47
Asymptotics of exponential mapping and limit behavior of Maxwell points in the plate-ball problem A. P. Mashtakov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia [email protected] Workshop on Nonlinear Control and Singularities Toulon, October 24 – 28, 2010 A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 1 / 47

Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Asymptotics of exponential mapping and limit behavior ofMaxwell points in the plate-ball problem

A. P. Mashtakov

Program Systems InstituteRussian Academy of Sciences

Pereslavl-Zalessky, Russia

[email protected]

Workshop on Nonlinear Control and Singularities

Toulon, October 24 – 28, 2010

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 1 / 47

Page 2: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

The plate-ball problemRolling of sphere on plane without slipping or twisting

Given: A,B ∈ R2, frames (e01, e02, e03), (e11, e12, e13) in R3.

Find: γ(t) ∈ R2, t ∈ [0, t1], — the shortest curve s.t.:γ(0) = A, γ(t1) = B , by rolling along γ(t),orientation of the sphere transfers from (e01, e02, e03) to (e11, e12, e13).

g(t)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 2 / 47

Page 3: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

History of the problem

1983 J.M. Hammersley: statement of the plate-ball problem.

1986 A.M. Arthur, G.R.Walsh: integrability of Hamiltonian system of PMPin quadratures.

1990 Z.Li, J. Canny: controllability of the system.

1993 V. Jurdjevic:projections of extremal curves (x(t), y(t)) — Euler elasticae,description of different qualitative types of extremal trajectories,differential equations for evolution of Euler angles along extremaltrajectories.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 3 / 47

Page 4: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Known results

Yu. Sachkov:Extremal trajectoriesContinuous and discrete symmetries

Fixed points of symmetries (Maxwell points)

Necessary optimality conditionsGlobal structure of the exponential mapping

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 4 / 47

Page 5: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

New results

Asymptotics of extremal trajectories

Limit behavior of Maxwell points for sphere rolling on sinusoids ofsmall amplitude

Upper bound on cut time for the corresponding trajectories

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 5 / 47

Page 6: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

State and control variables

Contact point (x , y) ∈ R2

Orientation of sphere R : ai 7→ ei , i = 1, 2, 3, R ∈ SO(3)

State of the system Q = (x , y ,R) ∈ R2 × SO(3) = MControls u1 = u/2, u2 = v/2, (u1, u2) ∈ R2

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 6 / 47

Page 7: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Representation of rotations in R3 by quaternions

H = {q = q0 + iq1 + jq2 + kq3|q0, . . . , q3 ∈ R}S3 = {q ∈ H||q|2 = q2

0 + q21 + q2

2 + q23 = 1}

I = {q ∈ H|Re q = q0 = 0}q ∈ S3 ⇒ Rq(a) = qaq−1, a ∈ I ,Rq ∈ SO(3) ∼= SO(I )

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 7 / 47

Page 8: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Optimal control problem

Control System

x = u1, y = u2,

q0 = 12(q2u1 − q1u2),

q1 = 12(q3u1 + q0u2),

q2 = 12(−q0u1 + q3u2),

q3 = 12(−q1u1 − q2u2),

q ∈ S3, (u1, u2) ∈ R2,

Boundary conditions Q(0) = Q0, Q(t1) = Q1

Cost functional l =

∫ t1

0

√x2 + y2 dt =

∫ t1

0

√u21 + u2

2 dt → min

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 8 / 47

Page 9: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Existence of solutions

Left-invariant sub-Riemannian problem:

Q = u1X1(Q) + u2X2(Q), (u1, u2) ∈ R2,

Q(0) = Q0, Q(t1) = Q1, Q ∈ M = R2 × SO(3),

l =

∫ t1

0

√u21 + u2

2 dt → min .

Complete controllability by Rashevskii-Chow theorem:

span(X1(q),X2(q),X3(q),X4(q),X5(q)) = TqM ∀ q ∈ M,

X3 = [X1,X2], X4 = [X1, [X1,X2]], X5 = [X2, [X1,X2]].

Filippov’s theorem: ∀Q0,Q1 ∈ M optimal trajectory exists.Q0 = (0, 0, Id) ∈ R2 × SO(3).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 9 / 47

Page 10: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Pontryagin maximum principle

Abnormal extremal trajectories: rolling of sphere along straight lines.Normal extremals:

θ = c , c = −r sin θ, α = r = 0, (1)x = cos(θ + α), y = sin(θ + α), (2)

q0 =12

(q2 cos(θ + α)− q1 sin(θ + α)),

q1 =12

(q3 cos(θ + α) + q0 sin(θ + α)),

q2 =12

(−q0 cos(θ + α) + q3 sin(θ + α)),

q3 =12

(−q1 cos(θ + α)− q2 sin(θ + α)),

(1) mathematical pendulum,(1), (2) Euler elasticae.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 10 / 47

Page 11: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Mathematical pendulum θ = c , c = −r sin θ

(θ, c , r) ∈ C = {θ ∈ S1, c ∈ R, r ≥ 0}Energy E = c2/2− r cos θ = const ∈ [−r ,+∞).

