30
ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE DIVERSITY AND ABUNDANCE IN TWO BELIZEAN CORAL-REEF MANGROVE LAGOONS: A TEST OF MARGALEF’S MANDALA BY MARIA A. FAUST, R. WAYNE LITAKER, MARK W. VANDERSEA, STEVEN R. KIBLER, AND PATRICIA A. TESTER ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. NOVEMBER 2005

ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

Embed Size (px)

Citation preview

Page 1: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

ATOLL RESEARCH BULLETIN

NO. 534

DINOFLAGELLATE DIVERSITY AND ABUNDANCE IN TWO BELIZEAN CORAL-REEF MANGROVE LAGOONS: A TEST OF

MARGALEF’S MANDALA

BY

MARIA A. FAUST, R. WAYNE LITAKER, MARK W. VANDERSEA, STEVEN R. KIBLER, AND PATRICIA A. TESTER

ISSUED BYNATIONAL MUSEUM OF NATURAL HISTORY

SMITHSONIAN INSTITUTIONWASHINGTON, D.C., U.S.A.

NOVEMBER 2005

Page 2: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

N mag.

2 km

Tobacco Range

Pelican Cays

Patch Reefs& Sand Bores

TobaccoReef

16˚45'N

88˚15'W 88˚05'W

Twin Cays

Carrie Bow Cay

Manatee Cay Cat Cay

Tobacco Cay

Douglas Cay

Research Area of Twin Cays and Douglas Cay

Island

Reef

Tidal flat

100 m

Lair Channel

100 m

Hidden Creek

GrouperGardens

The Lair

Turtle Pond

Batfish Point

Cuda Cut

Sponge Haven

Twin Bays

Figure 1. Map showing The Lair at Twin Cays, and Douglas Cay sample sites and surrounding cays.

Page 3: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

DINOFLAGELLATE DIVERSITY AND ABUNDANCE IN TWO BELIZEAN CORAL-REEF MANGROVE LAGOONS: A TEST OF MARGALEF’S

MANDALA

BY

MARIA A. FAUST1, R. WAYNE LITAKER2, MARK W. VANDERSEA2, STEVEN R. KIBLER2, AND PATRICIA A. TESTER2

ABSTRACT

Dinoflagellatesarefrequentlyabundantinthecoral-reefmangrovelagoonsoffthecoastofBelize.Margalefpredictedthatmarineenvironmentswithlowturbulenceandhighnutrientinputswouldfavordinoflagellates.Along-termstudyofcoral-reefmangroveembaymentcaysofBelize,includingthisstudy,hasshownthatthesesystemscontainabundantdinoflagellatespecies.ConsistentwithMargalef’sprediction,thesehabitatsareprotectedfromwindmixing,showahighdegreeofstratification,andhaverestrictedwaterexchangewithsurroundingoligotrophicwatersoftheopenbarrier-reefsystem.Thislimitedwaterexchangefavorsretentionofdinoflagellatecellsandthetrappingofnutrientrichorganicmaterialthatisrapidlyrecycledprovidingarelativelyhigh-nutrientenvironment.Species-specificbloomsareacommonfeatureofthesesystems.Inthestudy,theecologyanddiversityofdinoflagellatespeciesfromtwonutrient-enrichedhabitats,DouglasCayandTheLairatTwinCay,wereexaminedindetail.AcomparisonofthespeciescompositionfrombothsitesshowedthatDouglasCaycontainedcoastalplanktonicandoffshoreoceanicdinoflagellateswhileTheLairatTwinCaycontainedmainlybenthicdinoflagellates.Atotalof19bloom-formingspecieswereobservedinthesesystemsduringthreetwo-weekstudies.Themorphologyofeightofthesebloom-formingspeciesisillustratedinScanningElectronMicroscopy(SEM)photographs.TheseincludeBysmatrumcaponii,Dinophysiscaudata,Gonyaulaxgrindleyi,Peridiniumquinquecorne,Gonyaulaxpolygramma,Gonyaulaxspinifera,Lingulodiniumpolyedrum,andPyrodiniumbahamensevar.bahamense.Approximatelyhalfofthebloom-formingdinoflagellatesareknowntoxinproducers.ThecongruencebetweenMargalef’spredictionandthedistributionofdinoflagellatesinthesenaturallyeutrophicsystemssuggeststhatincreasednutrientinputsinoligotrohicportionsoftheCaribbeanwillfavorashiftinspeciesdominancetowarddinoflagellatespecies.Theeffectwillbemostpronouncedinbaysorotherregionswhereturbulenceislikelytobereduced.Thisspeciesshiftmayhaveconsequencesforfoodwebdynamicsandtheprevalenceofdinoflagellatetoxinsinthefoodchain._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1 DepartmentofBotany,NationalMuseumofNaturalHistory,SmithsonianInstitution, Washington D.C., 20560.2NOS/NOAA,CenterforCoastalFisheriesHabitatResearch,101PiversIslandRoad,Beaufort,NorthCarolina,28516.Manuscript received 29 July 2005; revised 22 August 2005.

Page 4: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

106

INTRODUCTION

Dinoflagellatesconstituteoneofthedominantgroupsofoceanicphytoplanktonandareresponsibleforasignificantportionofoverallprimaryproductivity.Manyspeciesarebloomformers,andasubsetoftheseisknowntoproducepotenttoxinsthataccumulateinthefoodchaincausingmassmortalitiesoffish,birdsandmammals,aswellashumanillnessanddeath.Thesebloomsfrequentlyreachdensitiessufficienttodiscolorthewaterandcanreleaseenoughorganicmaterialtoresultinhypoxiaorotherformsofwater-qualitydegradationincludingnoxiousodorsandunsightlyfoams.Occurrencesofharmfulalgalblooms(HABs)nearshoreregionscausesevereeconomicimpact,havemajorenvironmentalandhumanhealthproblems,andcauselossestofisheriesandtourismoperations(Smayda,1997;Ajanietal.,2001).Oftenthesebloomsarecharacterizedbytheproliferationanddominanceofaparticularspecies(Hallegraeff,1993).Globally,HABsareincreasinginscaleandfrequencyandcurrentlythreatenmostcoastalregionsoftheworld.Manyreasonsforthisincreaseinbloomfrequencyhavebeenpostulated,rangingfromanthropogenicnutrientinputstoincreasedawarenessandimprovedsurveillance(PitcherandCockroft,1996).

Extensiveresearchhasbeenconductedtoidentifythephysical,chemicalandbiologicalmechanismsresponsiblefordinoflagellatebloomformation(Smayda,1997).OneoftheearliestandmostrobusthypothesesputforwardisMargalef’sMandala(Margalef,1978;Margalefetal.,1979).Thishypothesispredictsthatlowturbulenceandhighnutrientenvironmentsfavordinoflagellatedominance.Workwithmid-andupper-latitudespeciesdoesindeedseemtoconfirmthatsubstantialnutrientinputsandlowturbulenceconditionscoincidewithdinoflagellateblooms.Theseconditionsalsoincludebloomsthatareenhancedbyaccumulationinstablefrontalzoneswhichrepresentregionsofloweredturbulentdispersion.Thereis,however,apaucityofavailableinformationaboutHABdinoflagellatebloomsthatoccurintropicalregionsincludingtheAtlanticbarriercoral-reefmangroveecosystemsofBelize(Hernández-BecerrilandBecerril,2004).PreliminarysurveyshavefoundthatalthoughsomeHABdinoflagellatesarefoundinlowabundancethroughouttheBelizeanbarrier-reefsystem,thegreatestdiversityandhighestnumberofbloom-formingspeciesappearrestrictedtomangrovecayembaymentsorsimilarenvironments(Faust,2000,2004;MortonandVillareal,1998;Morton,2000).Inthispublication,wereporttheoccurrenceof59dinoflagellatespeciesfromtwolagoonalembaymentslocatedatDouglasCayandTwinCays,Belize.Fifteenofthespeciesidentifiedformedsubstantialblooms.TheecologyandmorphologyofeightofthesearedescribedindetailandanevaluationofhowwelltheprevailingconditionsanddinoflagellateabundanceagreewiththepredictionsofMargelf’sMandalaispresented.

