22
Shaikh Sir’s Reliance Academy, Ghorpade galli, Near Malabar Hotel, Shahupuri, Station road, Kolhapur Maths-II {Engg. Maths} Question wise Question bank

aths-II {Engg. Maths} Question wise Question bankmsbte.engg-info.website/sites/default/files/17216 Question wise... · Shaikh Sir’s Reliance Academy, Ghorpade galli,

Embed Size (px)

Citation preview

Shaikh Sir’s

Reliance Academy, Ghorpade galli, Near Malabar Hotel,

Shahupuri, Station road, Kolhapur

Maths-II {Engg. Maths}

Question wise Question bank

 

Shaikh sir’s Reliance Academy,

Shahupuri, Kolhapur.

Subject : Maths – II (G-Scheme)

Question : 1 This question contains 12 questions from all chapters, of 2 marks each Q1] Solve any Ten . [ 20 Marks ] a] Complex number b] Complex Number c] Function d] Function e] Limits {algebraic} f] Limits {Exponential} g] Limits {Trigonometric} h] Derivative i] Derivative j] Derivative k] Numerical Method{algebraic equation} l] Numerical Method{Simultaneous equation}

Types of Problems No.  Type of Problem  Q.B.Checked 

1  Algebra of Complex number   

2  Even or odd function   

3  Simple algebraic function    

4  Simple trigonometric functions   

5  Limit of simple algebraic function   

6  Limit of simple trigonometric function   

7  Exponential function  limx→0 kx

a −1kx    

8  Exponential function  [1 ]limx→0

+ 1kx

kx    

9  Derivative:Product and division rule   

10  Derivative: Composite function   

11  Derivatives : parametric function   

12  Derivatives:  (function)function    

13  Numerical :Check Root lies between   

14  Numerical:One iteration solution   

 

Type 1: Algebra Of complex Numbers  1. If (3+i)x +(1­i) y =1+7i    Find the value of x and y. 2. If (4+i)x +(3+i) y =2+8i    Find the value of x and y. 3. If (2­i)x +(4­i) y =4­5i    Find the value of x and y. 4. If x(1­i)+y(2+i)=0    Find the value of x and y. 5 b. If x(2­i)+y(4+i)=12­i   Find the value of x and y. 6. Express in the form of a+ib    where a,b  ,1−i

2+i R  ∈    i = √− 1  7. Express in the form of a+ib    where a,b  ,3−i

2−3i R  ∈    i = √− 1  8. Express in the form of a+ib    where a,b  ,10

3+4i R  ∈    i = √− 1  9. Express in the form of a+ib      where a,b  ,1−i

1+i R  ∈    i = √− 1  10. Express in the form of a+ib      where a,b  ,1

2+3i R  ∈    i = √− 1  11.  Show that  is a real number.    1 + i10 + i20 + i30  12. Find the value of   i i  2 6 − 3 8 + i7  13. Simplify   i i i  2 2 − 3 7 + 4 6 + 2  14. Simplify   i49 + i68 + i89 + i110  15.If    1 2 i) and z2 4 i)  z = ( + 3 = ( + 5            Find the values of  ) z1 2  2) z2 1  3) z1.z2  4) z1/z2  1 + z − z  16. Given        Find 1 − i  and z2 i  z = 3 + 4 = 5 − 3  1

z1 +1z2  

17.Given        Find 1   and z2 i  z = 3 − i = 5 + 4  1z1 +

1z2  

18. Express the following in the form a+ib,      12−3i +

5−i6+2i  

19.Express   as a+ib4i −3i +38 9

3i −4i −211 10    

20. If z= .i   show that z z  1 + √3 2 + 4 = 2  Type 2.Even and odd function 1. State the function is even or odd  (x)  sinxf = x x7 − 5 5 + 3  2. State the function is even or odd  (x)  sinxf = x x4 − 5 2 + x  3. State the function is even or odd  (x)  cos x sin x  f = 3x2 + x2 + 5 − 3 + 2 2  4. State the function is even or odd   (x)   f = cosx

1+sin x2  5. State the function is even or odd  2

a +ax −x  6. State the function is even or odd   cos x sin x  3x4 + x2 + 5 − 3 + 2 2  7. state the function is even or odd  og(x  l +√x )2 + 1   Type 3.Simple algebraic function 1.  , Find f(0) +f(3)f f(x) x  I = x3 − 3 2 + 5  2.  f f(x)  find  f(1) (2)  I = x3 + x + f  3.  f f(x) og x  find f(1/2)  I = 16x + l 4  4.  f f(x) x , t  find f(t)  I = x2 + 6 − 8   = z + 2  5.  f f(x)   find   f(x ) (x )  I = x2 + 4 + 1 − f − 1  6.  f  f(x) x, find ( )  I = 16x + log2   4

1  7.  f f(x) x , find f(x )  I = x2 + 2 + 1   − 1  8.  f f(x) x  show that f(− ) .f(1)  I = 3x2 − 5 + 7 1 = 3  9.  f f(x) x inx   cosx  show that f(x) (− )    I = x3 − 3 + s + x + f x = 0     

