r r e s p o n d s to the inequality l~l < k / ( k + 1) < P2 or

Pi[l~(%~%)l~k+l %' (19)

p~ [1 - - (v 0 -~ vt)] ~ k-~ ' ] - --%" (20)

Since pl < P2, for v0+ vl -> 1 , ~ m 1~2. Thus , w e h a v e to a s s u m e that v0+ vi < 1. In this c a s e , if v 0 _> k / ( k + 1), then the inequality (19) is not s a t i s f i ed for any values of Pi. Consequent ly , for s t r i c t opth~na[ity the foUowing inequali t ies m u s t be fulfil led: v 0 + vl < 1, v 0 < k /{k + 1), Pl < Q < P2, Q = [ (k / (k + 1)) - v0] / [1 - (v 0 + vl)]. We p r o c e e d with the descr ip t ion of the p r o p e r t i e s of the Markov chain cor responding to this case . The p r o b - abil i ty of r e tu rn ing to the s ta te with the number 0 equals 1~2~1 + c~2 ak = c~ 2 + l~2al < 1. Thus , this s ta te is non- r e c u r r e n t . (In [17], p. 390, such a s t a te is cons ide red as r e c u r r e n t and is s a i d t o be t r a n s i t i v e . E v e r y w h e r e in the following we confine ou r se lves to the l ess de ta i led but m o r e widely used c l a s s i f i ca t ion p r e s e n t e d in [12].) But s ince the Markov chain descr ib ing the behav io r of the au tomaton is i r reduc ib le , all i ts s ta tes a re nonrecu r ren t and t h e r e is no s ta t ionary probabi l i ty d is t r ibut ion [12].

On the bas i s of Eq. (1) the MEX of the penalty of the s t r i c t ly opt imal au tomaton is M(B, C) = Pi < (Pl + P2) /2 ; i .e . , the s t r i c t ly opt imal au tomaton p o s s e s s e s expedient behavior .

The r e s t of the poss ib i l i t i e s a r e ana lyzed analogously [6].

The authors e xp re s s the i r gra t i tude to V. S. Koro[yuk for his ex t r eme ly useful and fr iendly d iscuss ion of this paper .

LITERATURE CITED

I. M.L. Tset|in, Investigations in the Theory of Automata and Modeling of Biological Systems [in Russian], Nauka, Moscow (1969).

2. V.I. Varshavskii, Collective Behavior of Automata [in Russian], Nauka, Moscow (1973). 3. V.G. Sragovieh, The Theory of Adaptive Systems [in Russian], Nauka, Moscow (1976). 4. N.P. Kandeiaki and G. N. Tsertsvadze, "On the behavior of certain classes of stochastic automata in

random media," Avtom. Teiemekh., No. 6 (1966). 5. V. Ya. Vaiakh, "On the behavior of an automaton with selective tactics in stationary random media,"

Kibernetika, No. 4 (1968). 6. S.D. E~idel'man andA. I. I~zrokhi, ~Adaptive properties of discrete automata functioning in stationary

random media,', Avtom. VychisI. Tekh., No. 5 (1976). 7. A.A. Borovkov, Stochastic Processes irltheTheory ofQueuingSystems [inRussian], Nauk~, Moscow (1972). 8. V.S. Korolyuk, Boundary-Value Problems for Complex Poisson Processes [in Russian], Naukova Dumka,

Kiev (1975). 9. L. T a k a c s , Combina to r i a l Methods in the Theory of Stochast ic P r o c e s s e s , Wi l ey - In t e r s c i ence (1967).

10. ~ . M. S i l ' v e s t r o v a , Markov Fini te Automata of the L inear Type and Adaptive Queuing Sys tems [in R u s - s ian] , P r e p r i n t of Ins t i tu te of Cybe rne t i c s , Academy of Sciences of the Ukrainian SSR, Kiev (1974).

11. V . A . Andryushchenko, E. N. VaviLov, and L. P. Lobanov, ,,Synthesis of au tomata asympto t ica l ly op t i - m a l in s ta t ionary random medka,,, Kiberne t ika , No. 1 (1972).

646

Page 9: Asymptotic behavior of stochastic automata in stationary random media

12. W. F e l l e r , A n Introduct ion to Probab i l i ty Theory and Its Appl ica t ions , Vo[. 1, 3 rd ed. , W i i e y q a t e r - sc ience (1968).

13. V . A . Voikonski i , "Asymptot ic p r o p e r t i e s of the behav io r of the s i m p l e s t au tomata in a g a m e , '~ Prob[ . P e r e d a c h i Inf . , 1., No. 2 (1965).