Page 5: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

107

METHODS

Study Area

DouglasCay,BelizeissituatednorthofThePelicanCays(16º42.5’N88º10.3’W,Figure1)andispartofthelargestbarrier-reefmangroveecosysteminthenewworld(MacintyreandRützler,2000).Thereefsinthissystemarecharacterizedbychannelsthatformanumberofshelfatolls(JamesandGinsburg,1979)whichareseparatedbyanunusualnetworkofreefridges,bothsubmergedandexposed,whichwereformedduringtheHolocene(Macintyreetal.,2000).Manyoftheselagoonreefshavebeencolonizedbyredmangroves,RhizophoramangleLinnaeus(Purdy,1994).Whenthemorphologyoftheselagoonalreefsisfavorable,thedevelopingmangroveislandswillencompassaninternallagoonlikethatfoundatDouglasCay.Theselagoonsrangefrom1-10mdepthattheircenter.Theyhaveerodedpeatbanksaroundthemarginwithanabundantgrowthofmangroveproproots.Theentrancetotheselagoonsisfrequentlycharacterizedbyasillorothermorphologicalfeaturethatrestrictswaterexchangewiththesurroundingoceanicfore-reefsystems.Asaresult,theselagoonsareconsideredseparatewatermassesandarecharacteristicallywarmerandmoresalinethantheopenwatersofthesurroundingcentrallagoon(Villarealetal.,2000).Themangroveproprootsthatlinetheedgeoftheselagoonsarecolonizedbyabundantcorals,spongesandtunicates(RützlerandFeller,1996).Thehydrographicisolationofthesesystems,andlowtidalamplitude(<20cm)allowsretentionofnutrientandcarbon-richdetritalmaterialsuppliedbythesurroundingmangrovetrees.Theseconditionspromoteahighmicrobialbiomassandtherapidratesofnutrientrecycling.

TwinCays,thesecondsystemstudied(located7kmnorthofPelicanCays(16°49.4’N88°6.1’W),consistsofashallowintertidalmangroveislandcharacterizedbyaseriesoflagoons,channels,mudflatsandponds.The“Lair”,thespecificlocationwheresamplesweretaken,isashallowlagoon(0.5to3mdeep)locatedattheendofTheLairchannel.ThoughTheLairhasapoorlydevelopedsill,the<20cmtideandlongnarrowLairchannelwhichseparatesTheLairfromsurroundingwaters,helprestrictwaterexchangewiththesurroundingwaters.Overallwaterexchange,however,isgreaterthanobservedforDouglasCay(Kibleretal.,2005).TheLairisalsohighinorganicmatteroriginatingfrommangroves,meadowsofturtlegrass,ThalassiatestudiniumBankexKonin,aswellasbenthicproductionassociatedwiththesoftsediments.

Physical Parameters and Chlorophyll a Biomass

Temperature,salinity,dissolvedoxygenandirradianceweremeasuredinthewatercolumnatthreedepthswithaYellowSpringInstrumentprofilingunit(model6600).Irradiancewasestimatedbytheintegratingquantumscalarirradiancemeter,BiosphericalInstruments#QSI-140meter(Testeretal.,2003).AmmoniawasmeasuredfluorometricallyusingthemethodofHolmesetal.(1999).Samplesforchlorophyllaanalysiswerevacuum-filteredthrough25mmGF/Ffilters(<10cmHg)andwereimmediatelyfrozeninliquidnitrogen.Samplesweresubsequentlyextractedwith7.5

Page 6: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

108

ml90%acetoneandweremaceratedwithatissuegrinderbeforebeinganalyzedusingtheacidificationmethodforchladescribedbyParsonsetal.(1984).ThewatercolumnconditionsatDouglasCayandTheLairweresimilarin2002,2003and2004.In2004,weformallyquantifiedstratificationateachstationusingtheBrunt-Väisäläfrequency(N),whichdescribestheoscillationthatresultswhenthepycnoclineisdisplaced(MannandLazier,1996).Thismetricwascalculatedatmid-depthinthewatercolumnusingtheexpressionN(rads-1)=(g/ÿ/ÿz)½,wheregisthegravitationalconstant(ms-2) and isdensity (Kg m-3).Tosimplifycomparisons,Nwasconvertedtounitsofcyclesh-1 usingN/2ÿ.Strongstratificationisindicatedbyfrequenciesinexcessof20cycles.h-1(Macintyre et al., 2002).

DinoflagellateSampling

ThedinoflagellateassemblageswerecharacterizedannuallyatbothDouglasCayandLairhabitatsduringatwo-weekperiodineachMayfrom2002to2004(Fig.1).Atotalof42watersampleswerecollectedfromDouglasCayand20watersampleswerecollectedfromTheLair.Subsurfacewaterwascollectedusinga20µmporesizenylonplanktonnettowedbyasmallboatoperatingatitslowestspeedfor1-2minutes.Largepiecesoffloatingdetrituswerealsocollected(Faust,2004).Sampleswereconcentratedto100mlvolumeandfixedwithglutaraldehydeat1%finalconcentrationforlightmicroscopyandSEMspeciesidentification(Faust,1990).BoththeDouglasCayand“Lair”habitatswerecharacterizedbyadiversecommunityofdinoflagellates(Faust,2004).

EnumerationandIdentificationofDinoflagellates

Toenumeratemicroalgae,cellconcentrationsofthreereplicatesforeachwatersamplewereestimatedat100xmagnificationinaPalmer-Maloneycellchamberorinsettlingchambers(Guillard,1973).DinoflagellateswereidentifiedunderdifferentialinterferencecontrastilluminationwithCarlZeissAxiophotmicroscope.Therelativeabundanceofdinoflagellateswasdeterminedastheproportionoforganismspresentinatotalof500cells.

ForSEM,glutaraldehyde(1%concentration)-preserveddinoflagellateswereisolated using a capillary pipette under a compound microscope. Cells were concentrated ontoapolycarbonatefilteratroomtemperature,rinsedsixtoeighttimeswithdeionizedwater,dehydratedinagradedseriesofethanolconcentrationsandcriticalpointdried.Thepreparationwascoatedwithcarbonandbyalayerofgold-palladium(Faust,1990).CelldimensionsweredeterminedfromSEMphotographsofatleast10cells;valuesgivenrepresentthemean.Kofoidiannomenclaturewasusedforidentifyingdinoflagellatespecies(Kofoid,1909).SamplesofthisinvestigationaredepositedinTheDinoflagellateCollectionoftheU.S.A.NationalHerbarium,SmithsonianInstitution,WashingtonD.C.

Page 7: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

109

RESULTS

Physicalenvironment

BothtemperatureandsalinitywerehighinDouglasCayandTheLairandvariedonlyslightlyoverthecourseofallthreeMaystudyperiods(Table1).Bothlagoonswereprotectedfromprevailingwindsbythesurroundingmangrovetrees.Stabletemperatureandsalinityconditions,lowtidalexchangeandreducedwindmixingresultedinalowturbulenceenvironment(Table2).

Table1.RangeofenvironmentalvariablesmeasuredinDouglasCayandTheLair,TwinCays during the three two week study periods.