Type 4. Simple trigonometric function 1.  f f(x) os x  f(3x)  [f(x)] f(x)  I = c = 4 3 − 3  2.  f f(x) inx show that f(3) f(x) f (x)  I = s = 3 − 4 3  3.  f f(x) anx show that f(2x)  I = t = 2f(x)

1−[f(x)]2  

4.  f f(x) anx show that  f(x )  I = t + y = f(x)+f(y)1−f(x).f(y)  

 Type 5. Limit of Simple algebraic limit 1.             2.          3.     lim

x→2x +x−62

x +2x−82 limx→1 x −4x+3

2x +3x−42 lim

x→1x −8x+72

7x −6x−12  

4.           5.        6.     limx→3

x −4x+32

2x −3x−92 limx→7 x +7x−98

2x −18x+772 lim

x→−1 x +13x −3x−42  

7.                8.              9.      limx→2 x−2

x −42 limx→1 x−1

x −13 limx→5 x  −25

2x −1253  

 Ans   1).5/6      2).­5/2          3).­3/4        4).2/9           5).­4/21              6).­5/3          7). 4        8). 3              9). 15/2   Type 6. Limits of Simple Trigonometric limit 1.             2.          3.     lim

x→0 xsin3x lim

x→0sin4xtan5x lim

x→0 x2sin3x tan4x  

4.           5.        6.     limx→0 x2

1−cos2x limx→0 x2

1−cos8x limx→0 1−cos4x

sin4x tan3x  

     Type 7. Limits of Exponential function  lim

x→0 kxa −1kx  

1.  limx→0 x

2 −15x2.  lim

x→0  2 −1

x

sin2x     3.    limx→0

  3xa −14x  

 4.  lim

x→0  tan4x3 −12x

5.              6.              7. limx→0

  x3 −5x x

limx→0

  2x3 −1tanx

limx→0

  5xe −14x  

 Type 8. Limits of Exponential function  [1 ]lim

x→0+ 1kx

kx  

1.   [1 ]limx→0

  + 32x x

52.  [1 ]lim

x→∞   + x

1 3x 3.  [1 ]limx→0

  + 35x

2x  

 4.  [1 ]lim

x→0  − 3

4x x5

5.  [1 ]  limx→∞

  + 15x

x 6.  [1 ]limx→∞

  + x2 x  

7.  ( )limx→0 x

x+1 x         8.                     9. ( )limx→0 x

x−1 x ( )limx→0

xx+1

x    

  Type 9. Derivatives: Product rule and division rule 

1.  inx. logx  y = s         2.                               3. anx. e  y = t x . tanx  y = √x  4.                              5.                             6. in  x.x  y = s −1 x. x  y = tan−1 . logx  y = x3  

7.                                 8.                           9. y = x .5 √x  ecx.  tanx.  y = s y = xlogx  

10.                                   11.                                      12. y = exsinx y = x

√x y = extanx 13. 

                               14.                                  15. y = √xlogx y = x

sin x−1 y = x.2x  

16.                                17. y = 5xlogx .sinx.cosx  y = ex  

Type 10. Derivatives : Composite function {Chain rule} 1.  og(sin x)  y = l 2.  in(log x)  y = s 3.  og(e )  y = l x  4.  )in(  y = s √x 5.  an (sinx)  y = t −1 6.  x.  y = sin3  7.  ec  y = s √x 8.                        9. ot  ( )  y = c −1 √x  y = etanx  10.  og(tan x)  y = l 11.  osec( )  y = c √x                   12.   y = 2logx  13.  (sinx)  y = cos−1 14.   y = elogx   15.  (secx)  y = tan−1

16.       17.              18. (tanx)  y = cosec−1 in (log (sec x))  y = s og (tan (e ))  y = l x  19.  og (tan (3 x))  y = l − 4  Type 11. Derivatives : Product & div rule with composite function 

1. find dy/dx  .tan2x  e3x  2. Find dy/dx  og3x.sin4x  l  3. find dy/dx   sin4x . e3x   

Type 12. Derivatives : Parametric Functions 1) ind     if   x at   and   yF dx

dy = 3 2 = 2at3  2) ind     if   x at  and   y t F dx

dy = 2 = a 3  3) ind     if   x inθ  and   y osθF dx

dy = s = c  4) ind     if   x cosθ  and   y sinθF dx

dy = a = b  5) ind     if   x (θ inθ)  and   y (1 osθ)F dx

dy = a + s = a − c  6) ind     if   x secθ  and   y  tanθF dx

dy = a = a  Type 13. Derivatives :  (function)function  

1) ind     if   yF dxdy = xx  

2) ind     if   yF dxdy = xsinx  

3) ind     if   yF dxdy = xcosx  

4) ind     if   yF dxdy = xlogx  

5) ind     if   yF dxdy = xtanx  

6) ind     if   yF dxdy = xsecx  

     