Decomposition C = ∪7i=1Ci :

C1 = {λ ∈ C | E ∈ (−r , r), r > 0},C2 = {λ ∈ C | E ∈ (r ,+∞), r > 0},C3 = {λ ∈ C | E = r > 0, c 6= 0},C4 = {λ ∈ C | E = −r , r > 0},C5 = {λ ∈ C | E = r > 0, c = 0},C6 = {λ ∈ C | r = 0, c 6= 0},C7 = {λ ∈ C | r = 0, c = 0}.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 11 / 47

Page 12: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Optimality of extremal trajectories

Short arcs of extremal trajectories Q(s) are optimalCut time along Q(s):

tcut = sup{t > 0 | Q(s), s ∈ [0, t], is optimal }.

Maxwell time:

∃ Q(s) 6≡ Q(s), Q(0) = Q(0) = Q0,

Q(t) = Q(t) Maxwell point,t = tMax Maxwell time.

Upper bound on cut time:

tcut ≤ tMax.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 12 / 47

Page 13: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Reflections and symmetries of exponential mapping

Yu. Sachkov:reflections ε1, ε2

?

��

��

��

��

���+

ε1

ε2

ε3θ

γ1

γ2

γ3

j

�Y

*

pc

(xs, ys)

(x1s, y

1s)

� l⊥

(xs, ys)

(x2s, y

2s)

-

*

λ = (θ, c , α, r) ∈ C , s > 0Exp(λ, s) = Qs = (xs , yy ,Rs) ∈ M = R2 × SO(3)

symmetries of exponential mapping:εi ◦ Exp(λ, s)) = Exp ◦εi (λ, s)

fixed point: Exp(λi , t) = Exp(λ, t)⇔ εi (Qt) = Qt

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 13 / 47

Page 14: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Necessary optimality conditions in terms of MAX1

MAXi = {(λ, t) | λi 6= λ, Qt = Q it}

(λ, t) ∈ MAXi ⇒ Qs = Exp(λ, s) not optimal for s > t.

Theorem (Yu. Sachkov)

Let Qs = (xs , ys ,Rs) = Exp(λ, s), t > 0 satisfy the conditions:(1) q3(t) = 0,(2) elastica {(xs , ys) | s ∈ [0, t]} is nondegenerate and not centered at

inflection point.Then (λ, t) ∈ MAX1, thus for any t1 > t the trajectory Qs , s ∈ [0, t1], isnot optimal.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 14 / 47

Page 15: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Visualization of MAX1

Rolling of the sphere (Video)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 15 / 47

Page 16: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Necessary optimality conditions in terms of MAX2

Theorem (Yu. Sachkov)

Let Qs = (xs , ys ,Rs) = Exp(λ, s), t > 0 satisfy the conditions:(1) (xq1 + yq2)(t) = 0,(2) elastica {(xs , ys) | s ∈ [0, t]} is nondegenerate and not centered at

vertex.Then (λ, t) ∈ MAX2, thus for any t1 > t the trajectory Qs , s ∈ [0, t1], isnot optimal.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 16 / 47

Page 17: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Visualization of MAX2

Rolling of the sphere (Video)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 17 / 47

Page 18: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Asymptotics of extremal trajectories near (θ, c) = (0, 0)

s = mt, d = c/m, m =√r ,(

xy

)= A(α)

(xy

),(

q1q2

)= A(α)

(q1q2

)A(α) =

(cosα − sinαsinα cosα

), q0 = q0, q3 = q3.

d

qp-p

ρ0 =√θ20 + d2

0 → 0asymptotics of pendulum (harmonic oscilla-tions)

θ(s) = θ0 cos s + d0 sin s + O(ρ20),

d(s) = −θ0 sin s + d0 cos s + O(ρ20).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 18 / 47

Page 19: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Asymptotics of extremal trajectories near (θ, c) = (0, 0)

Sinusoids of small amplitude:

x(s) =sm

+ O(ρ20),

y(s) =1m

(θ0 sin s + d0(1− cos s)) + O(ρ20).

