41
Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO DETERMINE THERMO-ELASTIC DEFORMATIONS IN A HOLLOW CYLINDER OF FINITE LENGTH by R.J.M. CROZIER Chalk River, Ontario April 1971 AECL-39O1

Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

Atomic Energy of Canada Limited

BAGPIPE: A PROGRAM TO DETERMINE

THERMO-ELASTIC DEFORMATIONS IN

A HOLLOW CYLINDER OF FINITE LENGTH

by

R.J.M. CROZIER

Chalk River, Ontario

April 1971

AECL-39O1

Page 2: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

BAGPIPE: A PROGRAM TO DETERMINE THERMO-ELASTIC

DEFORMATIONS IN A HOLLOW CYLINDER OF FINITE LENGTH

By

R.J. M. CrozierApplied Mathematics Branch

A B S T R A C T

The Fortran program BAGPIPE is designed to determinethe thermo-elastic deformations which arise in a hollowcircular cylinder of finite length. The inner and outersurfaces of the cylinder are subjected to temperature changes,normal stresses and shear stresses, all of which may varyalong the length of the cylinder. The length of the cylindermay change.

The preparation of input data has been made particu-larly simple and the central processor time required toexecute a typical problem is of the order of 15 seconds.

The problem of the non-uniform heating of a fuelsheath containing fuel pellets separated by thin, highlyconductive discs is used as an illustration. It is foundthat the sheath does not experience unrealistic non-uniformdeformations when subjected to a temperature distributionproposed at Chalk River Nuclear Laboratories.

(submitted March, 1971)

Chalk River Nuclear LaboratoriesChalk River, Ontario

April, 1971

AECL-3901

Page 3: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

BAGPIPE: Programme permettant de déterminer les déformations

thermo-élastiques d'un cylindre creux dé longueur finie

par

R.J.M. Crozier

Résumé

Le programme Fortran BAGPIPE est conçu pour déterminerles déformations thermo-élastiques se produisant dans uncylindre circulaire creux de longueur finie. La surfaceintérieure et la surface extérieure du cylindre sont assujettiesà des changements de température, à des contraintes normales età des efforts de cisaillement qui peuvent varier sur toute lalongueur du cylindre. La longueur du cylindre peut changer.

r " •

La préparation des données d'entrée a été rendueparticulièrement simple et le temps requis par l'appareil detraitement des données pour un problème typique est de l'ordrede 15 secondes.

*•-- Le problème du chauffage non-uniforme d'une gaine decombustible contenant des pastilles de combustible séparéespar des 'disques peu épais et hautement conducteurs est donnécomme exemple. On constate que la gaine ne subit pas dedéformation non-uniforme anormale lorsqu'elle est assujettieà la distribution des températures proposée par Chalk River.

(Manuscript soumis en mars 1971)

L'Energie Atomique du Canada, Limitée

Laboratoires Nucléaires de Chalk River

Chalk River, Ontario

AECL-3901

Page 4: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

CONTESTS

Page

Section

1. Use of BAGPIPE 1

1.1 Introduction 1

1.2 Equations Solved 1

1.3 Boundary Conditions 2

1.4 Type of Solution 4

1.5 System of Units 5

1.6 Preparation of Input 5

1.7 Control of computation 9

1.8 Running the Program 9

1.9 Output 10

2. Sample Problem - Sheath Deformation 11

3. Method of solution 27

3.1 Introduction 27

3.2 Derivation of the Temperature Distribution 27

3.3 Derivation of the Elastic Displacements 30

Page 5: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

BAGPIPE: A PROGRAM TO DETERMINE THERMO-ELASTIC

DEFORMATIONS IN A HOLLOW CYLINDER OF FINITE LENGTH

By R . J . M . C r o z i e r

1. Use of BAGPIPE

1.1 Introduction

Thermo-elastic stresses are important factors to be

considered in the design of nuclear fuel elements.

In certain fuel element, assemblies, fuel pellets are

separated from each other by thin discs of a highly conductive

material in order to reduce the bulk temperature of the fuel.

As a result the sheath experiences a non-uniform temperature

distribution along its length, those parts of the sheath opposite

the highly conductive discs becoming considerably hotter than

other parts of the sheath. Non-uniform stresses develop in the

sheath which is deformed into a bamboo-like shape, the points

of greatest deformation being adjacent to the highly conductive

discs. The program calculates these deformations together with

the associated strains and stresses.

1.2 Equations Solved

The program BAGPIPE solves the thermo-elastic equations

in cylindrical coordinates with axial symmetry. It is assumed

that temperature changes are small, so that material parameters

remain constant. It is also assumed that strains are small, so

that the classical elastic equations hold.

Page 6: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 2 -

The temperature distribution, T ( r , z ) , in a tube with

inner radius r = a, outer radius r = b and height h, is governed

by the second order partial differential equation

—p- + + —2f+ H = 0 : a ^ r ^ b , o <; z < h

ar2 r ar az \

where k is the thermal conductivity of the material and H is

the rate of production of heat per unit volume.

The radial displacement, u(r,z), and the axial displace-

ment, w(r,z), are governed by the simultaneous pair of second

order partial differential equations

ifu A 9u u , c ifji , (1_c) -llwar3 r ar r2 az2

a2w i _awiar2 r ar

wherel-2v

a <. r

c =

P = (3-4c)a

in which v is Poisson's ratio and a is the coefficient of linear

expansion.

1.3 Boundary Conditions

The function T(r,z) requires four conditions to be

specified on the boundaries of the tube. The temperatures on

the inner and outer surfaces of the tube are given in the form

T = Ta(z) on r = a, o<;z<;h

T = Tb(z) on r=b, o s z s h .

Page 7: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 3 -

Also, it is assumed that the ends of the tube are

thermally insulated so that

3T— = 0 on asrsb. 2=03z *

dT— = 0 on asr«b, z = h .uZ

These end conditions can be interpreted as symmetry conditions

if one imagines that at each end of the tube there is attached

another tube which is the mirror image of the first tube.

The functions u(r,z) and w(r,z) require a total of

eight conditions to be specified on the boundaries of the tube,

First, on the inner and outer surfaces of the tube the normal

and shear stresses are given in the form

o ^ = - p = { z ) on r = a , o ^ z s h

a r r = ~ P b ( z ) o n r = b > o s z < s h

a z r = - s a ( z ) on r = a , o s z s h

a = - s - j 3 ( z ) on r = b , o ^ z < h .

Second, the end conditions are of the form

-—• = 0 on air^b, z=o,hoz

w = 0 on asrsb, z = o

•w = Cja. on a^rsb, z=h

where 5 is a constant. From this last condition we can see

that the tube height increases by £h.

Page 8: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 4 -

1.4 Type of Solution

We can see from the boundary conditions imposed on the

temperature distribution that it can be expressed in the form

CD

T(r,z) = ) T(r) c o s — : a s r s b , osz<h .n=0

Also, we can see from the boundary conditions imposed on the

displacement distributions that they can be expressed in the

following forms:

00

, . V / « mrz , ,u(r,z) = > ^(r) cos-r— : a <. r < b, o < z =s h

n=0

: a^r^b, o < z < h .£J. " nn=l

With this type of basic solution for the temperature

and displacements, the normal and shear stresses can be expressed

in the form

= - I Pn<r> C O S 1 T :o r r = - 2 , P n ^ r ' c o s ~ h ~ : a ^ r < b , o s z < hn = 0

V / \ n7TZ ,a

z r = - 2i s n * r ) s i n r h ~ : a s r s b , o < z < h

in which the terms Pn(r) and sn(r) are functions of (r) and

wn(r) ana their derivatives.