 Type 14. Numerical Method :To find root lies between 

1) Show that the root of the eqn.  lies between 0 & 1.e  x x = 1  2) Shown that there exist a root of the equation  in thex  x3 − 4 + 1 = 0  

interval (1,2) 3) Find first two real roots of equation,  using bisectionx  x3 − 2 − 5 = 0  

method  Type 15. Numerical method : Solve one iteration 

1) Find the first iteration by using Jacobi’s method for the following equation.  0x z 7, 3x 0y − 8, 2x y 0z 5  2 + y − 2 = 1   + 2 − z = 1   − 3 + 2 = 2  

2) Find the first iteration by using Jacobi’s method for the following system of equation  x ,  x y − , y z    5 − y = 9   − 5 + z = 4   − 5 = 6  

3) Find the first iteration by using Jacobi’s method for the following system of equation  x 0, x y , x z −  5 − y + z = 1   + 2 = 6   + y + 5 = 1

Shaikh sir’s Reliance Academy,

Shahupuri, Kolhapur.   

Subject : Maths – II (G-Scheme)  

Question : 2  This question contains 6 questions from following chapters Q2] Solve any Four . [ 16 Marks ] a] Complex Number {Algebra of Complex number} b] Complex Number {Simplify De-Moivre Theorem} c] Complex Number {Problem on Euler's Formula} d] Complex Number {Proof using De-Moivre's theorem/Find Roots} e] Function { Function of function type problem } f] Function {Logarithmic functions}

  Types of Problems  

No.  Type of Problem  Q.B.Checked  Revision 

1  Simplify Using D.M.Theorem     [ ]    [ ]    [ ]    [ ]    [ ]  

2  Function of function type problem     [ ]    [ ]    [ ]    [ ]    [ ]  

3  Logarithmic functions     [ ]    [ ]    [ ]    [ ]    [ ]  

4  Prove Using Euler's Formula     [ ]    [ ]    [ ]    [ ]    [ ]  

5  Algebra of complex no.     [ ]    [ ]    [ ]    [ ]    [ ]  

6  Express in Polar Form     [ ]    [ ]    [ ]    [ ]    [ ]  

7  Proofs using D.M.theorem     [ ]    [ ]    [ ]    [ ]    [ ]  

8  Find roots of complex number     [ ]    [ ]    [ ]    [ ]    [ ]  

Type 1: Simplify Using D.M. Theorem 1. Simplify  (cos 2θ+ i sin 2θ) (cosθ − isinθ)3

(cos 3θ + isinθ)   (cos 5θ − isin 5θ)2 4   

 2. Simplify  (cosθ − isinθ) (cos 2θ + isin 2θ)3 3

(cos 3θ − isin3θ) (cos 5θ − isin 5θ) 2   

3. Simplify  (cos θ +isin θ)  (cos θ − isin θ) 41

41 4

32

32 3

(cos  θ − isin  θ) (cos  θ + isin θ)52

52 5

72

72

7

 

 

4. Simplify  (cos θ +isin  θ)  (cos θ +isin θ) 53

53 5

54

54 10

(cos 3θ +isin 3θ)  (cos 5θ − isin 5θ) 4 54

 

 5. Simplify  (cos 4θ +isin 4θ)  (cos 5θ+isin 5θ)3 −4

(cos 3θ + isin 3θ)  (cos 4θ − isin 4θ)4 5 

 

6. Simplify  (cos 4θ + isin 4θ)   (cosθ − isinθ) 7 8(cos 2θ − isin 2θ)  (cos 3θ+isin 3θ)5 6

 

 

7. Simplify  (cos 5θ − isin5θ )  (cos θ + isin  θ) 52

72

72 7

(cos 4θ +isin 4θ)   (cos  θ − isin  θ) 41

32

32 3     

Type 2.Function of function type problem 1.  f   f (x)   & t , f ind value of  f (t).  I = 3x−4

2x+5 = 3x−25+4x    

2.  f  f (x)   & t , show that f (t) .  I = x+24x−3 = 4x−1

2+3x   = x  3.  f  y (x) , show f (y) .  I = f = 3x−2

2x−3   = x  4.  f  y (x) , show f (y) .  I = f = x−5

5x−1   = x  5.  f  f (x) , show that f{f (x)} .  I = 5x−3

3x+4   = x  6.  f  ϕ(x) , f ind ϕ [ϕ (x)]I = x−2

2x−3     

 Type 3.Logarithmic functions     1.  f  f (x) log[ ], show that f (a) (b) [ ]  I =   1−x

