32
Appendix A – ATtiny261A Specification at 105°C This document contains information specific to devices operating at temperatures up to 105°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 2K Bytes In-System Programmable Flash ATtiny261A Appendix A Rev. 8197C–Appendix A–AVR–08/11

ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

8-bit Microcontroller with 2K Bytes In-SystemProgrammable Flash

ATtiny261A

Appendix A

Rev. 8197C–Appendix A–AVR–08/11

Appendix A – ATtiny261A Specification at 105°CThis document contains information specific to devices operating at temperatures upto 105°C. Only deviations are covered in this appendix, all other information can befound in the complete datasheet. The complete datasheet can be found atwww.atmel.com.

Page 2: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

1. Electrical Characteristics

1.1 Absolute Maximum Ratings*

1.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent dam-age to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESETwith respect to Ground ............................... -0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins ................................ 200.0 mA

Table 1-1. DC Characteristics. TA = -40°C to +105°C, VCC = 1.8V to 5.5V (unless otherwise noted).

Symbol Parameter Condition Min Typ (1) Max Units

VIL Input Low-voltage

Except XTAL1 andRESET pins

-0.5 0.2VCC(3) V

XTAL1 pin,External Clock Selected

-0.5 0.1VCC(3) V

RESET pin -0.5 0.2VCC(3) V

RESET pin as I/O -0.5 0.2VCC(3) V

VIH Input High-voltage

Except XTAL1 andRESET pins

0.7VCC(2) VCC +0.5 V

XTAL1 pin,External Clock Selected

0.8VCC(2) VCC +0.5 V

RESET pin 0.9VCC(2) VCC +0.5 V

RESET pin as I/O 0.7VCC(2) VCC +0.5 V

VOLOutput Low Voltage (4)

(Except Reset pin) (6)IOL = 10 mA, VCC = 5VIOL = 5 mA, VCC = 3V

0.60.5

VV

VOHOutput High-voltage (5)

(Except Reset pin) (6)IOH = -10 mA, VCC = 5VIOH = -5 mA, VCC = 3V

4.32.5

VV

IILInput LeakageCurrent I/O Pin

VCC = 5.5V, pin low(absolute value)

< 0.05 1 µA

IIHInput LeakageCurrent I/O Pin

VCC = 5.5V, pin high(absolute value)

< 0.05 1 µA

RRST Reset Pull-up Resistor 30 60 kΩ

RPU I/O Pin Pull-up Resistor 20 50 kΩ

28197C–Appendix A–AVR–08/11

ATtiny261A

Page 3: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Notes: 1. Typical values at 25°C.

2. “Min” means the lowest value where the pin is guaranteed to be read as high.

3. “Max” means the highest value where the pin is guaranteed to be read as low.

4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins.

7. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.

8. BOD Disabled.

ICC

Power Supply Current (7)

Active 1MHz, VCC = 2V 0.2 0.5 mA

Active 4MHz, VCC = 3V 1.2 2 mA

Active 8MHz, VCC = 5V 3.6 7 mA

Idle 1MHz, VCC = 2V 0.035 0.15 mA

Idle 4MHz, VCC = 3V 0.25 0.4 mA

Idle 8MHz, VCC = 5V 0.9 1.5 mA

Power-down mode (8)WDT enabled, VCC = 3V 4 20 µA

WDT disabled, VCC = 3V 0.2 10 µA

Table 1-1. DC Characteristics. TA = -40°C to +105°C, VCC = 1.8V to 5.5V (unless otherwise noted). (Continued)

Symbol Parameter Condition Min Typ (1) Max Units

38197C–Appendix A–AVR–08/11

Page 4: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

1.3 Clock Characteristics

1.3.1 Accuracy of Calibrated Internal OscillatorIt is possible to manually calibrate the internal oscillator to be more accurate than default factorycalibration. Note that the oscillator frequency depends on temperature and voltage. Voltage andtemperature characteristics can be found in Figure 2-42 on page 28 and Figure 2-43 on page 29.

Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

1.4 System and Reset Characteristics

1.4.1 Enhanced Power-On Reset

Note: 1. Values are guidelines, only.

2. Threshold where device is released from reset when voltage is rising.

3. The Power-on Reset will not work unless the supply voltage has been below VPOA.

Table 1-2. Calibration Accuracy of Internal Oscillator

CalibrationMethod Target Frequency VCC Temperature

Accuracy at givenvoltage & temperature (1)

FactoryCalibration

8.0 MHz 3V 25°C ±10%

UserCalibration

Fixed frequency within:

7.3 – 8.1 MHz

Fixed voltage within:1.8V – 5.5V

Fixed temperature within:

-40°C to +105°C±1%

Table 1-3. Characteristics of Enhanced Power-On Reset. TA = -40°C to +105°C

Symbol Parameter Min(1) Typ(1) Max(1) Units

VPOR Release threshold of power-on reset (2) 1.1 1.4 1.7 V

VPOA Activation threshold of power-on reset (3) 0.6 1.3 1.7 V

SRON Power-On Slope Rate 0.01 V/ms

48197C–Appendix A–AVR–08/11

ATtiny261A

Page 5: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

1.5 ADC Characteristics

Note: 1. VDIFF must be below VREF.

2. Not tested in production.

Table 1-4. ADC Characteristics, Single Ended Channels. T = -40°C to +105°C

Symbol Parameter Condition Min Typ Max Units

Resolution 10 Bits

Absolute accuracy(Including INL, DNL, and Quantization, Gain and Offset Errors)

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

2 LSB

VREF = 4V, VCC = 4V,ADC clock = 1 MHz

3 LSB

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

Noise Reduction Mode1.5 LSB

VREF = 4V, VCC = 4V,ADC clock = 1 MHzNoise Reduction Mode

2.5 LSB

Integral Non-Linearity (INL)(Accuracy after Offset and Gain Calibration)

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

1 LSB

Differential Non-linearity (DNL)VREF = 4V, VCC = 4V,ADC clock = 200 kHz

0.5 LSB

Gain ErrorVREF = 4V, VCC = 4V,ADC clock = 200 kHz

2.5 LSB

Offset ErrorVREF = 4V, VCC = 4V,ADC clock = 200 kHz

1.5 LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3 VCC + 0.3 V

AREF External Voltage Reference Single Ended Conversions 2.0 AVCC V

Differential Conversions 2.0 AVCC - 1.0 V

VIN Input VoltageSingle Ended Conversions GND VREF

Differential Conversions 0 AVCC (1) V

Input BandwidthSingle Ended Conversions 38.5

kHzDifferential Conversions 4

VINT

Internal 1.1V Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF Reference Input Resistance 35 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output 0 1023 LSB

58197C–Appendix A–AVR–08/11

Page 6: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

1.6 Serial Programming Characteristics

Figure 1-1. Serial Programming Waveforms

Figure 1-2. Serial Programming Timing

Note: 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz

Table 1-5. Serial Programming Characteristics, TA = -40°C to +105°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency 0 4 MHz

tCLCL Oscillator Period 250 ns

1/tCLCL Oscillator Frequency (VCC = 4.5V - 5.5V) 0 20 MHz

tCLCL Oscillator Period VCC = 4.5V - 5.5V 50 ns

tSHSL SCK Pulse Width High 2 tCLCL(1) ns

tSLSH SCK Pulse Width Low 2 tCLCL(1) ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

tSLIV SCK Low to MISO Valid 100 ns

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT(SCK)

SERIAL DATA INPUT (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV

68197C–Appendix A–AVR–08/11

ATtiny261A

Page 7: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

2. Typical CharacteristicsThe data contained in this section is largely based on simulations and characterization of similardevices in the same process and design methods. Thus, the data should be treated as indica-tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.During characterisation devices are operated at frequencies higher than test limits but they arenot guaranteed to function properly at frequencies higher than the ordering code indicates.