Page 9: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 5 -

1. 5 System of Units

The program BAGPIPE requires input parameters to be

expressed in the International System of units. Distances

must be in metres, stresses in Newtons per square metre, tem-

peratures in degrees Celsius, thermal conductivity in Watts

per metre per degree Celsius, and heat production in Watts per

cubic metre.

For the purposes of computation the stress-free state

has been taken at 0°C.

1.6 Preparation of Input

The input parameters for a problem are supplied on a

deck of punched cards.

The first card of the deck is a problem name card and

is followed by a card containing constants and one containing

data used to control the computation. Finally there is a series

of cards giving the boundary conditions at different specified

axial positions. This series of boundary condition cards must

be in a specific order. The card containing the conditions on

z = h (h>o) must be first. The subsequent cards must be in

order of decreasing values of z. The last card must contain

the conditions on z = o. These boundary condition cards need

not be at equal intervals of z but must be at axial positions

which are close enough so that the boundary conditions are

smooth functions of z.

The data deck will now be described in detail.

Page 10: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 6 -

First Card. Format (8A10). Problem Name.

NAME The problem name card must be present but may be

blank. It is reproduced at the head of output.

Second Card. Format (8E10.3). Constants.

A Inner radius of tube (metres). Must be specified.

B Outer radius of tube (metres). Must be specified.

E Young's modulus of material under operating con-

ditions (Newtons per square metre). Must be

specified.

P Poisson's ratio of material under operating con-

ditions. Must be specified.

AL Coefficient of linear thermal expansion of material

under operating conditions (per degree Celsius).

Must be specified.

COND Thermal conductivity of the material under operating

conditions (Watts per metre per degree Celsius).

If not specified, COND is set equal to 1030.

HEAT Rate of generation of heat per unit volume (Watts

per cubic metre) . If not specified, HEAT is set

equal to 0.

DH Allowable increase in the height of the tube (metres)

If not specified, DH is set equal to 0.

Third Card. Format (4E10.3. 4110). Control Data

EPST Controls the accuracy of the two series for the

temperature on the inner and outer surfaces

Page 11: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 7 -

(degrees Celsius). Must be specified. When the

difference between a specified boundary condition

and the sum of its equivalent Fourier series is less

than EPST, no further terms in the series are cal-

culated. When all series have converged to the

required accuracy, computation ceases. A warning

message is printed when a series has not converged

satisfactorily. In this case the quantities printed

are compatible temperature and deformation distri-

butions, and comprise the solution to a slightly

different (usually smoother) problem from the one

posed.

EPSP Controls the accuracy of the two series for the

normal stress on the inner and outer surfaces

(Newtons per square metre). Must be specified.

EPSS Controls the accuracy of the two series for the

shear stress on the inner and outer surfaces (Newtons

per square metre). Must be specified.r

SECS Maximum allowed central processor time in seconds for

this problem. If the current problem has not already

been completed, computation stops after (SECS-5)

seconds to allow the results obtained so far to be

printed. If not specified, SECS is set equal to 20.

LP Controls options on output data, normal amount (0),

minimum (-1) or maximum (1). If not specified, LP

is set equal to 0.

Page 12: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 8 -

LSM Smoothing integer. The interval oizsh is divided

into (LSM-1) equal intervals for the purpose of

determining accurate Fourier integrals. Must be

greater than or equal to 4*KMAX and less than or

equal to 400. If not specified, LSM is set equal

to 4*KMAX. (See section 1.7).

NMAX Specifies the maximum number of terms in any one

series. May be used to stop computation after NMAX

terms. For computational reasons, NMAX must be less

than or equal to LSM. If not specified, NMAX is

set equal to 0.

KMAX Specifies the number of boundary cards following

this card. Must be greater than or equal to 4 and

less than or equal to 100. Must be specified.

Subsequent Cards. FormattElO.S.lOX.SElO.S). Boundary Conditions

Z Axial position of this data point (metres).

TA Temperature on r= a for this value of Z (degrees

Celsius).

TB Temperature on r =b for this value of Z (degrees

Celsius).

PA Normal pressure on r = a for this value of Z

(Newtons per square metre).

PB Normal pressure on r= b for this value of Z

(Newtons per square metre).

SA Shear pressure on r= a for this value of z

(Newtons per square metre) .

Page 13: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 9 -

SB Shear pressure on r=b for this value of z

(Newtons per square metre).

If required, two or more data decks can be run in the

same job, simply by stacking subsequent decks immediately

after the first deck. Computation stops when an end of file

(7-8-9) card is read or earlier if an error is detected while

reading data cards.

1.7 Control of Computation

In order to compute Fourier integrals such as

r Ta(z) cos(7z)dzo

the range o^z^h is divided into (LSM-1) equal sub-intervals.

A new array TAL is derived (at LSM equally spaced points) from

the original array TA (known at KMAX points, not necessarily

equally spaced) by cubic interpolation. This new array is

smoother than the original array since LSM is significantly-

larger than KMAX and is used to compute all the required Fourier

integrals associated with Ta(z).

The same procedure is used for the other" five boundary

conditions, Tb(z), pa(z), pb(z), sa(z) and s^z) .

1.8 Running the Program

In its present form, BAGPIPE requires 6000B words of

core storage on the CDC 6600 at Chalk River.

The amount of central processor time required for any

particular BAGPIPE calculation depends on the size and complexity

of the problem, the smoothness of the prescribed boundary

Page 14: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 10 -

conditions and the required accuracy of the solution. Since

the method of obtaining a solution involves expressing the

six boundary conditions in terms of Fourier series, the central

processor time depends directly on the number of terms in

these series. A typical problem, with all six boundary con-

ditions given at 25 axial positions requires roughly 15 seconds

of central processor time to supply a solution which is the

sum of 100 terms in each of the Fourier series.

The program BAGPIPE can be run on the CDC 6600 at Chalk

River using the control cards

ATTACH (A, BAGPIPE)

A.

The first program card is

PROGRAM BAGPIPE (INPUT,OUTPUT,TAPE1=INPUT,TAPE9)

where TAPE9 is used to store additional computational details

when LP=1.

1.9 Output

All input quantities are listed before computation

begins. The problem name is printed at the head of the output.'

The parameters on the second and third cards, or their corrected

values, are then named and listed with their physical dimensions,

To complete the reproduction of the input, the boundary condi-

tions are listed.

The parameter LP determines the amount of output pro-

duced. We will describe here the normal option, LP=0.

Page 15: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 11 -

As computation proceeds, term by term, the Fourier

coefficients, Tn(a), Tn(b), Pn(a), pn(b), sn(a) and sn(b)

given by equations (5), (13) and (14) are printed, for each

value of n, together with the derived displacement componentsun(a), un(b), wn(a) and wn(b). In general, all these quantities

should decrease as n increases.