Study Site DissolvedNH4+

Temperature Salinity DissolvedO2 Light Chlorophyll a

ÿmole.L-1 ºC psu ppm ÿE.m-2. s-1 ÿg.L-1

Douglas Cay 0.6-6.0 28.3-29.3 35.6-36.1 2.2-6.5 1500-2000 5.0-15.0

The Lair 0.1-0.8 29.1-31.2 37.5-38.0 2.0-5.0 1200-2000 0.8-15.0

Table2.Brunt-VaisalafrequencycalculatedatDouglasCayandatTheLair

Dissolvedoxygenvariedfromhypoxictosupersaturateddependingonthetimeofday.Thisfluctuationisduetothebalancebetweenbacterialrespirationandphotosyntheticoxygenproduction.Intheseshallowsystems,middayphotosyntheticallyactiveradiationissufficienttosaturatephotosynthesisinthewatercolumn(Table1)andatthebenthicsurfaceaswell.DissolvedNH4+ishigherinDouglasthaninTheLair,butbothareon

The Lair 2004 Date Time B-V Frequency (cycles h-1)

12 May 04 1530 37.6 13 May 04 0800 23.5 13 May 04 1415 34.2 17 May 04 0830 28.3 17 May 04 1430 33.8 18 May 04 1000 34.3 18 May 04 1615 40.7

Douglas Cay 2004 Date Time B-V Frequency (cycles h-1)

10 May 04 0630 10.3 11 May 04 0645 25.0 11 May 04 1400 48.6

Page 8: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

110

averageapproximatelyanorderofmagnitudegreaterthanconcentrationsfoundinthesurroundingoligotrophiclagoon.TheBrunt-Väisälänumbersexceeded20cyclesh-1duringeachperiodmeasuredexceptone,indicatingthatthewatercolumnishighlystable(Table2). DistributionandDiversityofDinoflagellatesObservedinDouglasCayandTheLair

ThedinoflagellateassemblagepresentinDouglasCayduring2002wasquitediverse.Therewere45dinoflagellatespeciespresent.Twenty-oneofthesewereplanktonic,11benthicand5bentho-planktonic.Thirty-threeofthespeciesareknownautotrophs,6wereheterotrophsand3mixotrophs.Fifteenareknowntoformtoxicbloomsinotherregions(Table3).AcomparisonofthedinoflagellatespeciespresentinDouglasCayandTheLairin2004demonstratedthatdinoflagellatecommunitiesweresimilarlydiversetothatobservedin2002,andthattheysharedapproximately65%ofthespeciesincommon.Overall,benthicspecieswerecommoninTheLairthaninDouglasCay(Tables3and4).Acompilationofthedatafromallthreeyearsidentifiedatotalof19bloom-formingspeciesfromDouglasCayandTheLair(Table5).Someofthesespeciesweremorepersistentintimeandspacethanothers.Ofthese19species,11areknowntoxinproducers(Table6).Adetaileddescriptionoftheecologyandmorphologyfor8ofthese19bloom-formingspeciesfollows:

Gonyaulax grindleyiReinecke1967Synonym:Protoceratiumreticulatum(Claparède&Lachmann)Bütschli,1885:p.1000,pl. 52.

Figures2-6

Morphology: Cellsconicalwitharoundedhypotheca;cells(30-45µmL,and28-43µmW)(Fig.2).Surfaceisdeeplyareolate(Fig.3).Apicalporecomplexisoblongwiththeapicalporeinthecentercoveredbyamucusplug(Fig.4).Sulcusisoblongandnarrow(Fig.5).Morphologyofthedissociatedplatesisinlinedrawings(Fig.6):species-specificfeaturetheintercalaryplate1aandtheventralporesituatedinrightmarginonapicalplate1’(Fig.6b).Formscysts.

Ecology:CellspresentinCatCay,DouglasCay,ElbowCay,andManateeCay(Faust,2000).Bloomof9.85x104 cells L-1causedbrownwaterdiscolorationatTobaccoRange(Fig.1)inMay2000.Cystsinthesedimentgerminatethatinitiatedthebloom(Reinicke,1967).Distribution:neritic,estuarine;coldtemperatetosubtropicalwaters.

Toxicity:Producerofparalytictoxinaffectingshellfishbeds(Table6).

Peridinium quinquecorneAbé1927Synonym:Protoperidiniumquinquecorne(Abé)Balech,1974:p.59.

Figures7-10

Page 9: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

111

Morphology: Epithecaisconicalwithapointedapex,cells(23-40µmLand20-36µmW)(Fig.7);Hypothecaisangular,4antapicalspinesvariableinlength.Intercalaryplateslapentagonaland2aheptagonal(Fig.8).ApicalplateisaroundchamberwithaPoplateandXcanalplate(Fig.9).Cellshapeisrhomboid(Fig.10b-c).Redeye-spotpresent.

Ecology: IdentifiedinfloatingdetritusatDouglasCayandTheLair,cellshape,andlengthvariable.Formsredtides(1.15x104 cells L-1),cellsadaptedtobothbenthicandplanktonicshallow-tropicalwaters.Cellstoleratehightemperatures(38to42°C).Presentintropicaltidepools(HoriguchiandPienaar,1991).

Toxicity: Duringveryhighcellnumbersthisspeciescancauseanoxiaandfishkills(Fukuyoetal.,1990).

Bysmatrum caponii (HoriguchietPienaar)FaustandSteidinger1998Synonym:PeridiniumgregariumLombardetCapon,1971a:p.184-187.

Figures11-12

Morphology:Epithecaisconicalandhypothecatrapezoidal;epithecaandhypothecaalmostequal(Fig.11).Cellsare35µmLto30µmWandcellsurfacevermiculate.Hypothecaisindented(Fig.12a).Apicalintercalaryplates1aand,2aadjacentand3aseparated(Fig.12b).Apicalporecomplexischamber-likeFig.12b).Sulcusiswidefoursulcal platelets present (Fig. 12c). Red stigma is present.

Ecology:Speciesisanewredtide-formingdinoflagellatefromBelize.Cellconcentrations,1.85x102 cells L-1, observedinDouglasCay.CellsalsopresentinElbowandManateeCays(Faust,2000).Speciessanddwelling,attachtoparticlesviamucusstrandsemergingfromtheapicalpore(Po).Distribution:coastal,warm,tropicalandestuarinetidepools.

Toxicity:Nottoxic(Table6).

Dinophysis caudataSaville-Kent1881Synonym:DinophysishomunculusStein,1883:p.3,24,pl.21,figs.5-7.

Figures13-14

Morphology:Epithecaverysmallandhidden,cellsflattenedand110µmLto80µmW(Fig.13).Hypothecaisprominentwithalongventralfinger-likeprojection.Leftsulcallistextendsthelengthofthemainbody;rightsulcallistisshorter.Cellsurfaceisdelicately areolated. Cells may occur in pairs, dorsally attached (Fig. 14).

Ecology:Speciesisanewredtide-formingdinoflagellatespeciesfromBelize.ConcentrationsofD. caudata2.8-3.2x102 cells L-1observedinDouglasCay,and550-

Page 10: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

112

2010 cells L-1inManateeCay(Morton,2000);dinoflagellatesalsopresentinCatCayandFishermanCay(Faust,2000).The‘bloom’populationinDouglasCaymaysuggestthathighorganicnutrientsenhancedgrowthof D. caudatatoaredtidelevelinDouglasCaythatisanunusualoccurrence(Maestrini,1998).Distributions:Neriticandestuarineinwarmtemperatetotropicalwatersworldwideexceptincoldwater,cosmopolitan.

Toxicity:Producerofichthyotoxinsthatmaycausemassivefishmortality(Table6).

