35
Atmospheric Atmospheric Particles, Clouds, Particles, Clouds, and Climate and Climate and Climate and Climate Prof. V. Faye McNeill [email protected] Department of Chemical Engineering Columbia University Summer R hP f Si ResearchProgram f or Science Teachers August 19, 2009 Image from NASA MODIS sattelite

Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Atmospheric Atmospheric ppParticles Clouds Particles Clouds and Climateand Climateand Climateand Climate

Prof V Faye McNeill vfmcneillcolumbiaeduDepartment of Chemical Engineering

Columbia University Summer R h P f S iResearch Program for Science TeachersAugust 19 2009

Image from NASA MODIS sattelite

Atmospheric composition what and how much

GASESmostly N OGASES mostly N2 O2

bull N2 78 (pN2 = 078 atm)

bull O 21 (p = 0 21 atm)

O2Ar O2Ar

bull O2 21 (pO2 = 021 atm)

bull Ar 093 (pAr = 00093 atm)

N2N

ldquootherrdquoN2

N

ldquootherrdquoldquointerestingrdquo gases present at trace levels

bull p 3x10‐4 atm N2N2bull pCO2 = 3x10 4 atm

bull pO3 = 5x10‐8 atm

bull many many more

2

many many more

Atmospheric composition Condensed phase

CloudsfogbullWater droplets or solid (ice)bullWater droplets or solid (ice)bull~5 μm lt Dp lt 50 μm

(1 μm = 1 millionth of a meter = 1100th the thickness of a human hair)1100th the thickness of a human hair)

Particles ndash ldquoaerosolsrdquobull2 nm lt Dp lt 20 μmp μbullHighly varied compositionbullPhase Solid liquid or complex103 ti l

Leck and Bigg GRL 2005

bull~103 particlescc bullLifetime in atmosphere ~ 7 days

2

Aerosol definition suspension of condensed‐phase particles in gas

Atmospheric particles ImpactImpact

bull Air qualitybull Air quality

bullHealth effects

bull Visibility

bull Atmospheric chemistry

bull CLIMATE

Atmospheric aerosols sources

PrimarybullDirect emissionDirect emissionbullExamples dust sea salt bullOften larger in size

SecondarybullFormed via chemical or physical processes in situphysical processes in situ

bullFreshly nucleated new particles smallest size fraction

bullLeads to mixed inorganic‐organic composition

Localhellip Regionalhellip Long‐rangeMan made vs ldquoNaturalrdquo 5

Air Quality Air Pollution and Atmospheric Chemistry

Goal improve ldquoAir Qualityrdquo bull reduce negative health effects (e g respiratoryreduce negative health effects (eg respiratory toxics exposure)

bull other concerns (visibility increased UV global warming)warming)

bull typical metrics pO3 PM10 PM25

What do we have control over emissions from humanWhat do we have control over emissions from humanactivities (ldquoAir Pollutionrdquo)

hellip provides indirect control of air quality (Example Secondary Organic Aerosol)

Atmospheric chemistry describes the network of

6

chemical processes that links human activities to atmospheric composition and air quality

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 2: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Atmospheric composition what and how much

GASESmostly N OGASES mostly N2 O2

bull N2 78 (pN2 = 078 atm)

bull O 21 (p = 0 21 atm)

O2Ar O2Ar

bull O2 21 (pO2 = 021 atm)

bull Ar 093 (pAr = 00093 atm)

N2N

ldquootherrdquoN2

N

ldquootherrdquoldquointerestingrdquo gases present at trace levels

bull p 3x10‐4 atm N2N2bull pCO2 = 3x10 4 atm

bull pO3 = 5x10‐8 atm

bull many many more

2

many many more

Atmospheric composition Condensed phase

CloudsfogbullWater droplets or solid (ice)bullWater droplets or solid (ice)bull~5 μm lt Dp lt 50 μm

(1 μm = 1 millionth of a meter = 1100th the thickness of a human hair)1100th the thickness of a human hair)

Particles ndash ldquoaerosolsrdquobull2 nm lt Dp lt 20 μmp μbullHighly varied compositionbullPhase Solid liquid or complex103 ti l

Leck and Bigg GRL 2005

bull~103 particlescc bullLifetime in atmosphere ~ 7 days

2

Aerosol definition suspension of condensed‐phase particles in gas

Atmospheric particles ImpactImpact

bull Air qualitybull Air quality

bullHealth effects

bull Visibility

bull Atmospheric chemistry

bull CLIMATE

Atmospheric aerosols sources

PrimarybullDirect emissionDirect emissionbullExamples dust sea salt bullOften larger in size