1+x   + f = f a+b1+ab  

2.  f  f (x) log[ ], show that f (y) (z) [ ]I =   1−x1+x   − f = f y−z

1−yz  3.  f  f (x) log[ ], show that f [ ] .f (x)   I =   1−x

1+x   2x1+x2 = 2  

4.  f  f (x) log[ ], show that f (y) (− ) (y )  I =   xx−1   + f y = f 2  

5.  f  f (x) log[ ], show that f (y) (z) [ ]I =   1−x1+x   + f = f y+z

1+yz  6.  f  f (x) log[x ], show that, f (x) (− )  I =   + √x2 + 1     + f x = 0  7.  f  f (x) log[ ], show that f (a ) (a) log[ ]  I =   x

x−1   + 1 + f =   a−1a+1  

   Type 4.Prove Using Eulers Formula 

1. sing Euler s  formula prove that, sin θ os θ  u ′   2 + c2= 1  

2.  sing Euler s  formula prove, cosh θ inh θ  u ′   2 − s2= 1  

3.  rove using Euler s formula sin2θ sinθ.cosθ  P ′ = 2  4.  rove using Euler s formula cos2θ θ  P ′ = cos θ in2 − s 2  5.  rove by Euler s formula sinh2θ sinhθ.coshθ  P ′ = 2  6.  rove by Euler s formula cosh2x cosh x  P ′ = 2 2 − 1  7.  sing Euler s formula show that,  u ′                &    . cos3x cos  x cosx  1 = 4 3 − 3 . sin3x sinx sin x  2 = 3 − 4 3  8.  rove that 1 θ ec θ. using Euler s formula.  P + tan2 = s 2 ′  9.  sing Euler s formula prove,  u ′        . cosA osB cos( ). cos( )  1 + c = 2 2

A+B2A−B  

      . sinα inβ cos( ).sin( )  2 − s = 2 2α+β

2α−β  

10.  f  x y in(A B) prove that,  I + 1 = s + i            . 1 x2

cosh B2 + y2sinh  B2 = 1  

         . 2 x2sin A2 − y2

cos A2 = 1  11.  os(x y) B prove that,  c − 1 = A + i          . 1 A2

cosh y2 + B2sinh y2 = 1  

        . 2 A2cos x2 − B2

 

sin x2 = 1  Type 5. Algebra of complex no. 1. Find modulus and argument of  (3−i)

(2+2) (2−2)  2.  f  z − i, z i, f ind I 1 = 3 + 4   2 = 5 − 3   1

z1+ 1z2 

3. Find real and imaginary part of   where ,z + z−1 z = 1−i3+4i  

4. Separate into real and imaginary part  3+23−5i + 3+5i3−2i  

5. Find real and imaginary part,  (2+i)2

(2+3i)  6.  xpress in x y f rom E + 2 3i −2i +24 5 8

2−3i +i +4i5 7 3   

7.  xpress in a b f rom E + i 4i−3i +39

3i −4i −211 10           Type 6.Express in Polar Form 

.Find modulus and arguments of   i, and express in polar form  1 2−1 + 2

√3    . Express in polar form z i  2 = 2

1 − 2√3  

. Express in polar form   3 1−3i1+2i  

. Express in polar form 2 i  4 + 2√3  

. Express in polar form [ ]  5 3−i2+i 2  

. Express in polar form 1 osα sinα  6 − c + 2  Type 7. Proofs using D.M.theorem 1.  rove that, (1 ) 1 )  2. Using De Moivre s theorem  P   + i 8 + ( − i 8 = 3 ′  2.  how using D.M  theorem. (1 ) 1 ) − 28  S + i 12 + ( − i 12 = 1  3. how that (1 ) 1 )  S + i√3 15 + ( − i√3 15 = − 216  

4.  rove that, ( )  P   √3 + i14+ ( )√3 − i

14= 214  

 Type 8. To find roots of Complex Number 1. Find the cube root of unity. 2. Find the cube root of ­1 3. Solve the equation  x3 + 1 = 0  4. Solve the equation  x4 + 1 = 0

Shaikh sir’s Reliance Academy,

Shahupuri, Kolhapur.   

Subject : Maths – II (G-Scheme)

Question : 3  This question contains 6 questions from following chapters Q3] Solve any Four . [ 16 Marks ] a] Functions {Algebraic} b] Function {trigonometric} c] Limits {Algebraic limits by Factorization} d] Limits {Rationalization & limit tends to infinity} e] Limits { Trigonometric limits } f] Limits {Exponential Limits}

Types of Problems  

No.  Type of Problem  Q.B.Checked  Revision 

1  Algebraic functions     [ ]    [ ]    [ ]    [ ]    [ ]  

2  Trigonometric functions     [ ]    [ ]    [ ]    [ ]    [ ]  

3  Limits by factorization     [ ]    [ ]    [ ]    [ ]    [ ]  

4  Limits by rationalization     [ ]    [ ]    [ ]    [ ]    [ ]  

5  Algebraic Limit  limx→∞

     [ ]    [ ]    [ ]    [ ]    [ ]  

6  Trigonometric  limx→0

     [ ]    [ ]    [ ]    [ ]    [ ]  

7  Trigonometric  limx→π, ,2

π4π     [ ]    [ ]    [ ]    [ ]    [ ]  

8  Exponential limits type A     [ ]    [ ]    [ ]    [ ]    [ ]  

 

 

Type 1: Solution of Algebraic functions 1.  f  f (x) x . Find f (x ) & (x )  I = x2 + 4 + 1 − 1 + 1  2.  f  f (x)  x x . f ind  f (1 )  &  f (2x )  I =   2 − 3 + 4 − x + 1  3.  f  f (x)  . Show that f (x) (x ) (x )  I = x