Gonyaulax polygrammaStein1883

Figures15-18

Morphology: Cellelongatewithtaperedepitheca;epithecaangularwithashorthorn(Fig.15).Cellsize(42-65µmLand26-56µmW).Hypothecaroundedortruncate(Fig.16) with three short antapical spines. Theca is ornate with reticulae, longitudinal ridges andstriae(Fig.17).Linedrawingsofplatesarecharacterizedbylongitudinalraisedandserratedreticulaeextendingfromapextoantapex(Fig.18).

Ecology:Speciesisanewredtide-formingdinoflagellatespeciesfromBelize.Cellconcentrations1.2x103cells L-1observedinDouglasCay.Thefirstreportedofadenseredtideof3.5x106 cells L-1andcausedbrowndiscolorationofthewaterinManatee(MortonandVillareal,1998).Distribution:neritic,oceanic,cosmopolitanincoldtemperatetotropicalwaters,worldwidedistribution.

Toxicity:Non-toxinproducingspecies(Table6);causinganoxiaandfishkillsduringthemicroalgalcellsdecompositionandreleaseofhighsulfideandammoniaconcentrations(Koizumietal.,1996).

Gonyaulax spinifera(ClaparèdeetLachmann)Diesing1866Synonym: Peridinium spiniferum ClaparèdeetLachmann,1859:p.405,pl.20,figs4-5.

Figures19-22

Morphology:Epithecaelongate,conicalwithashortapicalhorn(Fig.19),cells(35-40µmLand21-33µmW).Cellandhypothecarounded;twoshortantapicalspinespresent(Fig.20).Apicalporecomplexisoblong,Poelliptical.Apicalplate1´bearsaventralpore(Vp)(fig.22a).Cingulumisexcavated,descendingwithanoverhang(Fig.21).Cellsurfaceisornate,characterizedbyreticulae,extendingfromtheapextoantapex.Striae associated with round trichocyst pores. Thecal plate morphology illustrated in line drawing(Fig.22).TheshapeofG. spinifera isvariableanddifficulttoidentify.Formscysts.Ecology: Gonyaulax spinifera formedredtide1.5x103 cells L-1 in Douglas Cay, was also

Page 11: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

113

observedinCatCay,ManateeCayandLagoonCayreef-mangroveponds.Distribution:neritic,oceanic,estuarine,cosmopolitan.

Toxicity: Non-toxic(Table6).

Lingulodinium polyedrum (Stein)Dodge1989Synonym: Gonyaulax polyedraStein,1883:p.13,pl.4,figs.7-9.

Figures23-26

Morphology:Cellspolyhedralshapedwithoutantapicalspinesandapicalhorn(Fig.23).Cellsize(40-50µmLand37-53µmW).Epithecaispointedandhypothecaroundtoflat;sulcuslong,narrowandexcavated(Figs.24,26a).TheAPCoblongandtheapicalporeplatePoappearsasalatticeinsidewithraisedridge(Fig.25).Surfaceofthecalplatessculptured,reticulationincludesring-shapedridgesroundtrychocystsporesindepressions(Fig.25).Linedrawingsdescribemorphologyofthecalplates(Fig.26).Forms cysts.

Ecology: Speciesisanewred-tide-formingdinoflagellatefromBelize.L polyedrum formedredtides1.8x103cells L-1outside Douglas Cay, and species present in Cat Cay, FishermanCayandManateeCay(Faust,2000).Cellsduringthenightdisplaybrilliantphosphorescence. Distribution:neriticoceaniccoastalwarmtemperatetotropicalwaters.

Toxicity:Speciesproducerofparalyticshellfishpoisonandsaxitoxin(Table6).

Pyrodinium bahamense var. bahamensePlate1906

Figures27-30

Morphology:Cellshapenearlyround,epithecaandhypothecaaboutequalinsize;prominentapicalhornandapicalspinewithalist(Fig.27).Cellsize(33-47µmLand37-52µmW);inbloomconditioncellsizelarger(34-77µmLand38-67µmW).ApicalporeplatetriangularshapedandcomposedofthePoplateandclosingplate(cp)(Fig.30).Cingulumequatorial,listswelldeveloped(Fig.27).Platesutureswithacrestarisingbetweenplates(Fig.29);andthecalsurfacelacedwithspinulaeofroundtip(Fig.28).Forms cysts.

Ecology: Speciesformedredtide2.5x103 cell L-1outside the Douglas Cay and species presentoutsideCatCay,FishermanCayandManateeCay.Thisspeciesmayconfinetomangrove-fringedcoastalwatersoftheAtlanticandIndo-WestPacificandcausesred-brownwaterdiscolorationunderbloomcondition(Hallegraeff,1993).Distribution:SpeciespresentworldwideinCaribbean,AtlanticandPacificOceansinsubtropicaltotropicalwaters.

Toxicity: P. bahamensevar.bahamense producerofDSPandparalyticshellfishpoison(Table6).

Page 12: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

114

Dinoflagellate species Benthic,Planktonic or

Both

AutotrophHeterotroph, or

Mixotroph

BloomForming

Akashivo sanguinea Both Autotroph -Amphidinium carterae Benthic Autotroph +Bysmatrum caponii Both Autotroph +Ceratium furca Planktonic Autotroph +Ceratium pulchellum Planktonic Autotroph -Ceratium trichoceros Planktonic Autotroph +Ceratium tripos Planktonic Autotroph -Cochlodinium polykrikoides Planktonic Mixotroph +Coolia monotis Benthic Autotroph -Dinophysis caudata Planktonic Autotroph -Dinophysis rotundata Planktonic Mixotroph -Diplopelta symmetrica Planktonic Mixotroph -Diplosalis bomba Planktonic Mixotroph -Gambierdiscus australes Benthic Autotroph -Gambierdiscus polynesiensis Benthic Autotroph -Gambierdiscus toxicus Benthic Autotroph -Goniodoma sphaericum Planktonic Autotroph -Gonyaulax digitale Benthic Autotroph -Gonyaulax grindleyi Both Autotroph +Gonyaulax. polygramma Planktonic Autotroph +Gonyaulax. spinifera Planktonic Autotroph +Gonyaulax verior Planktonic Autotroph -Heterocapsa triquetra Planktonic Autotroph +Lingulodinium polyedrum Planktonic Autotroph +Ostreopsis labens Benthic Mixotroph -Ostreopsis lenticularis Benthic Mixotroph -Ostreopsis ovata Benthic Autotroph -Ostreopsis siamensis Planktonic Autotroph -Peridinium quinquecorne Planktonic Autotroph +Peridinium venestrum Planktonic Heterotroph +Plagonidium belizeanum Benthic Autotroph -Prorocentrum caribbeanum Benthic Autotroph -Prorocentrum elegans Planktonic Autotroph +Prorocentrum hofmanianum Benthic Autotroph -Prorocentrum lima Benthic Mixotroph -Prorocentrum mexicanum Both Autotroph -Prorocentrum rhathymum Both Autotroph +Protoperidinium depressum Planktonic Heterotroph -Protoperidinium divergens Planktonic Heterotroph -Protoperidinium oblongum Planktonic Heterotroph -Protoperidinium oceanicum Planktonic Heterotroph -Protoperidinium pallidum Planktonic Autotroph -Protoperidinium steidingerae Planktonic Heterotroph -Pyrodinium bahamense v. b. Both Autotroph +Pyrophacus steinii Planktonic Autotroph -

Table3.Characteristicsofthe45dinoflagellatespeciesidentifiedin2002atDouglasCay.