When computation ceases, the temperature distribution,

displacement distributions, strain distributions and stress

distributions are printed. At the head of each distribution

a warning message is printed if required. The thickness of

the tube is divided into eight equal sections and each distri-

bution is displayed at nine radial positions and at all the

axial positions used to define the initial boundary conditions.

For the sake of clarity in displaying the results

any temperature less than EPST is set to zero,

any displacement less than E-15 is set to zero,

any strain less than E-09 is set to zero,

any normal stress less than EPSP is set to zero, and

any shear stress less than EPSS is set to zero.

2. Sample Problem - Sheath Deformation

A particular fuel assembly consists of a thin-walled

sheath containing a number of fuel pellets separated from one

another by thin discs of a highly conductive material. A large

proportion of the heat produced in a pellet travels through

the adjacent disc to the sheath. The outer surface of the

sheath is water cooled. The resulting high heat flux between

the disc and sheath causes that part of the sheath adjacent to

the disc to become considerably hotter than other parts of the

sheath.

Page 16: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 12 -

When considering the deformations which arise in the

sheath it is sufficient to look at that part of the sheath

which lies between the mid-plane of the pellet (z = o) and the

mid-plane of the disc (z = h).

The sheath has an inner radius of 8.00 mm, an outer

radius of 8.43 mm and, as far as this problem is concerned,

a height of 8.40 mm. (This corresponds to a pellet height of

16.00 mm and a disc height of 0.80 mm.) The sheath is made

of an elastic material with a Young's modulus of 90 GN/m3, a

Poisson's ratio of 0.40 and a coefficient of linear thermal

expansion of 6.5xl0~6 per degree Celsius. No heat is produced

in the sheath so that the thermal conductivity need not be

specified. The sheath is known to increase in length by 0.1%

so that DH = 8.4 x 10~6 m.

The temperature distributions on the inner and outer

surfaces of the sheath are known at 11 points along the length

of the sheath and are shown in figure 1. The inner and outer

surfaces of the sheath are subjected to constant pressures of

20 MN/m2 and 10 MN/m3 respectively. No shear stresses exist

on the surfaces of the sheath.

The computation is controlled by specifying EPST, EPSP

and EPSS. The surface temperatures are known .to within 1°C

so a reasonable value for EPST is 0.5°C. Since the surface

pressures are constant, the values assigned to EPSP and EPSS

are not important, we set them equal to unity.

The temperature distributions on the surfaces of the

tubes are not as smooth as we would have liked. Therefore we

choose a relatively high value for LSM and choose NMAX=LSM=100.

Different combinations of LSM and NMAX can be tried to determine

how sensitive the solution is to these quantities.

Page 17: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

250 450

OJ

i

FIGURE 1 TEMPERATURE DISTRIBUTIONS APPLIED TO THE INNER AND OUTER SURFACES OF THE SHEATH

Page 18: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 14 _

The input card deck is reproduced in figure 2 and the

output obtained is shown in figure 3. The results were calcu-

lated to the required accuracy in less than 4 seconds and

required 14 terms in the Fourier series for Tb(z) and 48 terms

in the Fourier series for T (z).cl

Some results are plotted in Figures 4, 5 and 6.

The displacements of the inner and outer surfaces of

the sheath are shown, in a greatly magnified form, in figure 4.

The effect of the higher temperature in the region adjacent

to the disc (z = 8.0 to z= 8.4 mm) can be seen clearly. The

height of the ridge formed by such a deformation is

36.99 - 36.15 = 0.84 \m

which is negligible compared with the radius of the outer

surface of the sheath. The axial displacement is almost exactly

proportional to axial position, the total increase in height

having been imposed on the problem.

The tangential and axial strains on the inner and outer

surfaces of the sheath are shown in figure 5. The average

axial strain of 0.1% was imposed on the problem.

The tangential and axial stresses on the inner and

outer surfaces of the sheath are shown in figure 6. The axial

stress is in compression except on the outer surface adjacent

to the disc where it is in slight tension. An average axial

compressive stress of approximately 43 MN/m2 is required to

limit axial elongation to 0.1%. The effect of decreasing the

axial strain would be to increase the required compressive

axial stress by a constant value.

Page 19: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

COL 5 0 5 0 5 0

fl.00000-3 fl.4300 0-35?*0'0000-1 1.00000*0

»;*2i0O0O-3^8400000-37.00000-36.00000-35.00000-34.00000-33.00000-32.00000-31.00000-30.00000-3

COL 5 0

SAMPLE9.OOOA*1Q1.00000*04.35660*24.30720*24.11100*23.60270*23.53750*23.55340*23.57900*23.60170*23.61780*23.62720*23.63030*2

PROBLEM FOR BAGPIPE RFPORT)-} 6.50000-6

3.29120*23»?781p*23.94350*23.07690*23.04970*23.05390*23.06220*23*06980*23.07520*23.07840*23.07940*2

2.00000*72.00000*72.00000*72.00000*72.00000*72.00000*72.00000*7?.00000*72.00000*72.00000*72.00000*7

. 1001.00000*71.00000*71.00000*7i.ogooo*7

j .oppoo*7i..o6p6o*7

1.00000*71.00000*71.00000*7

5 0

loo 11

I

5 0 5 0

FIGURE 2 INPUT DATA DECK FOR BAGPIPE

Page 20: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 16 -

— UIin a

XU4OX •

a

X

CV)z

as *vr* oocococcooo

aoaUiK

HHUH

*HnnnNII

IIII

- IIHMU

•HIt

•a Xx o•a ox —

iv•

U i c

Z X OevC 3

ot

— UI<J C

o<S CU!C

JOIT

— o-ooooooooo©

c occoooocoo• • • • « • • * • • •Ui UJUIUIUIiliUIUUfaiUIO OCOOOOOOOCS

~ C300COOOOOOOtU iCO'O OiOOO O<C C«CX >c o-o ooc.c oo o-o

IT >. o o c o c c c o o o oaz . . . . . . . . . . .

nma.©u. •

HE I)b. H_J nO IIO Ba M& B

UI B

UIoc

oo

M U !O O'Z oV. OC

o ocUI U ) Oin in •

— oooooooooooIXI OGCCCOCOCOOS occcoocoecc

•a'S cccocoooooo~- ni CM ni IM ni evi ni ru <u m ni

IM (M(MOJ(UCVJ(\jnjrVJRJ(VI• oooooocoooo

* • • * • • • • • • • • «iii |^j |^j |^j hi UJ UI UI Ul hi hi

— ooooooooooou (\; — IT <r r-c> «v co <u •• •*

a. Bx ••a - •ir n

M

•B

M

- a• B

m• B -

d

nB

B

•fa.c

». o(VIC

UfZ •

UIVMSbioa o

•u.