This device has been characterised at temperatures of -40°C, 25°C, 85°C and 125°C, but not at105°C. Although the device is not guaranteed to operate reliably at temperatures above 105°C,characteristic data for 105°C can be interpolated from the 85°C and 125°C curves, provided inthe figures to follow.

All current consumption measurements are performed with all I/O pins configured as inputs andwith internal pull-ups enabled. Current consumption is a function of several factors such as oper-ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executedand ambient temperature. The dominating factors are operating voltage and frequency.

A sine wave generator with rail-to-rail output is used as clock source but current consumption inPower-Down mode is independent of clock selection. The difference between current consump-tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with WatchdogTimer disabled represents the differential current drawn by the Watchdog Timer.

The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:

where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency ofI/O pin.

ICP VCC CL f×× SW≈

78197C–Appendix A–AVR–08/11

Page 8: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

2.1 Current Consumption in Active Mode

Figure 2-1. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 8 MHz)

Figure 2-2. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 1 MHz)

125 °C85 °C25 °C

-40 °C

0

1

2

3

4

5

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (m

A)

0

0,2

0,4

0,6

0,8

1

1,2

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (m

A)

125 °C85 °C25 °C

-40 °C

88197C–Appendix A–AVR–08/11

ATtiny261A

Page 9: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-3. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 128 kHz)

2.2 Current Consumption in Idle Mode

Figure 2-4. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 8 MHz)

125 °C

85 °C25 °C

-40 °C

0

0,02

0,04

0,06

0,08

0,1

0,12

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (m

A)

125 °C85 °C25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

ICC

(mA

)

98197C–Appendix A–AVR–08/11

Page 10: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-5. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 1 MHz)

Figure 2-6. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 128 kHz)

125 °C85 °C25 °C

-40 °C

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (m

A)

125 °C

85 °C25 °C

-40 °C

0

0,005

0,01

0,015

0,02

0,025

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

108197C–Appendix A–AVR–08/11

ATtiny261A

Page 11: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

2.3 Current Consumption in Power-Down Mode

Figure 2-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 2-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

125 °C

85 °C

25 °C-40 °C0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

125 °C

85 °C25 °C

-40 °C

0

2

4

6

8

10

12

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

118197C–Appendix A–AVR–08/11

Page 12: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

2.4 Current Consumption of Peripheral Units

Figure 2-9. Brownout Detector Current vs. VCC

Figure 2-10. Programming Current vs. VCC

0

5

10

15

20

25

30

35

40

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (u

A)

125 °C85 °C25 °C

-40 °C

125 °C

85 °C

25 °C

-40 °C

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

128197C–Appendix A–AVR–08/11

ATtiny261A

Page 13: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

2.5 Pull-up Resistors

Figure 2-11. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)

Figure 2-12. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 2.7V)

125 °C

85 °C25 °C

-40 °C

0

10

20

30

40

50

60

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VOP (V)

I OP

(uA

)

125 °C

85 °C25 °C

-40 °C

0

10

20

30

40

50

60

70

80

90

0 0,5 1 1,5 2 2,5 3

VOP (V)

I OP (u

A)

138197C–Appendix A–AVR–08/11

Page 14: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-13. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)

Figure 2-14. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 1.8V)

125 °C

85 °C25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I OP (u

A)

125 °C85 °C

25 °C-40 °C

0

5

10

15

20

25

30

35

40

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VRESET (V)

I RE

SE

T (u

A)

148197C–Appendix A–AVR–08/11

ATtiny261A

Page 15: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-15. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 2.7V)

Figure 2-16. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 5V)

125 °C85 °C

25 °C-40 °C

0

10

20

30

40

50

60

0 0,5 1 1,5 2 2,5 3VRESET (V)

I RE

SE

T (u

A)

125 °C85 °C

25 °C-40 °C

0

20

40

60

80

100

120

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5VRESET (V)