1 − f + 1 = f 2 + x  4.  f  f (x) . Show that [f (x)]  (x ) .f ( )  I = x − x

1 3 = f 3 − 3 x1  

5.  f  f (x) .  Find f{f (x)}  I = 11−x  

6.  f  f (x) . Show that, f{f{f (x)}}I = 11−x   = x  

Type 2.Solution of trigonometric functions 1.  f  f (x) an x . Show that f (2x)I = t = 2.f(x)

1−[f(x)]2  

2.  f  f (t) 0 sin (100 π t  .04). Show that, f [ ] (t)  I = 5 + 0   2100 + t = f  

3.  f  f (x) in x & ϕ(x) os x . Show that, ϕ(x ) (x).ϕ(y) (x).f (y)  I = s = c   + y = ϕ − f  4.  f  f (t) 0 sin 100 π t. Find f [ ]  I = 1 1

200 − t  5.  f  f (x) an x, Show that, f (2x)I = t     = 2.f(x)

1−[f(x)]2  

6.  f  f (x) og(1 an x). Show that, f ( ) og2 (x)  I = l + t   4π − x = l − f  

Type 3.Limits by Factorization 1.          2.         3.   lim

x→1 x −4x+32x +3x−42 lim

x→1x −8x+72

7x −6x−12 limx→7 x +7x−982

x −18x+772  

 4.        5.             6.   lim

x→2x −83

x −3x+22 limx→−1 x +13

x −3x−42 limx→−4

x +3x−42

x +7x+122  

 7.         8.       9.    lim

x→2x −5x+62

x −2x +x−23 2 limx→3

x −5x+62

x +3x −18x3 2 limx→2

]  [ 1x−2 −

6x8−x3  

 10.              11.   lim

x→2]  [ 1

x−2 −2

x −2x2 limx→3

]  [ 1x−3 −

3x(x −5x+6)2  

 Type 4.Limits by rationalization 

1.                      2.   limx→1 (x−1)

−√x+4 √5 limx→2

2−x−√2x+5 √5x−1  

 3.                 4.   lim

x→0 x−√a+x √a−x lim

x→4 1−√5−x3−√5+x  

 5.   lim

x→13−√4+5x5−√12+13x  

 Type 5. Algebraic Limits  x→ ∞  

1.   [ ]                    2. limx→∞

 √x2 + x − x limx→∞

 √x2 + 1 − x   3.                     4.  [ ]limx→∞

]  [√x x2 + 5 − x limx→∞

 √x2 + x + 1 − x   5.         6.  [ ]x [ ]limx→∞

3 √x2 + 1 − √x2 − 1 limx→∞

   x  √x2 + 1 − √x2 − 1   Type 6. Trigonometric limits  x→ 0  1.                 2.           3.  limx→0

x  tan x1−cos x lim

x→0 3x+ 2tan3x3sin2x + 2x lim

θ→02θ+3sinθ3θ+5tanθ  

 4.             5.       6.  limx→0 x2

cos3x−cos x limx→0 x. tan x

cos 6x− cos 8x limx→0 x2

cos 6x − cos 4x  

 7.          8.           9.  limx→0

cos 8x − cos 2xcos 12x − cos4x lim

x→0 x3tan x − sin x lim

x→0 x tan xx  + 1−cos x2  

 10.  lim

x→0 x32sinx−sin2x  

 Type 7. Trigonometric limits  , , ...x→ π 2

π4π  

1.                2.              3.  limθ→ 2

π cos θ21−sinθ lim

θ→π sin θ21+cos θ3 lim

x→ 2π cos x2

1−sin x3  

4.                5.  limx→π sin x2

1+cos x limx→ 4

π 1−tan x2−sec x2  

 Type 8. Exponential limits on formula  lim

x→0 kxa −1kx  

1.                            2.  limx→0 x2

6 −3 −2 +1x 3 x

limx→0 x.sin x

10 −2 −5 +1x x x 

3.                           4.  limx→0 tan x2

18 −6 −3 +1x x xlimx→0

5 −4x x

tan2 x  

5.                                6.  limx→0 x2

3 +3 −2x −xlimx→0 x2

4 +4 −2x −x

Shaikh sir’s Reliance Academy,

Shahupuri, Kolhapur.   