•c— o

m NO

a.Ui Z

eo*

Uio

ante(A £ Oa \oluz •

UI nicucxioooooooo*^ n ct o rt ftCTPIWPI pin

(\l-Ai fUIVI tUft; <V «V(V fWM• C3 o o O'oo o o o o-o* • « • » - » • • • • • •h. h. U. fa. h. h. U. U. h. U. U.•C-C'C-C'CC'CC-CT-CO

t— UItfl OU I Oa c.|_. cW e

<s ••— tt

Ih i

7i "t»otf) Ooft- %ii CU-' C •

— I T

rt PJ m P) n ff»n f» r) moooo.oooooo

n<^ : uf UJ b i Ui hi hi Ut hi h i h iin -o oo'ooo o o e.»ui oooooooo o. otc -o-o o o o o oo>o oI— c O-CCO'OCO'OOUu ^ K C C C C O C O O

W

H

a

s

H CM

Emo

w

(U

*a

H 0)05 ^

faO -P

CEH O

ftEH

8wE

Hfa

• — «r

J£ ^ >

Page 21: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 17 -

- . i i i i i i i i i n i i i i i m i i i i i i i i i l i m n 1 1 1 i I I T T 7 7 7 7 7CO UIUIUIU)UUUIUUIUUIUUlUUUWUUIUIblUIUIUIUUUI>IUIUUUIUIUIUIUIhlUWblUIUlluUUbIl!llLU *in-4*f-ji--»njcuu>r-m«jr-O' omii»<iiin4an»<4-»4e^«"«4as" r:;.Ko o

B>»- 0«>IOVMI441l4Mtl4M.cnni04S4NOI««n«noN x(U<> -WK-4n«NCm 5zu; ^ R i ~ l ; * •«•«« —«»o«o«»jt-•mo'i"-»««•»» •• oo>^nnsr-r>nglc7™«^*Se^<c £

7"" i 7 i i t t " " 7 i " 7 " i > 7 T I * I 7 • n ™ B I 7 ' " 7 " " ? * "f " 7 CVI7"" "f

f / ) j a | | * | 1 ^ fat t * l fal | ^ | j ^ | ^ 1 ^ ^ 1 ^ y | ^ 1 ^ 1 | ^ ^ 1 | j | E , t g ^ j f ^ j | j | g m f t , | * . « • . • £ • ! 1 ^ 1 l - t A * l a . l l ^ i ^ a a ^ H B - a • _ > • _ • « _ • - . • » _ - T _ « ^ _ . - ^ * . ^ _ ^ . * ^

IT

:ui

-" o »^ in •_ _i i I i •

— i

in

a

or •• I

— i i i i i i i i i i i i i i i i i i i 171 i i i i i i i i i i i i 1717*71 TT7T7T777

ac o" ru » -mr~ CB in a> ni in M'<S - * o'm^ m e c i e « i - « N 4 » oo> if)-* <NJO • * «i» a4»tuNi>o4>oinri.

a z

* OOGGCeGOOOGOOGOOOGOGOGOOOOOOOOOOGOGOOGQDOOOOOOOOO

CM

T

: O C O O C 3 0 G G O O O O C O C O G 1

• o c* Iui UJ

IVir IZV

O O* to ""'

r\j o •#< z on

^ (\i-»^o^'^ooooooooo^oGo O'O oooooo-oo^^ooeooooo-oxI

• G G<O O>0'0*0 O O G O OtO OO

** w ui UJ ui ui ui ui u ui uiuuitii wui

ZUI GO^VffC'

> !*)!*)•# PVNWH 9tfSI*lt« <lt^KQ9 0 0 0 0 0 0 D - 0 0 0 0 0 0 ' ^ l

C OCGOOOOOOOOOOOOOoeOGO'COOOeOO^t.oswwwwwww.w-—— — — — — — -- « • « « • • * • « • • • « • » « » • ? t I-.1 I . I I t. I t _•_•.».».»..•_• .•.».•<;•.•..•.!.•...•..?, .!,. .•,, ' •

" * " " 1 (•! ! • ! • • ! i*f b l l . i l i l l i l «•>•.• I.I 1.1.( ' - - -

Page 22: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 18 -

m ni (M ni ni IU m ni (u cu iu tv—o ooeoooooooo

MM I • • • • • • • • • • •3WU UWWb! WUI UlUhlUt U

• •IU4 MUlKC OOOOC O O.-(EX • • • •

co

tfiu) •C

• - • O C X • . . « « •

— a) nnnnonnnnnn

rt cu cu cu AI cu ni AI m m At cu—o eeooooooooo

M«n i * * * * * * * * * * *3UU UUUUUUUUUUU

S«I ra>nr<seainiii

«" n> cvi ni ni K <u (V m (\i ni IM~*o o o o o o o o c o e c

iu) • * * * • * « * « * « •UUUUUUUUUUU

o*- IU n o n r « N c o• 4 c w n in m « ni >* ~«~* ni ni ru ni

« i« nn«nn nnnnn

mm •

o » « « N « h M a * « a• <uni « « mniniiunininioini—as • • • • • • • • • • • •

c n < f ^* r* ff" me *tr r\

aum ni m ni ni IU ni ni ni ni ni cu

—o oooooooooooMM I • • • • « • * * « • •3UIU UUUUUUUUWIlililoi-» m ir P-<» » c - . i"i .# •# w>

• «lvni rK«ni«<rnmmi» i fo— s n nnnm n rtrtntnm

t" ni ni IU ni ni ni oi m ni cu ni

MM • • * * • • * • * « • •3 U U U U U U U U U U U U Un: H4DnNffHaeo>-< i— op «i—ir « a i»i—«—-it< ui»« (MiK4flnm<i44^>ax • . . . . . .

- c o n mmmmn

n nini'Af nin n; ruiucunicu.»-o •co'O-e o-e-oo-e>c c

M<n • • • » * • • • • * • *2UU UUUUUUUUUUU••-a^- c>iririr <u «>r-« mr-.cD(-C «T—OHT- — (V •« * i » - l T O-•« U»— c=c<c <» « « • « * * •«

»ir x • • • • • • • • • • • •-co • •• nninin n n n n n

<S « n>iviw niitoN nrnrNMfiu —o oocoocoooooQ MM t • • • * * • • » « * •

3UIU Ul Ui blbl U 141 UIUUIU1U

1

I

IUO tu._• o m « •* mmintn«i

<*> ni nininin»(u tuMiUfu-MMO» t '?'???«'?????'?^f 111 ttl IAJ U U Ski W til lAl |tf U lAJ ILI

• N ^ c c 4 c n j A 4 ) " * • •""•

i «uo m m —

— 00 «««nnnnnnnn

nmmmmmmmnA •— OOOOOOOOOO '

Xfel UWUUUWUUUUoir - o e e>o o<o o-o 0.0 "" K •'•' ;o.o'ot«s^oio-oo or©-U K . -'.*-fr.e>e::ere-jD c. ofc•:,,';

— * « ID ccr-« tf « n cu — c

Page 23: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

BAGPIPE RAOTAL DISPLACEMENT PTELOt H(ltK)i IN MFTHES. CPT" 3,770

K

1110• ! 9

S:76ft4I2I

HEIGHT(METRES)

' • ; ; • • ' : / i

«.400E-038.200E-03B.nQOt-03T.000E-03A,ngoE«o3 :a.00BE»034.000E-033.000E-03 ;?ipp0E-031.000E-.03 :n. :

i* 1RADIUS

(METRES)l.OOiE-03

J.622E-03J.623E-6SJ.626E-0*1.619E-9S1.9H7E-55J.963E-05J.553E-05I.5ME-0*J.96SE-05J.970E-05J.971E-0S

I» 2RADIUS

(METRES)8.094E-03

3.635E-053.636E-053.638E-09.3.6a8E-O«S3.54SE-053.572E-053,SA4E-0«l3tS6TE«053.5T4E-Q53.579E-053.5BJC-05

! • 1RADTUS

(MgTRES)8.10TE-03

3.647E-n53.648E-6S3.649E-0?3,<.imE-o?3,604E-()53.S8hE-053.S73E-QS3.?T(SE-053,«l<)?E-553.<5RAE>n93.S89E-05