SecondarybullFormed via chemical or physical processes in situphysical processes in situ

bullFreshly nucleated new particles smallest size fraction

bullLeads to mixed inorganic‐organic composition

Localhellip Regionalhellip Long‐rangeMan made vs ldquoNaturalrdquo 5

Air Quality Air Pollution and Atmospheric Chemistry

Goal improve ldquoAir Qualityrdquo bull reduce negative health effects (e g respiratoryreduce negative health effects (eg respiratory toxics exposure)

bull other concerns (visibility increased UV global warming)warming)

bull typical metrics pO3 PM10 PM25

What do we have control over emissions from humanWhat do we have control over emissions from humanactivities (ldquoAir Pollutionrdquo)

hellip provides indirect control of air quality (Example Secondary Organic Aerosol)

Atmospheric chemistry describes the network of

6

chemical processes that links human activities to atmospheric composition and air quality

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 3: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Atmospheric composition Condensed phase

CloudsfogbullWater droplets or solid (ice)bullWater droplets or solid (ice)bull~5 μm lt Dp lt 50 μm

(1 μm = 1 millionth of a meter = 1100th the thickness of a human hair)1100th the thickness of a human hair)

Particles ndash ldquoaerosolsrdquobull2 nm lt Dp lt 20 μmp μbullHighly varied compositionbullPhase Solid liquid or complex103 ti l

Leck and Bigg GRL 2005

bull~103 particlescc bullLifetime in atmosphere ~ 7 days

2

Aerosol definition suspension of condensed‐phase particles in gas

Atmospheric particles ImpactImpact

bull Air qualitybull Air quality

bullHealth effects

bull Visibility

bull Atmospheric chemistry

bull CLIMATE

Atmospheric aerosols sources

PrimarybullDirect emissionDirect emissionbullExamples dust sea salt bullOften larger in size

SecondarybullFormed via chemical or physical processes in situphysical processes in situ

bullFreshly nucleated new particles smallest size fraction

bullLeads to mixed inorganic‐organic composition

Localhellip Regionalhellip Long‐rangeMan made vs ldquoNaturalrdquo 5

Air Quality Air Pollution and Atmospheric Chemistry

Goal improve ldquoAir Qualityrdquo bull reduce negative health effects (e g respiratoryreduce negative health effects (eg respiratory toxics exposure)

bull other concerns (visibility increased UV global warming)warming)

bull typical metrics pO3 PM10 PM25

What do we have control over emissions from humanWhat do we have control over emissions from humanactivities (ldquoAir Pollutionrdquo)

hellip provides indirect control of air quality (Example Secondary Organic Aerosol)

Atmospheric chemistry describes the network of

6

chemical processes that links human activities to atmospheric composition and air quality

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 4: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Atmospheric particles ImpactImpact

bull Air qualitybull Air quality

bullHealth effects

bull Visibility

bull Atmospheric chemistry

bull CLIMATE

Atmospheric aerosols sources

PrimarybullDirect emissionDirect emissionbullExamples dust sea salt bullOften larger in size

SecondarybullFormed via chemical or physical processes in situphysical processes in situ

bullFreshly nucleated new particles smallest size fraction

bullLeads to mixed inorganic‐organic composition

Localhellip Regionalhellip Long‐rangeMan made vs ldquoNaturalrdquo 5

Air Quality Air Pollution and Atmospheric Chemistry

Goal improve ldquoAir Qualityrdquo bull reduce negative health effects (e g respiratoryreduce negative health effects (eg respiratory toxics exposure)

bull other concerns (visibility increased UV global warming)warming)

bull typical metrics pO3 PM10 PM25

What do we have control over emissions from humanWhat do we have control over emissions from humanactivities (ldquoAir Pollutionrdquo)

hellip provides indirect control of air quality (Example Secondary Organic Aerosol)

Atmospheric chemistry describes the network of

6

chemical processes that links human activities to atmospheric composition and air quality

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 5: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Atmospheric aerosols sources

PrimarybullDirect emissionDirect emissionbullExamples dust sea salt bullOften larger in size

SecondarybullFormed via chemical or physical processes in situphysical processes in situ

bullFreshly nucleated new particles smallest size fraction

bullLeads to mixed inorganic‐organic composition

Localhellip Regionalhellip Long‐rangeMan made vs ldquoNaturalrdquo 5

Air Quality Air Pollution and Atmospheric Chemistry

Goal improve ldquoAir Qualityrdquo bull reduce negative health effects (e g respiratoryreduce negative health effects (eg respiratory toxics exposure)

bull other concerns (visibility increased UV global warming)warming)

bull typical metrics pO3 PM10 PM25

What do we have control over emissions from humanWhat do we have control over emissions from humanactivities (ldquoAir Pollutionrdquo)

hellip provides indirect control of air quality (Example Secondary Organic Aerosol)

Atmospheric chemistry describes the network of

6

chemical processes that links human activities to atmospheric composition and air quality