Page 13: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

115

Dinoflagellate species DouglasCay

The Lair Benthic,Planktonic or

Both

Autotroph,Heterotroph or

MixotrophAkashiwo sanguinea + + Both AutotrophAlexandrium balechii - + Planktonic AutotrophBysmatrum caponii - + Both AutotrophBysmatrum subsalsum - + Benthic AutotrophCeratium furca + - Planktonic AutotrophCeratium pulchellum + - Planktonic AutotrophCeratium trichoceros + - Planktonic AutotrophCeratium tripos + - Planktonic AutotrophCochlodinium polykrikoides* + - Planktonic AutotrophCoolia monotis* hportotuAcihtneB++Coolia tropicalis hportotuAcinotknalP+-Dinophysis accuminata* - + Planktonic AutotrophDinophysis caudata* + + Planktonic AutotrophDinophysis rotundata* + - Planktonic MixotrophGambierdiscus belizeanus* - + Benthic AutotrophGambierdiscus polynesiensis* - + Benthic AutotrophGambierdiscus toxicus* + + Benthic AutotrophGonyaulax grindleyi + - Benthic AutotrophGonyaulax monocanta + - Planktonic AutotrophGonyaulax reticulatum* + - Planktonic AutotrophGonyaulax polygramma* + - Planktonic AutotrophGonyaulax spinifera + - Planktonic AutotrophHeterocapsa triquetra + + Planktonic AutotrophOstreopsis labens* + + Benthic MixotrophOstreopsis marina - + Benthic MixotrophOstreopsis siamensis* + - Benthic MixotrophPeridinium quinquecorne + + Planktonic AutotrophPeridinium quinquecorne + + Planktonic AutotrophPeridinium venestrum Planktonic HeterotrophPlagodinium belizeanum + + Planktonic AutotrophProrocentrum belizeanum* + + Benthic AutotrophProrocentrum elegans - + Planktonic AutotrophProrocentrum emarginatum + - Benthic AutotrophProrocentrum hoffmannianum* - + Benthic AutotrophProrocentrum mexicanum* + + Both AutotrophProrocentrum micans + - Planktonic AutotrophProrocentrum lima* + - Benthic AutotrophProrocentrum rathymum - + Both AutotrophProrocentrum ruetzlerianum - + Benthic AutotrophProrocentrum tropicalis - + Benthic AutotrophProtoceratium spinulosum + - Planktonic AutotrophProtoperidinium crassipes + + Planktonic HeterotrophPyrodinium bahamense v. b + - Planktonic AutotrophScrippsiella trochoidea - + Planktonic AutotrophScrippsiella tifida + + Planktonic Autotroph

Table4.BiodiversityofdinoflagellatesindetritusatDouglasCayandTheLair,TwinCays(2004)includingwhetherspeciesproducingtoxin(*)werepresent(+)or(-)absent.

Page 14: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

116

Dinoflagellate species Douglas Cay The LairTwin Cays

Reference

4002300230022002Akashivo sanguinea -* ++ ++ ++ Faust, M.A., 2004Bysmatrum caponii ++ + - + Faust M.A. & K.A. Steidinger, 1998Bysmatrum subsalsum - ++ ++ ++ Faust M.A. & K.A. Steidinger, 1998Ceratium furca - - - ++ Steidinger K.A. & K. Tangen, 1996Cochlodinium polykrikoides +* ++ ++ ++ Sournia, A., 1986Coolia monotis + + - + Faust, M.A., 1992Dinophysis caudata + ++ + + Balech, E., 1988Gonyaulax grindleyi + ++ - - Balech, E., 1988Gonyaulax polygramma + ++ - - Balech, E., 1988Gonyaulax spinifera + + - - Balech, E, 1988Heterocapsa triquetra - - ++ + Horiguchi, T. & Pienaar, R. N.,1991Lingulodinium polyedra + ++ - - Dodge, J.D., 1989Peridinium quinquecorne +++ ++ ++ ++ Horiguchi, T. & Pienaar, R.N., 1991Plagonidium belizeanum ++ - - ++ Faust M.A. and E. Balech, 1993Prorocentrum belizeanum - + - + Faust, M.A., 1993Prorocentrum caribbeanum + - ++ + Faust, M.A., 1993Prorocentrum elegans ++ ++ +++ + Faust, M.A., 1993Prorocentrum mexicanum + ++ ++ ++ Martin, G.W., 1929Pyrodinium bahamense ++ ++ - - Steidinger, K.A., 1983

Dinoflagellate species Produced Toxins Reference

Akashivo sanguinea Ichthyotoxins Carlson, R.D. & D.R. Tindall, 1985Bysmatrum caponii Non toxic Faust, M.A. & K.A. Steidinger, 1998Bysmatrum subsalsum Non toxic Faust, M.A. & K.A. Steidinger, 1998Ceratium furca Non toxic Steidinger, K.A. & T. Tangen, 1996Cochlodinium polykrikoides Ichthyotoxins Yuki, K. & S. Yoshimatsu, 1989Coolia monotis Cooliatoxin Holmes M.J. et al., 1995Dinophysis caudata Ichthyotoxin, DSP Okaichi, T., 1967Gonyaulax grindleyi Paralytic toxin Reinecke, P., 1967Gonyaulax polygramma Fish kills due to anoxia Koizumi, Y. et al., 1996Gonyaulax spinifera Non toxic Steidinger, K.A. & K. Tangen, 1996Lingulodinium polyedrum PSP toxins; STX Bruno, M.P. et al., 1990Peridinium quinquecorne Fish kills due to anoxia Fukuyo, Y. et al., 1990Plagodinium belizeanum Non toxic Faust, M.A. & E. Balech, 1993Prorocentrum belizeanum DSP toxins: DTXI, OA Morton, S.L. et al., 1998Prorocentrum caribbeanum Non toxic Faust, M.A., 1993Prorocentrum elegans Non toxic Faust, M.A. & E. Balech, 1993Prorocentrum mexicanum FAT Tindall D.R. et al., 1984Pyrodinium bahamense DSP, Ichthyotoxin Hallegraeff, G.M. 1993

Table5.Relativeabundanceofbloom-formingdinoflagellatespeciesatDouglasCayandTheLair,TwinCaysindifferentyears.*CellconcentrationsL-1are:cells+(<102),++(<103)and+++(<104).*Speciespresent(+)andspeciesabsent(–).

Table6.Toxinandnon-toxinproducingdinoflagellatesatDouglasCayandTheLair,TwinCays.Abbreviations:DSP=diarrheticshellfishpoisoning;FAT=fastactingtoxins;PSP=paralyticshell-fishpoisoning;andSTX=saxitoxin.

Page 15: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

117

DISCUSSION

Mandala’sPredictionValidatedforTropicalMangroveLagoons

ThehydrographicandresidualammoniadatafrombothDouglasCayandTheLairareconsistentwiththeselagoonalsystemsbeingstable,lowturbulenceenvironmentswithhighratesofnutrientregeneration(Fig.2,Tables1-2,Kibleretal.,2005).Elevatednutrientsinthesesystemslikelyresultfromtherapidrecyclingoforganicmatterbybacteria(ChróstandFaust,1999).Thisorganicmatteriscontributedbythesurroundingmangroveforest,seagrasses,macroalgalmeadowsandthedenseassemblageoffilter-feedinginvertebratesandspongesthatcolonizethepeatwallsandmangroveproproots(RützlerandFeller,1996).Theserelativelyhighernutrientlevelsarereflectedinthe4to40timeshigherchlorophyllabiomassinthelagoonscomparedtothesurroundingoligotrophicwatersofthecentralBelizeanreefsystemwhicharegenerally<0.2µgchlaL-1(Table1).Bothlagoonsarealsoprotectedfromwindmixingduetoprevailingwindsbythesurroundingmangrovetreeswhichfurtherpromotethestabilityofthewatercolumn.Margalef’sMandalapredictsthattheselow-turbulence,high-nutrientenvironmentswouldfavordinoflagellatespecies(Margalef,1978;Margalefetal.,1979;Smayda,1997;SmaydaandReynolds,2001).