I« 4RADIUS

(METRES)8.U1E-03

3.6<i8E-n53.6S8E-053.6^9E-053.64SE-0S3.611E-053.58BE-033.58JE-053,58*E-n53.591E-0S3.596E-053.S98E-05

T SPMJlUS

(METRES)8.21SE-03

3.66BE-053.668F-0S3.668F.-053.6S2E-093.619E-053.W5E-053.988E-053.992E-0S3.599E»0$3.A04E-053.«06E«05

I« 6RAOIUS

(METRES)R.269E-11

1.6T7E-0S3.6T7F-0S1.6T7e-(1«i3.660E»nS1.6j6E-r.S3.603r-nS1.S96F-1S1.599E-0S3.6p6E-0S1.611E»fl53.6i3P-0S

I" 7RAOIUS

IMET9ESI8.322E-03

3.685E-0S3.68SE-053.6A5E-053.666E-053.633E-053.6()9E-053.60.1E-0S3.606E-OS3.6]3E-0S3.618E-053.620E-05

I * RRADIUS

(METRES)8.376E-0-J f

3.693E-0S3.69ZE-053.692E-0S :3.673E-05 :3.639E-05 :3.616E-0S3.609E-0S 23.6l3E-n« i3.619E.05 :3.625E-05 33,6?6E-n5 3

! • 9RADIUS

«METRES)1.430E-03

1.699E-0SJ.699E-05I.«98E«O«I.678E-05).645E»05J.622E-05I.61SE-Q5I.619E-05I.625E-051.631E-05.632E«0%

I

BAGPIPE AXIAL DISPLACEMENT FIFLn. M(liK). IN METHES.

K

VI109-ar.

43-'21

HKIOKT(MrTHESI

H.400E-03fl,?()0E-03fl.0Q0E«037,nO0E»03ft»O??E-.O35.000E-034.0Q0C-033.000E-03^•OQQC-03».(IO0C-03Oi

I- IRADIUS

(METHESI9.000E-03

8,4001-068.UTE-P67,855e-fl66.8416-065.918E-064.944E-063.952E-IJ62.960E-061,972E-O69.898E-070 .

I - 2RADIUS

(METRES)8.0S4E-03

B.400E-068.122E-06T,a6ie-066.62TE-065.9nlE-064.936E-063.951C-062.9A3E-061.97SE-069.877E-0T0 .

!• 1RAOTUS

(METRES)B.lifE-03

6.BUE-065 < m E A

02.9A6E-061 9 7 9 E 0 60 .

!• 4RADIUSI METRES)S.U1E-03

8.400E»068.12BE-06

l5.8(S8E-0649;6E063.950E-06Z.9A9E-061.992E-069.91SE-0T0.

t - SRADIUS

(METRES)ZHe0

8.4D0G-068.I30E>06T.B71E-066.T8TE-06S 2 04.9UE-063.949E-062.971F-061.985C-069.934E-0T0.

! • *RADIUS

(METRES)2

1« 7RADIUS

(METRES)8.322E-03

8.400E-06S.132E-06T.8T2E-06

A.8?0E-064.899E-063.948E-062.977E-06

i'.nX-'ni 9.972E-07n. Oi

I" 8RAOIUS

(METRES)B.376E-03

8.400E-048.J32E-0A7.8T1E-06fr.744E-0AS.803E.064.887E-063.947E-062.980E-DA1.995E-069.991E-070.

I" VRADIUS

(METRES)8.430E-03

8.4Q0E-068.131E*O67.868E-066.7276-065.T87E-064.8T9E-063.947E«062.984E-061.998E-061.001E-060.

Page 24: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 20 -

Z>uiul hlhlh-'hiuhlhlhlhliuw— actf ru K N o m in CD m to o> c

3UIUI hlhlUhlhlhlhlhlulhlhl

tSluu uiuihihiwhihihiw'-••-« ( r o -«co3>«m ^o>>«m

S

• »

MCUlir

ao

a:_iUl

u.z

in n i r n t i»o ooooooooooo

uitfi I i i i i l l i l l l iuuiblhlhlUUIUIUlUlu.'oi « r-PI * ^ - » Pi"i"-o>a co co<t> iua> co o> o o otn PI PI P! PI M Bl Rl PI PI I"

p»_ ^3 ***» 3 3 i ** " 3 5 3 ^^ £i

|/>|/) | I l l l l l l l l l l3 1l)U Ul U> Ul Ul Ul Ul Ul hi Ul UJ Ul

H M O C « co a> m • • •>• »• PI ~ K- »o i - r - eeo»«-o-nini(«

II4UIPI ••#-#p»mrtP>P>P>P>r*l»II • . . . . . . . . . . .

<-*e& ++•+•*•+•+ + + +•+*

PI PIPIP>P>PIPJP)PIP*PII*>—o oooooooooao

M M ( ( • • • • • • 1 1 1 !3U1UI hi Ul Ul Ul Ul Ul Ul Ul Ul UJ Ul

i>-iiiriu aoKnnnNrnxNaoi—cy I\I i t i ' iuad Ptw P I * «m

• <UIPI •#<«'-«<*piPiP)PiPtcnfnMIT• . . . . . . . . . . .

— » •***«-••••«<•••#

^ ^ ^ ^ t^^ ^ k^^ C^ 1^^ ^ i ^1 ^^i ^ ^^**-c- c - c r c - c o c c - c c - c c

w>i/> • I I I I I I I I I I IZ3UIUI hj Ul Ul Ul Ul UJ Ui Ul Ul Ul U)

««ao> r- r- r- * in r- o> PI *«I»- efO)-« •* * * men in «m« « «

• «uini + • • • • • P> PI P>P>P> PIP)•- a I • « • • • • • • • • • •.— CC 4 -# ' * • * - •« -dM4 4 - ^ - « •#

P) PI PI PI PI PI PI PI PI PI P) PI— o ooooooooooo

MMi l e i i i i i i i i t3hlU Ul Ul Ul Ul hi Ul Ul UJ Ul Ul Ul

niMcai m in in« m co ni o•> a>OkH iC^4>-4-OI>>iO^CCQCcO

• 4 U N * • • • • « PI P> PI P> P) PI— a s . • » • • • • • • • • •

— CO « « « « « « ' * « « ' « «

p> p; PI P I P I P I P I p> PI PI m PI^a 000<00000 0'OC3

tfl«1 I I l l l l l l l l l l2hlhl hi hi hi hi hi hi UJ Ul hi Ul Ul

-* i a-*^ ninn«in<fia AtotoeD i - * <r co cc <c <v o* a> v c i o o

• < Ul^^ - • - * •*••*«* P> PI PS • • ' • • *•-•OCX • . • • • • • • • • • • •

— oo *•»•«.«-*•».*•*•*•«.#

pi nnnoir PIPVPIP*PIPI,^~O 'C'COO<C«0 OOOio- C

MOT I I I I I I I I I I I JOUIUI Ul Ul Ul Ul Ul Ul Ul Ul hi UJ hi

f'—'a'r~ cc o-air ir-ir.K-i^ o-irr-c-»—c ef c cor o^-ci—•—»». K

• < u i " ««»:«••«'«'•«'««•-iirz . . . . . . . . . . . .