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 6: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Air Quality Air Pollution and Atmospheric Chemistry

Goal improve ldquoAir Qualityrdquo bull reduce negative health effects (e g respiratoryreduce negative health effects (eg respiratory toxics exposure)

bull other concerns (visibility increased UV global warming)warming)

bull typical metrics pO3 PM10 PM25

What do we have control over emissions from humanWhat do we have control over emissions from humanactivities (ldquoAir Pollutionrdquo)

hellip provides indirect control of air quality (Example Secondary Organic Aerosol)

Atmospheric chemistry describes the network of

6

chemical processes that links human activities to atmospheric composition and air quality

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 7: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

The role of Atmospheric Chemistry

hh

HumanHuman

Air QualityAir QualityHow healthy is the air we breathe

Atmospheric Atmospheric Chemistry Chemistry and Physicsand Physics

Human Human activities activities

yyIN OUT

ClimateClimate

Important factors for AQbull conc of small particles (PM25)bull ozone (O3) concentration

3

ClimateClimate bull ozone (O3) concentration

8

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 8: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Jaco

bfro

m D

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 9: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Greenhouse gases

9

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 10: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Millenial NH temperature trend [IPCC 2001]

10

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 11: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

GLOBAL CLIMATE CHANGE SINCE 1850 [IPCC 2007]

cch

ww

wip

cc

11

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 12: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Arctic sea ice melt

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 13: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 14: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Aerosol ldquodirect effectsrdquo

Aerosols scatter solar radiation

bull increase the Earthrsquos albedo

bull ldquonegative climate forcingrdquo (cooling)

bull global dimmingbull global dimming

bull eg haze particles

Some aerosols also absorb radiation 4

3AU

) Initial glyoxal concentration 221 M

1 75 M

bullPositive climate forcing (warming)

bulleg Black carbon (smoke) dust

2

1Abs

orba

nce

(A 175 M 119 M 070 M 022 M 0 M

some organic aerosols1000800600400200

Wavelength (nm)

13

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 15: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

SCATTERING vs ABSORBING AEROSOLSSC G s SO G OSO S

Scattering sulfate and organic aerosolover Massachusetts

Partly absorbing dust aerosold i d f S hover Massachusetts downwind of Sahara

Absorbing aerosols (black carbon dust) warm the climate by absorbing solarradiation

14

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 16: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Aerosols and clouds the ldquoindirect effectsrdquothe indirect effects

Cl d f hbull Clouds form when water vapor in the air condenses to make small droplets or ice particles

bull Clouds form more easily when there areeasily when there are particles in the air to act as condensation nuclei

15

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 17: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

The aerosol ldquoindirect effectsrdquobull Aerosol particles act as cloud condensation nuclei bull more aerosols more cloud droplets

bull more growing droplets compete for same water vapor smaller cloud droplets

ldquobrighterrdquo clouds

suppressed precipitationsuppressed precipitation

wwwbnlgov16

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 18: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Aerosols and ClimateAerosols and Climate

From the IPCC report wwwipccch17

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 19: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

EVIDENCE OF INDIRECT EFFECT SHIP TRACKS

N ~ 100 cm-3N ~ 40 cm-3

W ~ 075 g m-3

re ~ 105 microm

N 40 cmW ~ 030 g m-3

re ~ 112 microm

from D Rosenfeld

bull Particles emitted by ships increase concentration of cloud condensation nuclei (CCN)

bull Increased CCN increase concentration of cloud droplets and reduce their avg size

bull Increased concentration and smaller particles reduce production of drizzle

bull Liquid water content increases because loss of drizzle particles is suppressed

bull Clouds are optically thicker and brighter along ship track 18

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 20: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

SATELLITE IMAGES OF SHIP TRACKS

NASA 2002NASA 2002Atlantic France Spain

AVHRR 27 Sept 1987 2245 GMTUS-west coast

19

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 21: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

T t d f ll i l l i ti

EVIDENCE OF AEROSOL EFFECTS ON CLIMATE

0

Ob ti

Temperature decrease following large volcanic eruptions0

2

Observations

NASAGISS general

circulation model

4

-0

erat

ure

ge (o

C)

circulation model

6

-0

42

Tem

peC

hang

1991 1992 1993 1994

-06

+02

Mt Pinatubo eruption

20

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 22: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

ch

wwipcc

ww

Aerosols probably have a net cooling effect on climate Large error bars

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 23: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Response to climate change What do we do now

LONG TERMLONG TERMParadigm shift to drastically reduce CO2 emissions

NEAR TERMCarbon capture and sequestration

Emergency measuresEmergency measuresGeoengineering Inject extra aerosols into stratosphere induce cooling via the aerosol direct effect (but what about aerosolsrsquo roles in t h i h i t d i lit )atmospheric chemistry and air quality)

