27
LEXU II Low Exergy Wall & Air Tempering for Building Refurbishment“ TRNSYS Experience Seminar 2018 M.Eng. Christoph Schmidt, IZES gGmbH, Saarbrücken External doctoral student at the University of Luxembourg Belval (Luxembourg) 20.04.2018

Außenliegende Wand- und Lufttemperierung „LowEx …Quelle: Recknagel/Sprenger, 07/08 Model Tsi [°C] Tso [°C] Qsi [W] Qso [W] Type 56 19,28 0,162 3,54 3,54 Type 56+ Type 1230 19,29

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • LEXU II„Low Exergy Wall & Air Tempering for Building Refurbishment“

    TRNSYS Experience Seminar 2018

    M.Eng. Christoph Schmidt, IZES gGmbH, Saarbrücken

    External doctoral student at the University of Luxembourg

    Belval (Luxembourg) 20.04.2018

  • 1

    LEXU II:

    Motivation, contents und work packages

    Research project LEXU IIExternal wall tempering

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • 2

    LEXU II:

    Research project LEXU IIExternal wall tempering

    Motivation, contents und work packages

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • Outlying/external wall tempering (aWT): special case of TABS

    3

    LEXU II:

    Existing wallU-value > 1 W/m²K

    Insid

    e

    Acitve

    Layer

    insulation

    Ou

    tsid

    e

    1) Installation of panelheating/tempering „from the outside“

    2) Installation of an ETICS (WDVS)

    Position of the panel heating:

    Inside of the thermal envelope of thebuilding, outside of the existing wall, in front of the ETICS

    Panel heating for existing buildings & thermal acitvation for the existing buildingstructure

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Details:„Außenliegende Wandtemperierung“ – LowEx-Anwendung zur Temperierung von Bestandsgebäuden und thermischen Aktivierung der

    Bestandswand: Theoretische Grundlagen und Kennwerte; Schmidt, C., Altgeld, Luther, Maas, Scholzen.; in Bauphysik 39 (2017), Heft 4, S.215-223

  • Advantages and disadvantages of the aWT

    4

    LEXU II:

    Advantages:

    Thermal bridges / building damages

    Heating and cooling possible

    Increase of the inner surfacetemperature thermal comfort

    Usage of very low fluid temperatures LowEx

    Thermal acitvation of the existingbuilding structure storage

    Refurbishmant „from the outside“(without impairment for theinhabitants) minimally invasive

    Disadvantages:

    Additional heat losses Efficiency of the aWT

    Slow heating system.

    Focus: control strategies

    „base load heating“

    „New“ on-site build system:

    „new“ and many interfaces

    „new“ and many sources of error

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • 5

    LEXU II:

    Research project LEXU IIExternal air tempering

    Motivation, contents und work packages

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • 6

    LEXU II:

    Motivation, contents and work packages

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Research project LEXU IIExternal air tempering

  • 3

    InsideOutside

    External air tempering (aLT)

    7

    LEXU II:

    1) Existing wall

    2) Active Layer

    3) Air Gap

    4) ETICS

    5) Air inlet (hatch/filter)

    6) Air outlet (hatch/filter)

    7) Fan (Rohreinschub-)

    Fresh air

    Supply air

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    1234

    5

    6

    7

  • External air tempering (aLT)

    8

    LEXU II:

    Exemplary comparison aWT – aLT (referred to 20°C room temperature):

    -10

    0

    10

    20

    30

    40

    50

    0 2 4 6 8 10 12 14 16

    Heat

    flux

    [W/m

    ²]

    Heating overtemperature [K]

    Qi_aLH Qi_aWH Qa_aLH Qa_aWH Qw_aLH Qw_aWH

    Results generated with TRNSYS 17TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    QL

  • Energetic advantages:- The aLT (air) is like an additional heat transfersurface within the wall structure

    - The efficiency can be increased by reducing thelosses over the thermal insulation layer

    - The importance of ventilation increases by anenergetic refurbishment (higher tightness of thethermal envelope). By an combination of aWT &aLT the heat load can be complete covered

    Positive control effects:The slow adjustable aWT will be ideally orperfectly complemented by the quicklyadjustable aLT.