I RE

SE

T (u

A)

158197C–Appendix A–AVR–08/11

Page 16: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

2.6 Output Driver Strength

Figure 2-17. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V)

Figure 2-18. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V)

125 °C

85 °C

25 °C

-40 °C

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 1 2 3 4 5IOL (mA)

VO

L (V

)

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0 2 4 6 8 10IOL (mA)

VO

L (V

)

168197C–Appendix A–AVR–08/11

ATtiny261A

Page 17: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-19. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V)

Figure 2-20. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 2 4 6 8 10 12 14 16 18 20IOL (mA)

VO

L (V

)

125 °C

85 °C

25 °C

-40 °C

1,3

1,4

1,5

1,6

1,7

1,8

0 1 2 3 4 5IOH (mA)

VO

H (V

)

178197C–Appendix A–AVR–08/11

Page 18: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-21. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)

Figure 2-22. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)

125 °C

85 °C

25 °C

-40 °C

2,5

2,6

2,7

2,8

2,9

3

0 2 4 6 8 10IOH (mA)

VO

H (V

)

125 °C85 °C

25 °C

-40 °C

4,2

4,4

4,6

4,8

5

02510150IOH (mA)

VO

H (V

)

188197C–Appendix A–AVR–08/11

ATtiny261A

Page 19: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-23. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V)

Figure 2-24. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)

125 °C

85 °C

25 °C

-40 °C

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6IOL (mA)

VO

L (V

)

125 °C85 °C25 °C

-40 °C

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8IOL (mA)

VO

L (V

)

198197C–Appendix A–AVR–08/11

Page 20: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-25. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)

Figure 2-26. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V)

125 °C85 °C25 °C

-40 °C

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8IOL (mA)

VO

L (V

)

125 °C85 °C25 °C

-40 °C

0

1

2

3

4

5

0 0,2 0,4 0,6 0,8 1

IOH (mA)

VO

H (V

)

208197C–Appendix A–AVR–08/11

ATtiny261A

Page 21: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-27. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V)

Figure 2-28. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V)

125 °C85 °C25 °C

-40 °C

0

1

2

3

4

5

0 0,2 0,4 0,6 0,8 1IOH (mA)

VO

H (V

)

0

1

2

3

4

5

0 0,2 0,4 0,6 0,8 1IOH (mA)

VO

H (V

)

125 °C85 °C25 °C

-40 °C

218197C–Appendix A–AVR–08/11

Page 22: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

2.7 Input Thresholds and Hysteresis

Figure 2-29. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’)

Figure 2-30. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)

125 °C85 °C25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Thre

shol

d (V

)

228197C–Appendix A–AVR–08/11

ATtiny261A

Page 23: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-31. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)

Figure 2-32. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’)

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Inpu

t Hys

tere

sis

(V)

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

238197C–Appendix A–AVR–08/11

Page 24: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-33. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’)

Figure 2-34. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin)

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Inpu

t Hys

tere

sis

(V)

248197C–Appendix A–AVR–08/11

ATtiny261A

Page 25: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

2.8 BOD, Bandgap and Reset

Figure 2-35. BOD Threshold vs. Temperature (BOD Level set to 4.3V)

Figure 2-36. BOD Threshold vs. Temperature (BOD Level set to 2.7V)

VCC RISING

4,24

4,26

4,28

4,3

4,32

4,34

4,36

4,38

-40 -20 0 20 40 60 80 100 120 140

Temperature (C)

Thre

shol

d (V

)

VCC FALLING

VCC RISING

VCC FALLING

2,66

2,68

2,7

2,72

2,74

2,76

2,78

-40 -20 0 20 40 60 80 100 120 140Temperature (C)

Thre

shol

d (V

)

258197C–Appendix A–AVR–08/11

Page 26: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-37. BOD Threshold vs. Temperature (BOD Level set to 1.8V)

Figure 2-38. Bandgap Voltage vs. Supply Voltage.