p» pi pi p> PI m PI p» P» PI-pi pi^ - ^ OO^OOOOOO-OCt

M M I • • • • • • • t i l l3UIUI hi Ul Ul Ul hi Ul Ul Ul hi Ul Ulo i - m •-I.—.- o «c PI ni RI PI-•• -^

• <uo mnmfltf ' . - -•-•(rx*

— BO • • -

PI p> p>p)p>n PI PI FtPi-pipi**«O .0<0<00;OC'0<OOIOO

MM I I I I I I I I I I I IOhlhl hi Ul Ul Ul Ul Ul Ul Ul Ul Ul hiHCO i a>ninm««<o«ni«a t o MnnNaip«ii«uiocrx •— cc

I--MxuC9 0C

p> IP! p> PI PI PI PI PI Pt PIooooooooo oI !•» • t'ft-f I t I

UlhlhlUhlUIUIhJUIblo oo.oo oo.oooC-OO-OOiOOtO'O-O+ iwe<eoooehi

a

I- j - . . - • • • • • : •

hicrz

hia.

I

• MI UJ ,-<3CE- UlUIUhlhlhlUUlhlUI

O O O-O^O-O O'O

«,ni e o o o c ohi hiII

—.-.- es oc c c r - « m-» MIUI—i

-O f f f f l h - « j(i • * PI n, •-<

Page 25: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 21 -

<n(_U!

— owin •I? UIUI

t> »E o

• < UJ-*

«" <c «^ o cc=

v:.v..o • • tf »^ni .-^^-^i«* m o

• t i l t

h.o ooooooooo

3uu ui w hi ui hi ui w u ui«->afu «ir>»««o»n»ot-.eu K4-S4<uin ir^Ko

• i • I f

<" * ir if « « « « *r-

mini I I I I I I I I I=>hlh/ UlhJklUUUIUIUUI"-<!» *O> CCdflltfD

r n nin* •ft€A4FMC

I I I I I

m m tfi« « « « «<r-o o o ^ o o o o o o

mm• • • • i t i t i iOhlUI Ul

mi-iirin n> « h ! ( u c i r p>r-i

* » - a x • * •— m a — ni4)nj * n «

• t i l l

m ma w<p« «*«r-— o -o o cs o o oo o-o

tnin • i i i i i i t i i3UIUI hi ul hi Ul hi W hi hi hi

•#•-•0:'-* ff K«||iONKr*M•»- ry+.f-ea'iun

I • • • •

.^o •c-c»^oooo^owin i I I I I I I I I I=>U1UI U l h l b l h l U UUIU1UI

r>*- tr-.h c c t t r # i r l i r *F

• « ui"HI

— aj oa^^n^nivino• • • • I

n •*> «<«t«« o oo-eo

mmi i i i i i t t i l3UU Ul Ul Ul kl hi Ul kl Ul U

oof<ionee• • • •iv»an• • I t

Qjui

u.z

c-iu

into t3UU

II «uo

> o o o-o o

I uioar

ua.a<9

nnnnnnnnnnooooooooo-oI I l i t : • • • • !hi ulu uuiuiui iliumo oo*oo o o o O'G

* ni a<o c c o e c o•

UlXin

hi

I

flnnnnnnnnn— oooooooooo

t-V> I l l l l l l l l fX hi kl hi kl hi kl hi fcl kl hi hiis & o-o oioo--a o o o»o

Ui u -4Noec-eeeeicX_I •« • •«,;•.:. ' .•• • • • •

Page 26: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 22 -

•z

I/I€_•ui<r

<oo>

ao

ni

xz

z

a.ccv

or

in

aXL

P « »-- • - - r ^ ^ - * - * - »*- §•- •*-•**• *»•

M o oooooooooooK)l2u Ul U hi hi hi Ul Ul hi kl kl hi

AMOCO O O O O O O O O O O Ooi-n ooooooooooo

M « Ul * OOOOOGOOOO'J

— CO

~. o ooooceooooo

3UIUI Ul Ul hi hi Ui Ul Ul hi Ul Ul Ul

p »-f PI PI p» PI PI PI PI PI PI PI PI• ' •

-~ O O O O O O O o G O O *Owin • * * * « * * * « * • *3UIUI hi Ul hi Ul Ul hi Ul Ul Ul Ul Ul

• « u m ni ni ni ni iu ni ni ni ni ni ni*>orx • . _ - _

m m i * * * * * * » « « * *3U.-U uhlUlhlhlhlhlhlUIUIUI

mini • • * * * * * * * • • * *

3UW Ui hi W hi U hi ui hi Ul hi hi

« m m 5) •» E m S— a •j""j"7'T'77TTT'TT

. ^ ^ ^ OO'C-^ C3 O OO O<C Ojoin f • • • * * * * * • * *nuiui hi Ul hi hi hi U hi hi hi hi hi

p> ..^^O •OfCOTO*OtC'0>OiC*G O

in in i • • • • » • « * • * •^li«UI hi hi* hi hi hi hi hi hi hi Ul Ul

itCX*"*— CO

P! . . . . .A O C90 0-C300^^000

mint » • • • • » « * • « •DUU uiuihlblhlhlhlhlbluihl• ^ i ^ | ^ 1O1 ^D ^ ^ ^D ^^'^bb- ^0 £Q {0 p ^Q

I^UIO o> o* co <o co eo eo eo <o 00 o

pi

m i n i * * • • • * * • * * •* * .3 U u u i h i h i u i h i i u i u u w h i u iOhO OOOOOOOOOOO•4UO OOOOOOOOOOO»-tr i • • • • • • • . . • • «

— CD iucuiuftininiiycv<ynifu

»-« t: » i : | j : i T-T-5 TXhl hi hi hi ill hi hi hi hi W hiOft 0 0 0-0000000•"»- eooooeoO'Couu •mcoo-oooooXX :- .trim-m:m,':*:-m v 1 * : * . : * a

~ ••••..••• c o « o > - • m « p i { u — o

in

u

in

ni

s

_o oeooeoooooomin I • • • • • • • • • * «3 U U uiUUIUIUJUUIUuiUkJ

r Mia eo ni o mm iue» axnr-oi-<*i o r* ru PI to in in tfi 4> r r-

• •TUI-* o o o o» » i>» » » »wax • • • • • • • • • • • •

—• GD AJ ( \ l IM W * ^ - * " ^ * ^ ** -* -*

*MO OO^COOCOOCO<nin • * * * * * * * * * * *3 Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul ul Ul

a) #Mflc • • o ^ ^ - o ^P*O* * *y no i - r - o — <\ja> • • n

v 4iiin ^^ooo^- i l •

—• m

no oooooooooooMin I » « • * • • • « • • *3UIUI Ul Ul 111 111 Ul Ul Ul Ul 111 Ul Ul

• - • - • ( r a j h-siudOKKff * a oat-tit o> om-cuo" «min «<or-

• <UIP> haovafifflBoaia

p-

inin • » * * • • • * • * » •Z3UIUI Ul Ul Ul Ul Ul Ul Ul UJ Ul Ul kl

ie*-«a:o> at »~^oini*t^co *in

.— CC I.—'^-l-—l-—i*—!•—!•—*—i^^^-i«—

PI CO (0 <S*0O IS Q} CD 18 CO CD CD-«o o o o o o o o o o o o

win • • • • * * • • • • • »^ t t t l l l ul Ul Ul Ul Ul Ul Ul kl Ul UJ Ul

m>->ccin nn»iDMO'ni«>-s>eoi-- r-o> <" ^ - « r - « or enm «

• «u>n> m in «ce co »-»-»-r-r-r-• - 0 : 1 • . . . . . . . . . . .