14. N . P . Kandelaki and G. N. T s e r t s v a d z e , "On the r a t e of convergenc e of asympto t ica l ty opt imal au to - maton sequences , " in: Automata , Hybr id and Control l ing Machines [in Russ ian] , Nauka, Moscow (1972).

15. G . N . T s e r t s v a d z e , "On the a sympto t i c p r o p e r t i e s of opt imal au tomata in statio~nary random m e d i a , , Avtom. Telemek~h., No. 8 (1968).

16. E . N . ~ . M) Vavilov, S. D. l~idel 'man, and A. L l~zrokhi, "On the pecu l ia r i t i es of the asympto t ic behav io r of s tochas t ic au toma ta , " DokL Akad. Nauk UkrSSR, No. 8 0-977).

17. P. L. Henneken and A. T o r t r a , P robab i l i ty Theory and Some of Its Applicat ions ~ u s s i a n t rans la t ion] , Nauka, Moscow (1974).

PROPERTIES OF A CLASS OF a-GROUPS

L. B. Smikun UDC 51:62-50

The p rob l em of the equivalence of au tomata re la t ive to semigroups has been cons ide red in [1, 2] in con- nection with the theory of d i sc re te c o n v e r t e r s [3, 4]. In [5] a t heo rem on the reducibi l i ty of the equivalence p r o b l e m for s emig roups with reduct ion to the p rob l em of equivalence re la t ive to the max imum subgroups is p roved . A c l a s s of c~-groups (groups with ra t io a of the quas io rde r s ) is defined there and a theorem is p ro v ed on the solvabi l i ty of the equivalence p rob l em re la t ive to a - g r o u p s with a solvable p rob lem of the equality of words .

The c l a s s of a--groups is inves t iga ted in th is paper . Some fea tu res of giving the quas io rde r ra t io a in the group a r e clarif ied�9 Group - theo re t i c a l p r o p e r t i e s of the c l a s s of a - g r o u p s a r e cons idered . Special a t - tention is pa id to a p roof of the c [osedness of a c l a s s of re la t ive ly different g roup- theore t i ca l operat ions . Namely , these p r o p e r t i e s a f ford the poss ib i l i ty of cons t ruc t ing s i m p l e r a - g r o u p s (which a r e f ree and finite groups) f rom m o r e complex ones. On the o ther hand, r e su l t s of a "negat ive" nature a f fo rd the poss ib i l i ty of finding groups on which giving the q u a s i o r d e r ra t io a is imposs ib le in pr inc ip le .

A c lass of f i -groups with a s o l v g o l e p r o b l e m o f e q u i v a l e n c e of au tomata [61, which is at leas t not a l ready the c l a s s of P - g r o u p s , is known ~c this t ime . However , it is comple te ly p robab le that some a s se r t i ons can be p r o v e d only fo r the s i m p l e s t groups with a so lvable equivalence p r o b l e m , which a r e unquestionably a - g r o u p s ~ and not for al l g roups of this c l a s s .

The study of the p r o p e r t i e s of the c l a s s of a - g r o u p s is due to this c i r c u m s t a n c e .

Let us p r e s e n t the fundamental r e su l t s f rom [5J�9

We call a group G with an ex t r ac t ed finite se t Y genera t ing G a Y-group. We cal l a sequence of e iements gl . . . . . gn, �9 - in > 1) a Y - t r a j e c t o r y if for any i, --1 �9 - gi gi+l E Y. Let us cons ider the Y-group G on which the q u a s i o r d e r ra t io a is given (reflexive and t rans i t ive) . Now gl -< g2(a) means that the e lements gl and g2 a r e in a r a t io a . If gi -<g2(~), then g2 -> gl (a). The ra t io gl -< g2 Ca) & g2 -< gl (a) is an equivalence ra t io which we ca l l a - e q u i v a l e n c e and denote by gl ~ g2 (a) :

g, < g 2 (~) "~g, <: gz(~) ag~ 7 '~ g,. (~),

6 (g, ~) = {,~ E 6; g < ,~ (~)}.

F o r any se t H ~ G, G (H, a ) = { g E G; Yh E H, h_< g (a)}. We ca l l the e iements gt and g2 s im i l a r , g~ - g2 (~), if for any h ~ G the following conditions a r e sa t is f ied:

1) glh ~ gl (a) r g2 h ~ g2(a);

2) glh ~ G(gl, a) r g2h 6G(g2, a).

T r a n s l a t e d f r o m Kiberne t ika , No. 5, pp. 12-19, S e p t e m b e r - O c t o b e r , 1977. Original a r t i c l e submi t ted F e b r u a r y 27, 1976.

0011-4235/77/130520647807.50 �9 1978 Plenttrn Publishing Corpora t ion 647