x

y

?0/m

d0/m

(?0 /m+2p)

r0/m

θ0 = ρ0 cosχ0, d0 = ρ0 sinχ0, ρ0 → 0

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 19 / 47

Page 20: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Asymptotics of extremal trajectories near (θ, c) = (0, 0)

q0(s) = coss2m

+ O(ρ20),

q1(s) =1

2(m2 − 1)(m cos

s2m

sin s − (1 + cos s) sins2m

)θ0+

+1

2(m2 − 1)(m(1− cos s) cos

s2m− sin s sin

s2m

)d0 + O(ρ20),

q2(s) =− sins2m

+ O(ρ20),

q3(s) =1

2(m2 − 1)((−1 + cos s) cos

s2m

+ m sin s sins2m

)θ0+

+1

2(m2 − 1)(sin s cos

s2m−m(1 + cos s) sin

s2m

)d0 + O(ρ20).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 20 / 47

Page 21: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Limit behavior of Maxwell set MAX1

p = s2

q3 =d0 cos p − θ0 sin p

m2 − 1· g1(p,m) + O(ρ2

0)

g1(p,m) = cos pm sin p −m cos p sin p

m

p1(m) = min{p > 0|g1(p,m) = 0}

Qt = Exp(λ, t), λ = (θ0, d0,m, α) ∈ C1,ρ0 → 0 ⇒ ∃t ∈ [0, t1 + ε] such that (λ, t) ∈ MAX1

⇒ trajectory Qt not optimal at t ∈ [0, t1 + ε], t1 = 2p1(m)/m.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 21 / 47

Page 22: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Bounds of the first root of equation g1(p,m) = 0

p(m) =

mρ, for m ∈ (0, 1

2 ],

mπ([ m1−m ] + 1), for m ∈ (1

2 , 1),

π([ 1m−1 ] + 1), for m ∈ (1, 2],

ρ, for m > 2, ρ = tan ρ, ρ ∈(π, 3π

2

)p(m) =

{mπ([ m

1−m ] + 2), for m ∈ (0, 1),

π([ 1m−1 ] + 2), for m ∈ (1,+∞).

TheoremFor any m ∈ (0, 1) ∪ (1,+∞),

p(m) ≤ p1(m) < p(m).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 22 / 47

Page 23: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Bounds of the first root of equation g1(p,m) = 0

0.0 0.5 1.5 2.0 2.5 3.0m

5

10

15

20

25

p

p(m) p1(m) p(m)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 23 / 47

Page 24: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Properties of the first root of equation g1(p,m) = 0

Theorem

a) limm→1

p1(m) = +∞;

b) p1(m) grows for m ∈ (0, 1) and decreases for m ∈ (1,+∞);c) p1(1 + 1

n ) = π(n + 1), p1( nn+1) = πn, p1(1 + 2

2n+1) = π(n + 32),

p1(2n+12n+3) = π(n + 1

2);d) p1(m) is continuous for m ∈ (0, 1) ∪ (1,+∞);e) p1(m) is smooth for

m ∈ (0, 1) ∪ (1,+∞)\({ nn + 1

|n ∈ N} ∪ {1 +1n|n ∈ N}).

∀ n ∈ N : p′1( nn+1) = +∞, p′1(n+1

n ) = −∞.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 24 / 47

Page 25: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Bounds of the first root of equation g1(p,m) = 0

Hyperbola p0(m) = π m1−m , m ∈ (1/2, 1)

Plot of p1(m) crosses plot of p0(m) at points(1− 1

r , π(r − 1)), 2r ∈ N, r > 1New coordinates δ = 1−m

m (p − p0(m)) + π,s = 1+m

1−m , s > 3.

g1(δ, s) = 1s+1(sin(δs)− s sin δ)

δ1(s) = min{δ > 0|g1(δ, s) = 0}

TheoremFor any s > 1,

π − 1s − 1

< δ1(s) < π +1

s − 1

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 25 / 47

Page 26: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Bounds of the first root of equation g1(p,m) = 0

For any m ∈ (12 , 1)

p0(m)− 12< p1(m) < p0(m) +

12

symmetry: p1(m) = mp1( 1m )

p(m) =

{π m

1−m − 1/2, for m ∈ (12 , 1),

m( πm−1 −

12), for m ∈ (1, 2),

p(m) =

{π m

1−m + 1/2, for m ∈ (12 , 1),

m( πm−1 + 1

2), for m ∈ (1, 2).