^> 9 »4ta>* «•«»« ^ * v^ v^ V* ^*^«^4

PI CO CC CO CO CO CO 00 CC CO CC CO—O COOOOOOOOGG

inin • « • « « • « • « * • •

DUl iJ Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul

at-*

P) flCCCOCCDCCCCCCCCCOCOCO. — O O'C-OO O-O-OCOOC

m-in t « « • * • * * * * • «3UU hi kl Ul Ul Ul Ul Ul Ul 111 Ul Ul

-p*ifr~a-*' <••* o>»*ift.'C-*i»» cc ec GCD t - e p> < p>-c «. o- TT » *

'•«uc-^ PI pi * ^ K «oZ

m cc cc cc co ea cc ec a) cc cc to— o ooooocooe»eo

<nin I « • • • • • • - » « * •3UU ul UlUIUIUIktUlhlUIUIW

* e > r o h « i n n > i t t '

<nin I •3 U U ul Ul

D IPinnittMr~o- oo-o-«ininnO

oUl

u.ininUlaVt

UJcz1—

t

Ul

in'ui i^3h»JJ

Ot- o• <hlO

* < 0 C —CO

t * tf)Xbl(9 DC

COCOCOCOOBCOCDCCCOCOCC

• . * . * • • • • • • • •lll'UI U'UI Ul Ul U I U UDUI VI

o ** fti m *o m on in m in en

o ooooooo o-oUl uiUIUUIUIklUUU0 1 0 : 0 0 . 0 G OO OO

• AT'0:0;OTO O>C OG

H O » a *-« m * pi-Atr*

Page 27: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 23 -

in• t ;

r2

o_iui

tr

m

V

m

CPT

nizzz.

i d

a•n

obi

ininucc

in

SHE

i

bla

—. Gin in •Z> blbl

»xirci• « UJ-*

3 Ubl

— CO

_s3 blbl

• < bin

in in 1

• < bin. - e c

m

• « brixi

m in •Z> blblOh *

H < bl< *

— ec

73 blkt

• 4 bl*"

« G

-D blbl

• < UO

.<* Gmm i3 bitu

- • • ( t o• « UIG»-a x •

I bloaUblX X

IT >r> ir m -* ir « « «

Ulblblblblblblblbl«hO9ltl<U -«^>*

miniomminin^<#

blblblblblblblblbl4iu«n>4i^ nio-m-".cj — wnj * * S n

• l i t !

iP**iririnif«--«

blblblblb.blb9b1blftl <t 1*1 la-VB^ 4 9 9

1 1 1 1 I

m«*mmm«.m*

lu bjuwuJiiJ uiuru

££££«£~~S• i i i i

biUUbluuklUU• • « : • • O'-K pi <c oiM

*" T l M l

u 1&I IAJ bi u IAJ W U W

M ifi^" tu (UIH >c Q n"

"* Tl ! I I

IT U>IT tfl •» IT • » • • • • •oooeoooooblblblblblbl blklbl« M n n o a m « M-«CD» iSni« —»

o '"TTT I 'T°

OOOOOOOQGGO

Fl PI 1*1 1*1 1*1 Hi 1*1 f l W ftOOOOOOOOOO

Ul blblblblblbl blblble-oooocoooo

cc cr v <c? m -c t**itT"* c

a.e ae

Page 28: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

•6.0 -

FIGURE 4 RADIAL AND AXIAL DISPLACEMENTS ON THE INNER AND OUTER SURFACES OF THE SHEATH

Page 29: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

0.0

I

FIGURE 5 TANGENTIAL AND AXIAL STRAINS ON THE INNER AND OUTER SURFACES OF THE SHEATH

Page 30: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

8.0

7.0

6.0

5.0

4.6

3.0

2.0

1.0

1.0

\ ) V \\

'" "' \\

1

-A 1

i

°88 ( b ' Z )

/1

i i 1200-100 0 100

COMPRESSION TENSION MN/m2

FIGURE 6 TANGENTIAL AND AXIAL STRESSES ON THE INNER AND OUTER SURFACES OF THE SHEATH

300

I

ISJ

Page 31: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 27 -

In the light of these results it is felt that the

sheath does not experience unrealistic non-uniform deformations;

manufacturing tolerances on the geometrical shape of the

"cylindrical" sheath could produce non-uniform deformations

of similar magnitude.

3. Method of Solution

3.1 General

The solution of the basic uncoupled equations of

thermo-elasticity is found in two stages. First, the tempera-

ture distribution in the tube is determined using the two-

dimensional axisymmetric form of the linear heat conduction

equation. Then the thermo-elastic deformations are determined

from the two-dimensional axisymmetric form of the linear

thermo-elastic equations.

3.2 Derivation of the Temperature Distribution

The linear two-dimensional axisymmetric heat conduction

equation in cylindrical coordinates (r,z) is

where k is the thermal conductivity of the material, H is the

rate of production of heat per unit volume and T(r,z) is the

change in temperature from the stress-free state.

Since the top (z = h) and bottom (z = o) surfaces of the

tube are thermally insulated, the general solution must be of

t h e f o r m ' - ; ° - ! ••-••• ; '••• . ' : : - •••••"•.••- ~ •-'

Page 32: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

28 -

T(r,z) = (2)n=0

wheremr

The temperature distribution on the inner ( r = a ) and

outer (r = b) surfaces of the tube are given and must be

expressible in the form

T(a,z) = Ta(z) = 2, Tn{ a) cos(7n

z)n=0

o <; z < h

T(b,z) = Tb(z) = £ Tn( b ) cos(Tn

z) '• oszshn=0

(3)

where Ta(z) and Tb(z) are the given conditions. It is therefore'

sufficient to determine the T (r) in ec

equation (2) into equation (1) we find

sufficient to determine the T (r) in equation (2). Substituting

Hk

n= 0

o ; n > 0

where a dash denotes differentiation with respect to the

argument.

These equations have solutions

Tn(r) =

f n= 0

n > 0

(4)

where iQ and Ko are modified Bessel functions of the first and

second kind of order zero, and A , B' . A and B are constantso o n n

Page 33: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 29 -

which must be determined from the boundary conditions.

Using Fourier's inversion formula, the coefficients

Tn(a) and Tfl(b) in equation (3) can be written explicitly in

terms of the boundary conditions Ta(z) and Tb(z) in the following

form.

.h

Tn(a) = -jf J Ta(z) cos(Ynz)dzo

Tn(b) = "jf- J Tb(z) cos(Tnz)dzn = 0,1,2,... (5)

where e = 1 and e =2 when n > 0.