    Base Load + Peak Load possible.

    9

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • Modeling of the aLT in TRNSYS

    Energetic examination and futher simulations

    (fluid dynamics simulation in ANSYS)

    10

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    3

    Room

    Out

    side

    TLuft,OUT

    TSE,LK TSI,LKTSE,WA TSI,WA

    mLuft,OUT

    mLuft,INTLuft,IN

    QIQA

    QL

    QW

    Exterior wall construction Interior

  • Modeling of the aLT in TRNSYS: Two possibilities

    11

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Conclusion:

    Similar simulations results to Type 1230 and to the

    measurement results from the test wall; BUT very high

    input effort (up to 128 airnodes) and high error rate

    (lots of linkings) no further considerations

    Out

    side

    Exterior wall

    TAN1

    TR1

    TAN2

    T...

    T...

    T...

    T...

    TANn-2

    TANn-1

    TANn

    Exterior wall construction Interior

    Boundary wall

    Room 1Room 2

    Multi-zone (airnode) approach in Type 56 Type 1230: Ventilated Facade (TESS)

    Conclusion:

    Less input effort. Division of the thermal

    envelope between Type 56 and Type 1230.

    Tricky linking beetween Type 1230 and Type 56

    Out

    side

    S1 S2

    S3

    Linking

    Internal part of the exterior wall

    Insi

    de

    Type1230 Type 56

    TANn

    Bachelor-Thesis: Modellierung einer außenliegenden Luftheizung mit Hilfe der Software TRNSYS…, Daniel Schmidt, htw saar, 2013

  • Out

    side

    Exterior part of the external wall

    Air Gap

    Res

    isti

    ve L

    ayer

    Tgap,i

    Linking

    Interior part of the external wall

    TSO

    Type1230 Type 56

    Linking between Type 1230 und Type 56

    12

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    TRNBuild: Zone XY / Airnode XY

  • Out

    side

    Exterior part of the external wall

    Air Gap

    Res

    isti

    ve L

    ayer

    Tgap,i

    Linking

    Interior part of the external wall

    TSO

    Type1230 Type 56

    Linking between Type 1230 und Type 56

    13

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    TRNBuild: Output Manager (Ntype 18)

  • Linking between Type 1230 und Type 56

    14

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Out

    side

    Exterior part of the external wall

    Air Gap

    Res

    isti

    ve L

    ayer

    Tgap,i

    Linking

    Interior part of the external wall

    TSO

    Type1230 Type 56

    TSO_ID (hier ID4) Input-Nr. 6: Back surface temperature

    Output-Nr. 7: Average interior air gap surface temperature

    Input “Boundary Condtions” (hier “T_1230”)

    Simulation Studio

  • Linking between Type 1230 und Type 56

    Definition of the resistive layer

    15

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Inverse

    TRNBuild: Wall Type Manager

    Type 1230: Parameter

  • Linking between Type 1230 und Type 56 (for the aLT)

    16

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Type 1230: Output TRNBuild: Ventilation Type Manager

  • Verification of Type 1230

    17

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Comparison of an external wall with air layer (non ventilated) in Type 56 and Type 1230 + Type 56

    S1 S2 S3

    TSITSO

    QSIQSO

    Um

    gebu

    ng

    S4 S5

    Type 56

    Um

    gebu

    ng

    S1 S2 S3.1

    Verknüpfung QSIQSO

    TSO TSI

    S3.2 S4 S5

    Type1230 Type 56

  • Verification of Type 1230

    Stationary conditions

    Transient conditions

    With/without irradiation

    Variation of the thickness of the air gap

    18

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    0.1

    0.11

    0.12

    0.13

    0.14

    0.15

    0.16

    0.17

    0.18

    0.19

    0 10 20 30 40 50 60 70 80 90 100110120130140150

    Ther

    mal

    Res

    ista

    nce

    ofth

    eai

    rgap

    R [m

    ²K/W

    ]