TheoremFor any m ∈ (1/2, 1) ∪ (1, 2),

p(m) < p1(m) < p(m).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 26 / 47

Page 27: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Bounds of the first root of equation g1(p,m) = 0

1

m

p

p(m) p(m)p(m)1 0p(m)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 27 / 47

Page 28: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Limit behavior of Maxwell set MAX1

d = ρ cosχ, θ = ρ sinχχ ∈ S1, m > 0, m 6= 1

TheoremLet λ = (ρ, χ,m, α) ∈ C1 and m > 0, m 6= 1. Then

limρ→0,m→m

tcut(λ) ≤ t1(m).

TheoremLet λ = (ρ, χ,m, α) ∈ C1. Let K ⊂ {m ∈ R | m > 0, m 6= 1} be acompact. Then

limρ→0,m∈K

tcut(λ) ≤ maxm∈K

t1(m).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 28 / 47

Page 29: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Limit behavior of Maxwell set MAX2

xq1 + yq2 =d0 cos p − θ0 sin p

m(m2 − 1)· 2g2(p,m) + O(ρ2

0)

g2(p,m) = mp cos pm sin p − (p cos p + (m2 − 1) sin p) sin p

m

p2(m) = min{p > 0|g2(p,m) = 0}

Qt = Exp(λ, t), λ = (θ0, d0,m, α) ∈ C1,ρ0 → 0 ⇒ ∃t ∈ [0, t2 + ε] such that (λ, t) ∈ MAX2 ⇒trajectory Qt not optimal at t ∈ [0, t2 + ε], t2 = 2p2(m)/m.numerical computationp1(m) ≤ p2(m) < p1(m)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 29 / 47

Page 30: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Conjugate time as (θ, c)→ 0

Local chartq0 =

√1− q2

1 − q22 − q2

3

Conjugate time

tconj = min{t > 0| det(∂(x , y , qi )

∂(λ, t)) = 0}

Upper bound on cut timetcut ≤ tconj

numerical computation2p1(m)

m ≤ tconj <2p1(m)

m

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 30 / 47

Page 31: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Maxwell times and conjugate time as (θ, c)→ 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m

5

10

15

20

25

30

35

t

t1(m) t2(m)tconj(m)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 31 / 47

Page 32: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion planning for nonholonomicfive-dimensional systems

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 32 / 47

Page 33: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

The plate-ball problem

Optimal control problemGiven: Q0,Q1 ∈ R2 × SO(3),Find: Q(t) ∈ R2 × SO(3), t ∈ [0, t1], such thatQ(0) = Q0,Q(t1) = Q1, where projection (Qx(t),Qy (t)) is theshortest curve in R2. (open problem)Motion planning problemGiven: Q0,Q1 ∈ R2 × SO(3), ε > 0Find: any trajectory Q(t) ∈ R2 × SO(3), t ∈ [0, t1], such thatQ(0) = Q0, dist(Q(t1),Q1) < ε.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 33 / 47

Page 34: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion planning for nonholonomic five-dimensional systems

State and control variables:Q ∈ M ∼ R5, (u1, u2) ∈ R2

Control system:Q = u1(t)X1(Q) + u2(t)X2(Q)

Boundary conditionsQ(0) = Q0, dist(Q(t1),Q1) < ε

Growth vector (2,3,5):

dim span{X1(Q),X2(Q)} = 2,dim span{X1(Q),X2(Q),X3(Q)} = 3,dim span{X1(Q),X2(Q),X3(Q),X4(Q),X5(Q)} = 5,

where X3 = [X1,X2], X4 = [X1,X3], X5 = [X2,X3].

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 34 / 47

Page 35: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion planning for nonholonomic five-dimensional systems

Classes of controls:piecewise constantui = αis , for t ∈ [ts−1, ts ],where s ∈ 1, k , t0 = 0, tk = t1.

optimal∫ t10

√u21 + u2

2 dt → min

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 35 / 47

Page 36: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion Planing Iterative Algorithm

Resulting control:

ui = usi ,

for t ∈ [1−sk t1, s

k t1],where s ∈ 1, k ,k — number of iteration.

Approximating system: Q = u1(t)X1(Q) + u2(t)X2(Q)

trajectory of approximated system

trajectory of original system

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 36 / 47

Page 37: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Nilpotent Approximation

Nilpotent approximation in privileged coordinates (algorithm by A.Bellaiche).Canonical nilpotent five-dimensional system:

x = u1,

y = u2,

z = 12(xu2 − yu1),

v = 12(x2 + y2)u2,

w = −12(x2 + y2)u1.