21

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 24: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Aerosol Characterization What do we want to knowWhat do we want to know

T l b fbull Total number or mass of

particles (loading) 20000

25000

s pe

r cm

3

bull Size distribution

bull Smaller particles pose greater 5000

10000

15000

mbe

r of particles

Smaller particles pose greater

health risk

bull Particle composition

0

10 100 1000

Num

Particle diameter Dp (nm)

bull Particle composition

bull Toxicology (eg PAHs)

Measured outside Mudd June 6 2008

Max PM25 this day 49 μgm3

bull Optical properties3

Max PM25 this day 49 μgm

22

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 25: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Measuring particle composition

Offline (eg filter sampling denuder impactor)ndash Relatively easy cheap low techRelatively easy cheap low tech

ndash Long sampling times means low time resolution

ndash Loss of semivolatile compounds

ndash High size cutoffHigh size cutoff

Online (real‐time data)Online (real time data)

bull Aerodyne Mass Spectrometer

bull Single Particle Mass Spectrometersg p

bull Aerosol‐CIMS impactor

323

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 26: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Chemical Ionization Mass Spectrometry (CIMS)(CIMS)

bull Gas (amp particle) phase detection1 4x104( p ) p

bull ppt‐level sensitivity

bull Near‐real time (01 Hz) sampling

14x10

02

Sig

nal (

cps)

bull Versatile but selective

bull Used in a variety of laboratory amp field settings

00420400380360340320300280260

Mass (amu)

field settings

2

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 27: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Detection of particle-phase organics using Aerosol CIMSusing Aerosol CIMS

I-(H O) + RCOOH rarrFlow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet

Flow tube Aerosols

O3 OH NO3

Flow tube Aerosols

O3 OH NO3

CH3IN2

HeatedInlet O3 H2O

Photocell

Continuous Flow Volatilization

I (H2O) + RCOOH rarrI-(RCOOH) + H2O

Flow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

PhotocellFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Flow tube

To DMA CPC

AerosolsFlow tube

To DMA CPC

Aerosols

210Po

Chemical Ionization

Photocell

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

To pumpsTurbo pump Turbo pump

Ionization Region

40004000

Detection limit ~1 μg m‐3

20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu20x105

15ps)

4000

3000

2000

gnal

(cps

)

I- middotH2O145 amu

I-oleic acid409 amu Sensitivity

~300 μg‐1m3

10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu10

05Sign

al (c 1000

0

Sig

420415410405400

Mass (amu)

I-127 amu

25

0015010050 400350

Mass (amu)

0015010050 400350

Mass (amu)

Low fragmentation

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 28: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

AC-CIMS Aerosol Concentrating Mass SpectrometrySpectrometry

bull CIMS sensitivity to aerosol components limited by low total aerosol b i f i i bi i ( 103 3)number variety of species in ambient air (~103 cm‐3)

bull Solution Aerosol concentration prior to volatilization (theoretical detection limit 13 ng m‐3)detection limit 13 ng m )

bull Method Aerodynamic amp electrostatic focusing separation

26

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 29: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

McNeill Group Columbia Techniques for studying Atmospheric Aerosol Chemistry y g p y

bull Aerosol Chemistry N2O5

Aerosol Flow Tube

ndash Aerosol reactors + Aerosol‐CIMS

ndash ab initio Quantum Mechanics VFT

Ozone Scrubber

simulations

bull Surface analysis Ellipsometry

P d t d t i t

Teflon Prechamber

Pendant drop tensiometrySMPS

27

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 30: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

McNeill Group Aerosol Chamber McNeill Group Aerosol Chamber

bull Observe gas‐aerosol interactions

bull Test for changes in aerosol properties

bull Residence time of several hours

30

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 31: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Resources Resources

bull wwwipccchp

bull wwwrealclimateorg

bull The Earth Institute at Columbia University

wwwearthcolumbiaedu

bull Lenfest Center for Sustainable Energy

wwwenergycolumbiaedu

bull NASA GISS

www giss nasa govwwwgissnasagov

bull Lamont‐Doherty Earth Observatory

wwwldeocolumbiaeduwwwldeocolumbiaedu

33

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 32: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

Information about air quality onlinewwwcolumbiaedu~vfm2103Sciencehtmlwwwcolumbiaedu vfm2103Sciencehtml

A B

C

34

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS

Page 33: Atmospheric Particles, Clouds, and Climatescienceteacherprogram.org/pdf/FayeMcNeillTalk.pdf · Atmospheric composition: Condensed phase Clouds/fog •Water droplets or solid (ice)

AcknowledgementswwwipccchDaniel Jacob (Harvard)McNeill group (Columbia)Neha Allie Min Julia Coty Erica Erin Michael Sophie WayneWayne

bull NASAbull NSFbull DHS