VCC RISING

VCC FALLING

1,78

1,79

1,8

1,81

1,82

1,83

1,84

1,85

-40 -20 0 20 40 60 80 100 120 140Temperature (C)

Thre

shol

d (V

)

125 °C85 °C

25 °C

-40 °C

1,07

1,08

1,09

1,1

1,11

1,5 2,5 3,5 4,5 5,5VCC (V)

Ban

dgap

Vol

tage

(V)

268197C–Appendix A–AVR–08/11

ATtiny261A

Page 27: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-39. Minimum Reset Pulse Width vs. VCC

2.9 Internal Oscillators

Figure 2-40. Frequency of Watchdog Oscillator vs. VCC

0

200

400

600

800

1000

1200

1400

1600

1800

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

Pul

sew

idth

(ns)

125 °C85 °C25 °C

-40 °C

125 °C

85 °C

25 °C

-40 °C

110000

115000

120000

125000

130000

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Freq

uenc

y (H

z)

278197C–Appendix A–AVR–08/11

Page 28: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

Figure 2-41. Frequency of Watchdog Oscillator vs. Temperature

Figure 2-42. Frequency of Calibrated 8.0 MHz Oscillator vs. VCC

5.0 V

3.0 V

1.8 V

110000

115000

120000

125000

130000

-40 -20 0 20 40 60 80 100 120 140Temperature

Freq

uenc

y (k

Hz)

125 °C

85 °C

25 °C-40 °C

7,6

7,8

8

8,2

8,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Freq

uenc

y (M

Hz)

288197C–Appendix A–AVR–08/11

ATtiny261A

Page 29: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

Figure 2-43. Frequency of Calibrated 8.0 MHz Oscillator vs. Temperature

Figure 2-44. Frequency of Calibrated 8.0 MHz Oscillator vs. OSCCAL Value

5.0 V

3.0 V

1.8 V

7,7

7,8

7,9

8

8,1

8,2

-40 -20 0 20 40 60 80 100 120 140Temperature

Freq

uenc

y (M

Hz)

125 °C85 °C25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240OSCCAL (X1)

FRC

(MH

z)

298197C–Appendix A–AVR–08/11

Page 30: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

3. Ordering Information

Notes: 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also halide-free and fully green.

Speed (MHz) Power Supply Ordering Code (1) Package (1) Operational Range

20 1.8 – 5.5V ATtiny261A-MN 32M1-AIndustrial

(-40°C to +105°C)

Package Type

32M1-A 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)

308197C–Appendix A–AVR–08/11

ATtiny261A

Page 31: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

ATtiny261A

4. Revision History

Revision No. History

8197A–Appendix A–AVR–06/10 Initial revision

8197C–Appendix A–AVR–08/11 Updated contact information

318197C–Appendix A–AVR–08/11

Page 32: ATtiny261A - Appendix Adatasheet.elcodis.com/pdf2/76/58/765833/attiny261a.pdf · ATtiny261A Notes: 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is

8197C–Appendix A–AVR–08/11

Headquarters International

Atmel Corporation2325 Orchard ParkwaySan Jose, CA 95131USATel: 1(408) 441-0311Fax: 1(408) 487-2600

Atmel Asia LimitedUnit 1-5 & 16, 19FBEA Tower, Millennium City 5418 Kwun Tong RoadKwun Tong, KowloonHONG KONGTel: (+852) 2245-6100Fax: (+852) 2722-1369

Atmel Munich GmbHBusiness CampusParkring 4D-85748 Garching b.MunichGERMANYTel: (+49) 89-31970-0Fax: (+49) 1-30-60-71-11

Atmel Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JAPANTel: (+81) 3-3523-3551Fax: (+81) 3-3523-7581

Product Contact

Web Sitewww.atmel.com

Technical [email protected]

Sales Contactwww.atmel.com/contacts

Literature Requestswww.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to anyintellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OFTHE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for useas components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.