Q = (x , y , z , v ,w) ∈ R5, (u1, u2) ∈ R2,Boundary conditions Q(0) = Q1, Q(1) = 0.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 37 / 47

Page 38: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Piecewise constant control

Theorem

For any Q1 ∈ R5 exist (αi , βi , γi , δi ) ∈ R4, i ∈ {1, 2} and control

ui =

αi , for t ∈ [0, 1

4 ],

βi , for t ∈ (14 ,

12 ],

γi , for t ∈ (12 ,

34 ],

δi , for t ∈ (34 , 1],

such that Q(0) = Q1, Q(1) = 0

algebraic equations for parameters (αi , βi , γi , δi )

nonunique solutionfinal fixing of parameters by criterion max |ui | → min

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 38 / 47

Page 39: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Optimal control

Canonical nilpotent five-dimensional system∫ t10

√u21 + u2

2 dt → min

Nilpotent sub-Riemannian problem with growth vector (2,3,5) (Yu.Sachkov):

extremal trajectories

bounds on cut time

global structure of exponential mapping

symmetries

reduction to system of 3 algebraic equations in Jacobian functions of 3variables

numerical solution in Wolfram Mathematica

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 39 / 47

Page 40: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Convergence of algorithm

optimal controllocal controllability∀x1 ∈ M ∀O1 ⊂ M ∃O2 ⊂ O1 ∀x0 ∈ O2 ∃u(·) ∈ U :x(0) = x0, x(t1) = x1, x(·) ⊂ O1

piecewise constant controlRball < 10−2, Rmach < 10−4 (see next)

x1

O2

O1

R

x0

Trajectories of approximating system

Trajectories of original system

optimal control

piecewise constant control

optimal controlpiecewise constant control

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 40 / 47

Page 41: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion Planning for Sphere Rolling on a Plane

local chartq0 =

√1− q2

1 − q22 − q2

3 > 0.

control system

x = u1,

y = u2,

q1 = 12(q3 u1 +

√1− q2

1 − q22 − q2

3 u2),

q2 = 12(−

√1− q2

1 − q22 − q2

3 u1 + q3 u2),

q3 = 12(−q1 u1 − q2 u2).

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 41 / 47

Page 42: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion Planning for Sphere Rolling on a Plane

Boundary conditions:Q0 = (0, 0, 0, 0, 0), Q1 = (−1.525, 1.475, 0.346, 0.626, 0.242)Error: ε = 10−5

Iterations: 8

0.2 0.4 0.6 0.8 1.0

t

- 3

- 2

- 1

1

x,y,

q1,q2,q3

1x - x1y - y

q11 - q1

q21 - q2

q31 - q3

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 42 / 47

Page 43: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Visualization of motion planing algorithm

Rolling of the sphere (Video)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 43 / 47

Page 44: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion Planning for Car with Two Trailers

state variables ξ = (x , y , θ, φ1, φ2)ξ ∈ R2 × S1 × (S1 − {π})2

control system

x = cos θ u1,

y = sin θ u1,

θ = u2,

φ1 = − sinφ1 u1+

+(−1− cosφ1) u2,

φ2 = (sin(φ1 − φ2) + sinφ1) u1+

+(cos(φ1 − φ2) + cosφ1)u2.

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 44 / 47

Page 45: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Motion Planning for Car with Two Trailers

Boundary conditions: ξ0 = (0, 0, 0.785, 0.785,−0.785),ξ1 = (−0.252,−0.339, 1.085, 0.514,−1.281)Error: ε = 10−6

Iterations: 7

0.2 0.4 0.6 0.8 1.0t

- 0.5

0.5

1.0

1x - x1y - y

1q - q1j - j111j - j2 2

x y qjj1 2, , , ,

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 45 / 47

Page 46: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Visualization of motion planing algorithm

Car with Two Trailers (Video)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 46 / 47

Page 47: Asymptotics of exponential mapping and limit behavior of ... · Historyoftheproblem 1983J.M.Hammersley: statementoftheplate-ballproblem. 1986A.M.Arthur,G.R.Walsh: integrabilityofHamiltoniansystemofPMP

Results and plans

asymptotics of extremal trajectories for the plate-ball problem near(θ, c) = (0, 0),

upper bound on cut time near (θ, c) = (0, 0),bound on Maxwell time t1 (proved)bound on Maxwell time t2 (numerics)bound on conjugate time tconj (numerics)

motion planing algorithm for nonholonomic five-dimensional systemsbased on nilpotent approximation

peacewise constant controloptimal control (work in progress)

A. P. Mashtakov (PSI RAS) plate-ball problem 25.10.10 47 / 47