Subject : Maths – II (G-Scheme)

Question : 4  This question contains 6 questions from following chapters Q2] Solve any Four . [ 16 Marks ] a] Derivatives : Proof based on first principle b] Derivatives : Proof of Rules of derivatives c] Derivatives : Problems on function)( function

d] Derivatives : Problems on Implicit function e] Derivatives : Problems on Parametric function f] Derivatives : Problems on Higher order derivatives

Types of Problems  

No.  Type of Problem   

1  Derivatives :Derivatives : Problems based on first principle

2  Derivatives :Proof of Rules of derivatives

3  Derivatives : Problems on function)( function

4  Derivatives :Problems on Implicit function

5  Derivatives :Problems on Parametric function 

6  Derivatives :Problems on Higher order derivatives

 

   

Type1: Derivatives : Proof of addition/subtraction, product rule and division rule

1) If u and v are differential function of x and y = u - v then prove

that dxdy = dx

du − dxdv

2) If u and v are differntial function of x and y = u + v then prove

that dxdy = dx

du + dxdv

3) If u and v are differentiable functions of x and y = u,v, than prove

that . .dxdy = u dx

du + v dxdv

4) If u and v are differentiable function of x and y = , then provevu

that dxdy = v2

v. −u.dxdu

dxdv

Type 2: Derivatives : Problems on FIRST PRINCIPLE

A) Find derivatives using first principle, 1. (x)f = √x 2. (x) inxf = s 3. (x) osxf = c 4. (x) anxf = t 5. (x)f = ex 6. (x) ogxf = l 7. (x)f = ax  Type 3: Derivatives : Problems on function)  ( function  1. Find   of dx

dy  xsinx    2.Find   dx

dy  (sinx)x    3.Find   dx

dy  (logx)x  4.Find   dx

dy  (sinx)logx    5.Find   dx

dy  (tanx)logx   6.  ind  , f  y  F dx

dy i = xsinx + sinxx   

  Type 4. Problems on Implicit function 

1. Find   x y  dxdy 3 + 2 2 = 0   

 2. Find   x y  dxdy 3 + y3 = x    

3. Find   x xy  dxdy 2 + 2 + y2 = 0  

4. Find    x xy  dxdy 2 + 3 + y2 = 0  

 5. Find   x xy  dxdy 2 + y2 = 4  

6. Find   x xy  dxdy 3 − 2 + y3 = 0    

Proofs on implicit function 1.  f  x.siny .sinx   Prove that  −I + y = 0 dx

dy = (x cosy+sinx)(y cosx+sinx)  

2.    Show that ey = yx dxdy = (log)2

(log y−1)  3.  f  y .siny Show that I = x dx

dy = yx(1−x.cosy)  

4.  .logy  Prove that y = x dxdy = y2

x(y−x)  5.  f  x   Prove that I y = ex−y dx

dy = logx(1+logx)2  

Type 5. Problems on parametric functions 1.  f  x .cosθ .sinθ, y .sinθ .cosθ Show that  −I = a + b   = a − b dx

dy = yx  

2.  f  x .cos t., y .sin t  Find    I = a 3   = a 3dxdy  

3.  f  x in(logt), y os(logt) Find    I = s   = c dxdy  

4.  f  x , y  Prove that     −I = ecos2t   = esin2t dxdy = x logy

y logx  

5.  f  x .log(cost), y .log(sint) Find    I = a   = a dxdy

Type 6. Higher order derivative 1.  f  xy , Prove that x .I = a   dx2

d y2 + 2 dxdy = 0  

2.  f  y in5x  cos5x   Show that  5.yI = s − 3 dx2d y2 + 2 = 0  

3.  f  y .e .e   Prove that  yI = A 3x + B 3xdx2d y2 − 9 = 0  

4.   Prove that (1 ). 2x ).y = etan  x−1 + x2 dx2d y2 + ( − 1 dx

dy = 0  

5.  in(logx) Prove that x . .y = s 2dx2d y2 + x dx

dy = 0

Shaikh sir’s Reliance Academy,

Shahupuri, Kolhapur.   

Subject : Maths – II (G-Scheme)

Question : 5  This question contains 6 questions from following chapters Q2] Solve any Four . [ 16 Marks ] a] Limits-{logarithmic limits} b] Limits {Combined algebraic,trigonometric and exponential limits} c] Numerical method- Bisection method d] Numerical Method - Regula Falsi Method e] Numerical Method- Newton-Raphson Method f] Numerical method- Newton Raphson Method

Types of Problems  

No.  Type of Problem    Revision 

1  Bisection method     [ ]    [ ]    [ ]    [ ]    [ ]  

2  Regula ­Falsi Method     [ ]    [ ]    [ ]    [ ]    [ ]  

3  Newton­Raphson Method     [ ]    [ ]    [ ]    [ ]    [ ]  

4  Limits by Logarithmic methods     [ ]    [ ]    [ ]    [ ]    [ ]  

5  Limits combined algebraic,trignometric and exponential method 

   [ ]    [ ]    [ ]    [ ]    [ ]  

 

   

 Type 1: Bisection Methods Problems  Ex. 1: Use the bisection method to find the root of which lies between 2                      x 1x3 − 5 − 1 = 0        and 3. {Three iterations only} Ex.2: Using bisection method find the approximate root of the equation  xx3 − 5 + 1 = 0  Ex.3: Using bisection method find the root between 1 and 2 of the equation              using three iterations.0x4 − x − 1 = 0  

Ex.4: Find a root of  using bisection method  {Three iterations only}xx3 − 4 − 9 = 0  

Ex.5: Find a root of  using bisection method {Three iterations only}x3 − x − 4 = 0      