Thereasonisrootedinthebasicbiologyoftheseorganisms.Dinoflagellatesaresensitivetophysicaldisturbancewithturbulenceregimesdisruptingtheirbasicmetabolismresultinginasignificantdecreaseindivisionratesrelativetootherspeciessuchasdiatoms(Sullivanetal.,2003).Dinoflagellatesarealsoknowntohaveslowergrowthratesatlownutrientconcentrationsthanmanyotheralgalgroups(BroekhuizenandOldman,2002).Itisonlyatrelativelyhighernutrientconcentrationsthatdinoflagellateshaveacompetitivegrowthadvantage.Thelowturbulence,highnutrientenvironmentlagoonssampledinthisstudywouldthereforerepresentidealenvironmentsfordinoflagellates.

Consistentwiththisprediction,boththeDouglasCayandLairlagoonscontainedarichassemblageofdinoflagellateswithatotalof52speciesbeingidentifiedfromDouglasCayand30fromTheLair(Tables3-5).Interestingly,only15specieswereidentifiedfrombothenvironments(Tables4and5).PlanktonicandautotrophicspeciescommontomoreoceanicenvironmentsweredominantinDouglasCayandincluderepresentativesfrom7genera:Ceratium,Cochlodinium,Dinophysis,Gonyaulax,Lingulodinium,Peridinium,andPyrodinium(Tables3and4).Ofthese,thearmoreddinoflagellatespecieswerethemostcommonwithunarmoredspeciessuchasAkashiwosanguinea,Amphidiniumcarterae,Cochlodiniumpolykrikoides,andHeterocapsatriquetrarepresentingaminorcomponent(Table3).Incontrast,benthicdinoflagellatescomposedagreaterproportionofthespeciesobservedinTheLair(Tables3and4).Becausedinoflagellatestendtobenichespecialists(Smayda,1997),thelargediversityofdinoflagellatespeciesrecoveredfrombothDouglasCayandTheLairimplythattheseenvironmentscontainadiversearrayoftemporallyandspatiallyvaryingniches.ThatamajorityofspeciesareuniquetoeachenvironmentalsoimpliesthattherearedifferentsourcepopulationsforDouglasCayandTheLair,orthattheselectionregimeissignificantlydifferent.

Page 16: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

118

Differencesinthewaterexchangeinthesesemienclosedmangrovelagoonsmayaccounttosomeextentfortheseobserveddifferencesinspeciescomposition(Levasseuretal.,1984).DouglasCayhasapredominantsillthatmayrestrictexchangetoagreaterextentthanoccursinLairwhichismainlyrestrictedduetothelengthofTheLairChannelandthelowtidalamplitude(<20cm)(MacintyreandRützler,2000).AlowerrateofexchangeinDouglaswouldfavorretentionofdinoflagellatecells(Villarealetal.,2000)andalargerportionofincomingorganicmatter,therebyincreasingthenutrientrecyclingcapacityofthesystem.DouglasCayisalsoalargerlagoonwithamorecomplicatedgeomorphology(unpublisheddata).Furthermore,DouglasCayreceivednutrientinputsfromtheabundantpelicansthatcometofishinthelagoonandroostinthemangroves.Treessurroundingthelagoonwereconsequentlystreakedwithguano.Thesehighlymobilepelicanpopulationsfeedonawiderangeoffoodsourcesandthusimportnutrientsdailytothelagoon.AlltheseconditionscombinetofosterthegreaterdiversityofdinoflagellatespeciesinDouglasCay.Despitethericherenvironment,DouglasCaystillprovidessufficientconfinementandnutrientsupplytoenhancetheproliferationofspecies-specificdinoflagellateblooms(Table5;SmaydaandReynolds,2001).TheobserveddiversityisalsohigherthangenerallyreportedatanygiventimeforthedeepoffshorewatersoftheEasternCaribbeanSea(Halim,1967;Hulburt,1968;Marshall,1973).

Anotherlow-turbulence,high-nutrientmicroenvironment,whichexiststoamuchlargerextentinTheLairthanintheDouglasCay,aretheloosedetritalmatswhichcovermuchofthebenthos.Theseflocculentmatssitontopofthesedimentswherenutrientfluxesarelikelytobehigh.Evidenceforthisnutrientfluxcanbefoundintherichassemblageofdinoflagellateandotheralgalspeciesthatoccupythesemats.Intheafternoon,oxygenproductionbyalgaeinthematcauseslargesectionstodetachandbeginfloatingupwardinthewatercolumn.ThisfloatingbiodetrituscarrieslargenumbersofdinoflagellatesintothewatercolumnandcanaccountforthehigherproportionofbenthicdinoflagellatesobservedinTheLaircomparedtothoseinDouglassCay,wherethebenthosisdominatedtoagreaterextentbyattachedmacrophytesandseagrasses(Tables3and4;Faust,2004).

Bloom-formingDinoflagellates

Inadditiontohighdiversity,weobservedanumberofdinoflagellatebloomsinbothlagoonalsystems.InDouglasCay,14bloom-formingspecieswereobservedin2002and15in2003.TheLairexperiencedaslightlysmallernumberofbloomsinvolving9speciesin2003and13in2004(Table5).Themostintensebloom-formingspecieswerePeridiniumquinquecorneinDouglasCayandProrocentrumelegansinTheLair.BloomsofGonyaulaxgrindleyiinDouglasCaywerealsosufficientlyhightodiscolorthewater.SimilarG.polygramma,bloomshavebeenreportedinManateeCay(MortonandVillareal,1998;Morton,2000).PreviousstudiesinDouglasCayconductedinMay1997,1999and2000alsofoundoneormore>20µmdinoflagellatesbloomedineachofthesestudiesreachingcellconcentrationsinexcessof1x10-3 cells L-1.Frequentbloomsthereforecanbeconsideredapersistentfeatureofthesesystemsfromyear-to-yearduringthe May study period.

Page 17: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

119

Ofthe19bloom-formingspeciesobserved,themostconsistentspeciesbetweensiteswereAkashivosanguinea,Bysmatrumsubsalsum,Cochlodiniumpolykrikoides,Dinophysiscaudata,Peridiniumquinquecorne,ProrocentrumelegansandP.mexicanum.Bloomstypicallyvariedinintensityanddurationwithmanylastingonlyafewdays.Apotentialreasonfortherapiddeclineofmanyofthesebloomsispredationbythelargenumberofheterotrophicciliates,nematodes,anddinoflagellatessuchastheProtoperidiniumspecies.Mixotrophicspecies,suchasthosethatbelongtothegeneraProrocentrumandOstreopsis,werealsocommonandareknowntofeedheterotrophicallyonothersmallmicroalgae(Faust,1998).Therapidgrowthanddeclineoftheseblooms,inconjunctionwithelevatednutrientconcentrations,mayimplyatightcouplingbetweenbottom-upnutrientdrivengrowthandtop-downcontrolbypredators.

Toxin-producingSpecies

Approximatelyhalfofthe19bloom-formingspeciesfoundineitherDouglasCayorTheLairareknowntoxinproducers(Table6).Thisimpliesthatthenaturaleutrophicationpresentintheselagoonsfavorsselectionoftoxicbloomformers.Itisnotcurrentlyknownifthesepotentiallytoxicbloom-formingspeciesactuallyareproducingtoxin.ThereisgrowingevidencethatHABtoxinscanserveanantigrazingfunction(Teegardenet.al.,2001).Thiswouldleadtothepredictionthat,ininstancesofintensegrazingpressure,bloomsproducingtoxinwillbefavored.Furtherresearchisneededtoaddressthispossibility.Ifgrazersfindthesespeciesunpalatableortoxic,itcanleadtosignificantandoftenadversealterationsofthefoodweb(PitcherandCockroft,1996).Itshouldbenotedthatallthetoxicbloom-formingspecieswerephototrophsasaremostreportedHABtaxa(SmaydaandReynolds,2001).