When the constants Tn(a) and Tfl(b) have been determined

from equations (5), the constants AQ, BQ, AR and Bn are obtained

from equations (4) in the form

A =o

Bo =

1 H =

To(a) - T 1 H b 3- a*4 k , b

•In —a

(6)

An "

Tn(a)

T n ( a )

- Tn(b)

- V b )

C (v b) K (Y a)o1 rn ' o w n

: n > 0

n> 0

(7)

The solution of the heat conduction problem is now

complete. Equations (4) give the functions Tn(r) in terms of

the A and Bn and equation (2) provides the final series giving

the temperature distribution in the tube.

Page 34: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 30 -

3.3 Derivation of the Elastic Deformations

The radial displacement, u(r,z), and the axial displace

ment, w(r,z), of a point with cylindrical coordinates, (r,z),

are governed by the equilibrium equations in the radial and

axial directions. These simultaneous equations can be written

in the form

drdz

r dr

a <. r(8)

where

c =1- 2v

P = (3-4c)ct

in which v is Poisson's ratio and a is the coefficient of

linear thermal expansion.

The principal strains, e r r , e e Q and e z z and the only

non-zero shear strain, e z r , are given by

6 r r dr

ue98 ~ r

_S z z "

'zr

(9)

Page 35: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 31 -

The principal stresses, o r r, o Q Q and o 2 Z and the only

non-zero shear stress, azr, are given by

arr = X(err + e e e + e z z ) + 2\ierr - (3X+2n.)aT

^99 = M e r r + e e e + ezz) + 2M-eee - (3X+2(x)aT

zz = M£rr - (3\+2p.)aT

'fzr =

(10)

in which X and \i are the Lame constants given by

v E E, _ (1+v)(l-2v) 2(l+v)

in which E is Young's modulus.

Since the symmetry conditions on the end faces of the

tube are

•r = 0 on a^rsb, z=0

du _-r— = 0dz on a s r

w = 0 on

w = Qh. on

z= h

z = 0

z=h

where Q is a constant, the elastic deformations must be

expressible in the form

u(r,

w(r,

z) =

z) = Cz +

In=0

0 9

y£ wn(

r) sin(Ynz)n=l

(11)

We see that this type of solution is compatible with equations

(2) and (8) .

Page 36: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 32 -

The normal and shear pressures are given on the inner

and outer surfaces of the tube. In the light of equations (9),

(10) and (11) these stresses must be expressible in the form

arr(a,z) = - p_(z) = -'rr n=0

arr(b,z) = - Pj-,(z) = -

o7T.(a,z) = - s(z) = -

n=0

'zrn=l

azr(b,z) = -

cos(Ynz)

s i n(7 nz)

o £ z <; h

o <; z <; h(12)

n(b). sin(7nz) :

where the p ( z ) , p^tz), s a(z) an<3 sb(z) a r e the given conditions,

The negative sign appears because a positive stress implies

tension, a negative stress implies compression.

Using Fourier's inversion formula, the coefficients

(a) a n d sn ^ c a n b e w r i t t e n explicitly inPn(a), pn(b) , sn(i

terms of the boundary conditions p_(z),

in the following form.

>h

, s (z) and

Pn(a) = —

en Pn^b^ = ~h~ J o

cos(«y z)dz

n= 0,1,2, (13)

en Phsn(a) = T~ s (z) sin(7^z)d11 xi j a n

• o - -•

s (b) = -r— s, (z) sinlyn h JQ °bv ^n

where eQ= 1 and en = 2 when n > 0.

n= 1,2,3, (14)

Page 37: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 33 -

There remains the problem of finding the functions

un(r) and w n(r). Substituting equations (11) into equations

(8) we find the following simultaneous equations governing

un(r) and w n(r).

Un' + r Un" r2 Un ' C< Un + (1"c) V n =

(15)

where a dash denotes differentiation with respect to the

argument.

When n =0, only the first of the pair of equations (15)

applies, the second equation being identically zero. Using the

first of the expressions (4) for T (r) we can write the solution,

u Q(r), of the first of equations (15) in the form

uo(r) = EQr + -2 + G(r) (16)

where E and F are constants to be determined from the boundary

conditions and

G(r) = | p

where A Q and B Q are given by equations (6).

In this case, when n = 0, there are only two unlcnown

constants E Q and FQ, to be determined. There appear to be four

conditions, (13) and (14), to be satisfied. However the shear

stresses are automatically zero when n= 0.

Using equations (9), (10) and (16), the pressure terms

of order zero on the inner and outer surfaces of the tube can

Page 38: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

_ 34 -

be written in the form

- 2c-§ - 2c°4^ + (l-2c)C

Q = 2(l-c)Eo - 2cg| - 2c^p) + (l-2c)C

where a bar denotes a dimensionless pressure

P = \ + 2jx

Solving for the only unknown quantities E Q and Fo we find

[Fo - ' [ 2 c{ b G ( a ) " aG(b)}- ab{5o(a) -

This completes the solution of the thermo-elastic

equations when n= 0. The radial displacement component,

uQ(r), is given by equation (16). The axial displacement

component corresponds to constant axial strain and is Qz.

The corresponding strains and stresses are found using equations

(9) and (10).

When n > 0, a similar analytical technique is used to

determine the deformation components for a particular value

of n.Consider, for n > 0, the expressions

(17)wr>(r) - ~ (E^ +2P )I - (l-c)'v rF I ," « n o „. n n 1

+ (Gn ~ 2H )K + (1-cW rH K. +~rz : {A I + B K \

^ o xt n 1 (l"~c)fy • I. n o n oj

Page 39: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 35 -

where E R , F n, GR and H n are constants, A and Bn are given by

equations (7) and I and K are modified Bessel functions with

argument (Ynr). It is not difficult to verify that these

expressions satisfy the inhomogeneous equations (15).

As above, the corresponding dimensionless pressures

on the inner and outer surfaces of the tube can be obtained

using equations (9) and (10) and can be written in the form

- Pn(b) = X^n ) (b)En+ X^,

n) (b)Fn +X*,n) (b)Gn+ X^

n) 0>)Hn+ X<n ) (b)

where

X<n><r> -

xin)(r) =-2c T JKO + -i-

G rnl o Y nr

(r) =

(18)

in which the argument of the Bessel function is \7 nr), as above.

In precisely the same manner, the dimensionless shear

pressures on the inner and outer surfaces of the tube can be

obtained from equations (9) and (10) and can be written in the

Page 40: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

- 36 _

form

- in(a) =( n )

where

(b, -

(a)

Y*"'(b)

(19)

(r) = -

4n) (r) =- 2cTn{(l-c)Ynno+l1}

The only unknown quantities in equations (18) and (19) are

E , F , G and H . These four equations can be solved to

produce the four unknown quantities.

Having determined these constants the solution of the

thermo-elastic equations is complete. The displacement com-

ponents are given by equations (17). The corresponding strains

and stresses are given by equations (9) and (10).

This completes the description of the analytic model

used in the program BAGPIPE.

Page 41: Atomic Energy of Canada Limited BAGPIPE: A PROGRAM TO

Additional copies of this documentmay be obtained from

Scientific Document Distribution OfficeAtomic Energy of Canada Limited

Chalk River, Ontario, Canada

Price - $1.00 per copy

1135-71