Ex.6: Find a root of      using bisection method  {Three iterations only}xx3 + 2 − 1 = 0  

Ex.7: Find a root of    using bisection method {Three iterations only}xx3 − 2 − 5 = 0  ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

                                             Answers   Ex.1 ­   [X = 2.875]               Ex.2 ­   [X= 0.125]                Ex.3 – [X = 1.875]   Ex.4 – [X = 2.625]                Ex.5 – [X = 1.875]   Ex.6 – [X = 0.375]                Ex.7 – [X = 2.125]  

 Type 2 :  Regula­Falsi Method  

Problems Ex.1: Find the approximate value of the root of the equation lying between                      x x3 − 2 2 − 5 = 0    2   and 3  by false position method. Ex.2: Find the root of the equation which lies between 2 and 3 by the              xx3 − 5 − 7 = 0                  method  of false position. Ex.3: Find the approximate value of the root of the equation lying between                      xx3 − 9 + 1 = 0      2 and 3 by false position method.  Ex.4: Find the root of which lies between 3.5 and 4 by false position equation. Ex.5: Find a real root of   by regula falsi method.xx3 − 3 + 4 = 0  

Ex.6: Find a real root of  by regula falsi method.x2 − x − 1 = 0  

Ex.7: Find a real root of  by regula falsi method.x3 − x − 1 = 0  

Ex.8: Find a real root of   by regula falsi method. x2 + x − 3 = 0   ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

    Answers  Ex.1 ­   [   2.687 ]           Ex.2 – [ 2.746 ]           Ex. 3– [ 2.943 ] Ex.4 ­   [ 3.789 ]             Ex.5 – [ ­2.187 ]                   Ex.6 – [ 1.615 ] Ex.7 – [ 1.3112 ]              Ex.8 – [ 1.3000 ]   

  Type 3:  Newton­ Raphson Method Problems Ex.1 :  Find the root of   using Newton­Raphson method.0x4 − x − 1 = 0  

Ex.2 : Find the real root of   upto three iterations using Newton­Raphsonxx3 − 2 − 5 = 0  method.  Ex.3 : Find the root of the equation   lying between ­2 and ­1  up to threex2x3 − 3 + 4  iterations using Newton­Raphson method. Ex. 4 : Find a  root of   by Newton­Raphson method.x 8x3 − 9 2 − 1 = 0  

Ex.5 : Find the root of which is near to 2 correct to three places of            0x4 − x − 1 = 0                      decimals using Newton­Raphson method. Ex.6 : Find the value of  using Newton­Raphson method.   √10   Ex.7 : Find the value of  by Newton – Raphson method.   √3 20  Ex.8: Find the value of  by Newton – Raphson method.   √3 100  ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

                                                           Answers   1] [ X = 1.855]  2] [ X = 2.0945]         3] [ X = ­ 1.719]   4] [ X = 9.212]            5] [ X = 1.856}               6] [ X = 3.162] 7] [ X = 2.714]           8] [ X = 4.642]   

 Type 4.Logarithmic limits 

1.                   2.   limx→0 sin x

log (1+4x) limx→0 x

log 10 +log(x+0.1)  

3.         4.   limx→0 x

log (5+x)− log(5−x) limx→0 x−5

log x−log 5  

5.                 6.   limx→0 x−3

log x− log 3 limx→0 x−2

log x − log 2   

7.   limx→0

 log [ ]  x1

1+3x1+2x  

 Type 5. Combined Algebraic,trigonometric and exponential limits  

1.         2.           3.   limx→0 −2√x +42

tan 3x (3 −1)x

limx→0 −2√x +42

sin 4x (5 −1)x

limx→0 −1√x +12

(2 −1). sin 3xx

 

4.              5.                             6.limx→0

5 −3x x

−2√x+4 limx→0 x4

sin 2x.tan4x.log(1+x )2  

         7.   limx→0 x. log (1+5x)

(5 −1) (e −1)2x 3x

limx→0

3 −2x x

sin π x

Shaikh Sir's Reliance Academy,

Coaching Classes for Diploma EngineeringShahupuri Kolhapur

Subject : Maths – II (G-Scheme)

Question : 6This question contains 6 questions from following chaptersQ6] Solve any Four . [ 16 Marks ]