Margalef’sMadala,andtheresultsforDouglasCayandTheLair,alsohaveprofoundimplicationsforecosystemhealth.Boththetheoryandthespeciesfoundinthesenaturallyeutrophiedsystems(Tables3-5)wouldpredictthatasanthropogenicinputsintotheoligotrophicwatersoftheCaribbeanincrease,sowilltheproportionofdinoflagellatesintheassemblage.Thisspeciesshiftwouldlikelybemostpronouncedinshelteredbaysorotherregionswhereturbulenceandhydrodynamicdilutionareminimizedandintheveryregionsmostlikelytobereceivingincreasednutrientinputs.(Smayda,1997).Ifthetoxicdinoflagellatespeciesarefavoredduetoselectivegrazingpressuresorotherfactors,theirtoxinswilllikelyaccumulateinthefoodweb.Itisnowknownthatalltrophiccompartmentsofmarinefoodwebarevulnerabletothechronic,sublethalimpactsoftheseHABtoxins(Hallegraeff,1993).Incaseswheretoxinaccumulationissignificant,acuteimpactsincludingalterationoffood-webdynamicssufficienttoresultintrophicdysfunction,aswellasadverseeffectsonfisheriesandhuman health, can result.

Evenifthenontoxin-producingbloom-formingdinoflagellatescometopredominate,theycanstillcauseproblems(Alongi,1998).Thoughthesebloomsposenoseriousthreatintheenvironment,theyoftendiscolorthewaterandareconsideredtobeaestheticallyunpleasantandnoxious.Anoxiaformationresultingfromthedegradationoforganic-richmaterialderivedfromphytoplanktonbloomscanalsocausefishkills(PitcherandCockroft,1996;Koizumietal.,1996).Highammoniaconcentrationreleasedaftercelllysiscanadverselyaffectfishaswell(Ajanietal.,2001).

Page 18: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

120

CONCLUSIONS

TheresultsofthisstudydemonstratethatthephytoplanktonspeciescompositionoftwonaturallyeutrophiclagoonalsystemsintheBelizeanBarrierReefsystemconformtothepredicationsofMargelf’sMandala.Thistheorypredictsthathighnutrient,lowturbulencemarineenvironments,suchasthoseexaminedinthisstudy,willfavorthediversityandabundanceofdinoflagellates.Consistentwiththisprediction,arichassemblageofdinoflagellatesisfoundinbothlagoonalsystems.Approximately19ofthesespecieswereconsistentbloomformers,andofthesebloomformers,approximatelyhalfwereknowntoxinproducers.Theecologyandtaxonomyofeightofthesebloomformersweredescribedindetail.IfthepredictionsofMargalef’sMandalaholdtrue,thenincreasedanthropogenicnutrientinputsintotheoligotrophicCaribbeanwatersmayfavorashiftinspeciescompositiontowardpotentiallytoxicdinoflagellatespecies.Thisshiftcouldprofoundlyalterthefood-webdynamicsaswellasadverselyaffectingfisheriesandhuman health.

ACKNOWLEDGEMENTS

WethankDr.KlausRützlerattheNationalMuseumofNaturalHistory(NMNH),SmithsonianInstitution,foruseofthefacilitiesatCarrieBowCayFieldStation,Belize.Wearealsogratefultonumerousindividualswhocontributedtoitssuccessanddeservecredithere:Dr.IanG.Macintyreforhisvaluablecommentsonthismanuscript;Ms.MollyRyanforherartworkandgraphics;andMrs.JuditA.Quasneyforphotographiclayoutsthatpavedthewayforpublishingthisresearchpaper.IconveyaspecialthankstoScottWhitakerintheSEMlaboratoryfortechnicalassistanceandMikeCarpenterforlogisticsupport,NMNH.ThisinvestigationwassupportedbygrantsfromtheCaribbeanCoralReefEcosystemprogram(CCRE)attheNationalMuseumofNaturalHistory.ThispaperisContributionNo.729fromtheCCREProgram.

Page 19: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

121

Figures 2-6. MorphologyofGonyaulax grindleyidinoflagellatespeciescausingwaterdiscolorationinsamplingareasillustratedinscanningelectronmicrographs,anddissectedplatetabulationsinlinedrawings.

Page 20: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

122

Figures 7-10.MorphologyofPeridinium quinquecornedinoflagellatespeciesassociatedinfloatingdetritusinTheLairatTwinCaysillustratedinscanningelectronmicrographs,anddissectedplatetabulationsinline drawings.

Page 21: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

123

Figures 11-12.MorphologyofBysmatrum caponii sanddwellingdinoflagellatespeciesidentifiedfromDouglas Cay and The Lair at Twin Cays sampling areas illustrated in scanning electron micrographs anddissectedplatetabulationsinlinedrawings.

Figures 13-14.MorphologyofDinophysis caudata planktonicdinoflagellatespeciesidentifiedfromDouglas Cay and The Lair at Twin Cays sampling areas illustrated in scanning electron micrographs, anddissectedplatetabulationsinlinedrawings.

Page 22: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

124

Figures 15-18.MorphologyofGonyaulax polygramma cosmopolitanoceanic,red-tidedinoflagellatespeciesidentifiedfromDouglasCayillustratedinscanningelectronmicrographsanddissectedplatetabulationsinlinedrawings.

Page 23: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

125

Figures 19-22. MorphologyofGonyaulax spinifera, anoceanicred-tidedinoflagellatespeciesidentifiedfromDouglasCaysamplingarea,illustratedinscanningelectronmicrographsanddissectedplatetabulationsinlinedrawings.

Page 24: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

126

Figures 23-26. MorphologyofLingulodinium polyedrumoceanicbioluminescentdinoflagellatespeciesidentifiedfromDouglasCaysamplingareaillustratedinscanningelectronmicrographsanddissectedplatetabulationsinlinedrawings.

Page 25: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

127

Figures 27-30. MorphologyofPyrodinium bahamense var.bahamenseplanktonicworldwidedistributeddinoflagellatespeciesidentifiedfromDouglasCaysamplingareaillustratedinscanningelectronmicrographs.

Page 26: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

128

REFERENCES

Ajani,P.,G.M.Hallegraeff,andT.Pritchard2001.HistoricoverviewofAlgalbloomsinmarineandestuarinewatersoftheNew South Wales, Australia. Proceedings of the Linnean Society, of New South Wales123:1-22.Alongi, D.M.1998.Coastal Ecosystem Processes. Marine Science Series,1-419,NewYork:CRE

Press.Broekhuizen,N.,andJ.Oldman2002.MarineEcosystems:Between-individualvariationsmodifyphytoplankton dynamics. Water and Atmosphere10:10-12.Chróst,R..,andM.A.Faust1999.Consequencesofsolarradiationonbacterialsecondaryproductionandgrowthratesinsubtropicalcoastalwater(AtlanticCoralReefoffBelize,Central America). Aquatic Microbial Ecology20:39-48.Faust, M.A. 2004.TheDinoflagellatesofTwinCays:Biodiversity,Distribution,andVulnerability In The Twin Cays Mangrove Ecosystem, Belize: Biodiversity, Geological History, and Two Decades of Change,editedbyK.RRuetzler,I.C.Feller,andI.G.Macintyre,1-21,SpecialVolume,Atoll Research Bulletin515:1-20.2000.Dinoflagellateassociationsinacoralreef-mangroveecosystem:PelicanandassociatedCays,Belize.Atoll Research Bulletin 473:133-149.1998.Mixotrophyintropicalbenthicdinoflagellates.InHarmful Algae,editedbyB.Reguera,J.Blanco,L.Fernandez,andT.Wyatt,390-394.Paris:XuntadeGalicia&IntergovernmentalOceanographicCommissionofUNESCO.1990.MorphologicdetailsofsixbenthicspeciesofProrocentrum(Pyrrophyta)fromamangroveisland,TwinCays,Belize. Journal of Phycology26:548-558.Fukuyo,Y.,H.Takano,M.Chihara,andK.Matsuoka1990.Red Tide Organisms in Japan - An Illustrated Taxonomic Guide,430.Tokyo:

Uchida Rokakuho Press. Guillard, R.R.L.1973.Divisionrates.InHandbook of Phycological Methods. Culture Methods andGrowthMeasurements,editedbyJ.Stein,289-311.NewYork:CambridgeUniversityPress.Hallegraeff,G.M.1993.Areviewofharmfulalgalbloomsandtheirapparentglobalincrease. Phycologia32:79-99.Hernández-Becerril,D.U.,andA.AlmazánBecerril2004.Especiesdedinoflageladosdelgénero Gambierdiscus (Dinophyceae) del MarCaribmexicano.Review Biology Tropical(Supplement1)52:77-87.Holmes,R.M.,A.Aminot,R.Kerouel,B.A.Hooker,andB.J.Peterson.1999.Asimpleandprecisemethodformeasuringammoniuminmarineandfreshwaterecosystems.Can. J. Fish. Aquat. Sci.56:1801-1808.

Page 27: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

129

Horiguchi,T.,andR.N.Piennar1991.Ultrastructureofamarinedinoflagellate,Peridinium quinqueforme Abé

(Peridiniales)fromSouthAfricawithparticularreferencetoitschrysophateendosymbiont.Botanica Marina34:123-131.

Halim,Y.1967.ThephytoplanktonofVenezuela.InternationalReviews Hydrobiologia 52:701-755.Hulburt,E.M.1968.PhytoplanktonobservationsintheWesternCaribbeanSea.Bulletin of Marine Science 18:388-399.James,N.P.,andR.N.Ginsburg1979.The seaward Margin of Belize Barrier and Atoll Reefs: Morphology, Sedimentology, Organism Distribution and late Quarternary History, SpecialpublicationoftheInternationalAssociationofSediments,Volume3.Kibler,S.R.,M.A.Faust,M.W.Vandersea,S.M.Varnam,R.W.Litaker,andP.A.Tester2005.Watercolumnstructureandcirculationinthemainchannel,TwinCays,Belize. Atoll Research Bulletin(submitted).Kofoid,CA.1909.OnPeridinium steinii Jörgensen,withnoteonthenomenclatureoftheskeletonofPeridinidae.Archiv für Protistenkunde16:25-47.Koizumi,Y.,J.Kohno,N.Matsuyama,T.Uchida,andT.Honjo1996.Environmentalfeaturesandthemassmortalityoffishandshellfishduringthe Gonyaulax polygramma redtideoccurringinandaroundUwajimaBay,Japanin1994. Nippon. Suis. Gakki.62:217-224.Levasseur,M.,J.C.Therriault,andL.Legendre1984.Hierarchicalcontrolofphytoplanktonsuccessionbyphysicalfactors.Marine Ecology Progress Series19:211-222.Macintyre,I.G.,andK.Rützler2000.NaturalHistoryofthePelicanCays,Belize.InAtoll Research Bulletin, edited byMacintyre,I.G.,andK.Rützler466-480:1-333.WashingtonD.C. Smithsonian Institute Press.Macintyre, I.G., W.F. Precht, and R.B. Aronson 2000.OriginofthePelicanCaysponds,Belize.Atoll Research Bulletin 466:1-15.MacIntyre,S.,J.R.Romero,andG.W.Kling2002.Spatial-temporalvariabilityinsurfacelayerdeepeningandlateraladvectioninanembaymentofLakeVictoria,EastAfrica.Limnology and Oceanography47:656-671.Maestrini, S.Y.1998.BloomDynamicsandecophysiologyof Dinophysis spp. In Physiological Ecology of Harmful Algal Blooms,editedbyD.M.Andersen,A.D.Cembella,andG.M.Hallegraeff,NATOASISeries41:243-265.BerlinHeidelberg:Springer-Verlag.Mann,K.H.,andJ.R.N.Lazier1996.Biological–Physicalinteractionintheoceans.InDynamic of Marine

Page 28: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

130

Ecosystems,editedbyMann,K.H.,andJ.R.N.Lazier,394.Cambridge: Blackwell Science.Margalef,R.1978.Life-formsofphytoplanktonassurvivalalternativesinanunstableenvironment.

Oceonol. Acta.1:493-509Margalef,R.,M.Estrada,andD.Blasco1979.Functionalmorphologyoforganismsinvolvedinredtides,asadaptedtodecayingturbulence.In:Toxic Dinoflagellate Blooms,editedbyD.TaylorandH.Seliger,89-94.NewYork:Elsevier.Marshall,H.G.1973.PhytoplanktonobservationsintheEasternCaribbeanSea.Hydrobiologia 41:45- 55.Morton, S.L.2000.PhytoplanktonecologyanddistributionatManateeCay,PelicanCay,Belize. Atoll Research Bulletin472:123-134.Morton, S.L., and T.A. Villareal1998.BloomofGonyaulax polygramma Stein(Dinophyceae)inacoralreefmangrovelagoon,DouglasCay,Belize. Bulletin of Marine Science 63:1-4.Parsons, T.R., Y. Maita, and C.M. Lalli1984.Amanualofchemicalandbiologicalmethodsforseawateranalysis,173.Oxford:PergamonPress.Pitcher,G.C.,andA.Cockroft1996.NoxiousGymnodiniumspeciesinSouthAfricanwaters.InHarmful Algae News,editedbyT.Wyatt,15:1-3.Paris:IntergovernmentalOceanographicCommissionofUNESCO.Purdy, E.G.1994.Karst-determinedfaciespatternsinBritishHonduras:Holocenecarbonate dimentation model. American Associations of Petroleum Geologists58:825-855.Reinicke, P.1967.Gonyaulax grindleyi sp.nov.,adinoflagellatecausingredtideatElandsBay,CapeProvince,inDecember1996.Journal of South African Botany33:157- 160.Rützler,K.,andI.C.Feller1996.Caribbeanmangroveswamps.Scientific American274:94-99.Smayda,T.J.1997.Harmfulalgalblooms:Theirecolophysiologyandgeneralrelevancetophytoplanktonbloomsinthesea.Limnology and Oceanography42:1137-1153.Smayda,T.J.,andC.S.Reynolds2001.Communityassemblyinmarinephytoplankton:applicationofrecentmodelstoharmfuldinoflagellateblooms.J.Plank.Res.23:447-461.Sullivan,J.M.,E.Swift,P.L.Donaghay,andJ.E.B.Rines2003.Small-scaleturbulenceaffectsthedivisionrateandmorphologyoftwored-tidedinoflagellates.Harmful Algae 2:183–199.

Page 29: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

131

Teegarden,G.J.,R.G.Campbell,andE.G.Durbin2001.ZooplanktonfeedingbehaviorandparticleselectioninnaturalplanktonassemblagescontainingtoxicAlexandrium spp. Marine Ecology Progress Series218:213–226.Tester,P.,S.L.Kibler,W.Litaker,M.W.Vandersea,W.Sunda,andS.Varnam2003.DouglasCay:Amodelfortheeffectsofeutrophicationontropicalmarineecosystems,9.CCREProjectSummary.Villareal, T.A., S.L Morton, and G.B. Gardner2000.Hydrographyofasemi-enclosedmangrovelagoon,ManateeCay,Belize.Atoll Research Bulletin470:87-104.

Page 30: ATOLL RESEARCH BULLETIN NO. 534 DINOFLAGELLATE

132