a] Derivative {Higher order derivative}

b] Derivative{Higher order derivative}

c] Numerical method-Gauss elimination method

d] Numerical method-Jacobi’s Method

e] Numerical method- Jacobi’s /Gauss-Seidel Method/Gauss elimation

f] Numerical method- Gauss-Seidel method

Types of Problems

No. Type of Problem

1 Gauss Elimination Method

2 Jacobi’s Iterative Method

3 Gauss-Seidal Method

4 Higher order derivatives

Type 1: Gauss Elimination Method

Ex.1: Apply Gauss elimination method to solve the equations. x + 3y – 2z = 5, 2x + y -3z = 1, 3x + 2y – z = 6.Ex.2: Solve by Gauss elimination method. 2x + y + z = 10, 3x + 2y + 3z = 18 , x + 4y + 9z = 16.Ex.3: Solve the following equations by using Gauss elimination method. 2x + 3y + z = 13, x – y – 2z = - 1, 3x + y + 4z = 15.Ex.4: Solve the following equations by using Gauss elimination method. 2x + 2y + 3z = 15, 3x + y + 2z = 11, 2x + 3y + z = 11.Ex.5: Solve the following equations by using Gauss elimination method x + y + z = 2, 2x + 2y – z = 1, 3x + 4y + z = 9. Ex.6: Solve the following equations by using Gauss elimination method 2 x + 3y - z = 7, x + 2y + z = 6, x + y - z = 2. Ex.7: Solve the following equations by using Gauss elimination method x+y+z = 6,2x + y + 3z = 13, 3x + 3y +4z = 20. Ex.8: Solve the following equations by using Gauss elimination method x+y+z = 6,3x - y + 3z = 10, 5x + 5y -4z = 3.

----------------------------------------------------------------------------------------------------------------------

Answers

1] [ X = 1, Y = 2, Z = 1] 2] [ X = 7, Y = -9, Z = 5] 3] [ Z = 1, Y = 2, X = 3] 4] [ X = 1, Y= 2, Z = 3] 5] [ X = -4, Y= 5, Z= 1] 6] [ X = 1, Y= 2, Z = 1]7] [ X = 3, Y= 1, Z= 2] 8] [ X = 1, Y= 2, Z = 3]

Type 2. Jacobi’s Iterative methodEx. 1 : Solve the following equations by Jacobi’s iteration method. 15x + 2y + z = 18, 2x + 20y – 3z = 19, 3x – 6y + 25z = 22.Ex. 2 : Solve by Jacobi’s method. (carry two iterations only) 4x + y + 3z = 17, x + 5y + z = 14, 2x – y + 8z = 12.Ex. 3 : Solve the following equations by Jacobi’s method. 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15.Ex. 4 : Solve the following equations by Jacobi’s method. 15x + y - z = 14, x + 20y + z = 23, 2x - 3y + 18z = 37Ex. 5 : Solve by Jacobi’s method. {only two iterations} 12x + 2y + z = 27, 2x + 15y - 3z = 16, 2x - 3y + 25z = 23.Ex. 6 : Solve the following equations by Jacobi’s method. 8x - y + 2z = 13, x - 10y + 3z = 17, 3x + 2y + 12z = 25.Ex. 7 : Solve the following equations by Jacobi’s method. 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14.Ex. 8 : Solve the following equations by Jacobi’s method. 20x + y -2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25.-------------------------------------------------------------------------------------------------------------------------------

Answers1] [ X = 1.200,1.015,1.007 Y =0.950,0.962,0.993 Z =0.880,0.964,0.989] ] 2] [ X = 4.250,2.425, Y = 2.8,1.650, Z = 1.5,0.787] 3] [ X = 1.300,0.860,1.050 Y =1.400,0.860,1.060 Z =1.500 ,0.820,1.070] ] 4] [ X =0.933,1.066 , Y =1.050, ,1.001 Z = 2.055 ,2.143 , ]5] [ X = , , Y = , , Z = , , ] 6] [ X = 1.625 ,0.892 ,1.021 Y =-1.700,-0.913,-1.023 Z =2.083,1.960,2.012 ] 7] [ X = , , Y = , , Z = , , ] 8][ X = , , Y = , , Z = , , ]

Type 3.Gauss-Seidel Method

Ex.1 : Solve the following equations by Gauss-Seidel method 27x + 6y – z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110.Ex.2 : Solve the following equations by Gauss-Seidel method 10x1 + x2 + x3 = 12, 2x1 + 10x2 + x3 = 13, 2x1 + 2x2 + 10x3 = 14.Ex.3 : Solve the following equations by Gauss-Seidel method 23x + 4y – z = 32, 2x + 17y +4z = 35, x + 3y + 10z = 24.Ex.4 : Solve the following equations by Gauss-Seidel method ,upto two iterations. 4x - 2y – z = 40, x - 6y +2z = - 28, x - 2y + 12z = - 86. Ex.5 : 15x + y + z = 17, 2x + 15y + z = 18, x + 2y + 15z = 18.Ex.6 : 10x + 2y + z = 9, 2x + 20y - 2z = - 44, -2x + 3y + 10z = 22Ex.7 : 82x - 3y + z = 75, x + 75y - 2z = 153, 3x - 2y + 85z = - 86.Ex.8: 20x + y - z = 40, 2x + 18y + z = 21, x + 2y + 25z = - 21--------------------------------------------------------------------------------------------------------------------------------

Answers 1] [ X = , , Y = , , Z = , , ] 2] [ X = 4.250,2.425, Y = 2.8,1.65, Z = 1.5,0.787] 3] [ X = , , Y = , , Z = , , ] 4] [ X = , , Y = , , Z = , , ] 5] [ X = , , Y = , , Z = , , ] 6] [ X = , , Y = , , Z = , , ] 7] [ X = , , Y = , , Z = , , ]

Type 4. Higher order derivative