    Thickness of air gap [mm]

    Quelle: Recknagel/Sprenger, 07/08

    Model Tsi

    [°C]

    Tso

    [°C]

    Qsi

    [W]

    Qso

    [W]

    Type 56 19,28 0,162 3,54 3,54

    Type 56+ Type 1230 19,29 0,159 3,49 3,49

    Summary:

    Differences

  • Laboratory wall / test bench of the aLT

    19

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Nr. Description Thickness

    1 Wood-fiberboard 18 mm

    2 Insulation (Polystyrene) 160 mm

    3 Wood-fiberboard 10 mm

    4 Capillary tubes: acitve layer 10 mm

    5 Air gap 20 mm

    6 Insulation (Polystyrene) 160 mm

    7 Wood-fiberboard 18 mm

    3

    SurroundingSurrounding

    7 6 5 4 3 2 1

  • Laboratory wall / test bench of the aLT

    20

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Luftauslass

    Lufteinlass

    Pt 100

    Temp

    Ausdehnungsgefäß

    Befüllung

    HAAKEF3-CH

    Bypass

    Pt 100

    Platten-WT

    Entlüftung

    Testwand

    Anzeige

    p

    m_pkt

    Pt 100

    Pt 100

    Temp

    Temp

    aLT-Laborwand

    V_pkt

    TL,aus

    TL,ein

    TW,ein

    TW,aus

    VL

    mW

    Measuring points:

    - TL,ein: Inlet temperature „air“ [°C]

    - TL,aus: Outlet temperatur „air“ [°C]

    - TW,ein: Inlet temperature „water“ [°C]

    - TW,aus: Outlet temperature „water“ [°C]

    - VL: volume flow air [m³/s]

    - mW: mass flow water [kg/min]

  • Laboratory wall / test bench of the aLT

    21

    LEXU II:

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Validation of Type 1230

    Comparison between measured data and simulation results

    Detailed evaluation and validation just in progress (>40 test series) Paper BauSim 2018, Karlsruhe (?)

    Documentation of a first validation for the aWT & aLT:

    LEXU II – Einsatz von aussenliegender Wandtemperierung bei der Gebäudesanierung; Schmidt, C., Altgeld, Groß, Luther, Schmidt,

    D.; Proceedings of CESBP/BauSim 2016, Dresden

    92.0%

    94.0%

    96.0%

    98.0%

    100.0%

    102.0%

    104.0%

    106.0%

    1 2 3 4 5

    QWasser QLuft

    First Conclusion:

    Good accordance of the measured data and the simulation results; differences ~5%

  • Building C 3.1 on the campus of „Universität des Saarlandes“

    Year of construction: 1969

    22

    LEXU II: Demonstrator

    Western frontageHeight: ~15 mWidth: ~13,5 mArea: ~200 m²0,36 m ferroconcrete (Stahlbeton)

    Quelle: Google Maps, 2017

    N

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • Detailed planning of the facade

    Idea: room-by-room control aWT + field test area aWT & aLT

    23

    LEXU II: Demonstrator

    Field test

    aLT

    Field test aWT

    Kapillarrohrmatte „Optimat SB 20“Hersteller: Clina, BerlinStammrohr: 20 x 2 mmKapillarrohr 4,3 x 0,8 mmAbstand A: 20 mmLänge: 60-600 mmBreite: ab 150 mm Fertigung der Matten passend für die Fassade

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

  • Realization

    24

    LEXU II: Demonstrator

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    Final step „Modeling of the aLT“: Validation of Type 1230 by a comparison with

    measured data from the field test area

  • Hydraulic diagram „Demonstrator“

    25

    LEXU II: Demonstrator

    TRNSYS Experience Seminar, Belval (LUX), 20.04.2018, Christoph Schmidt, IZES gGmbH

    12

    4

    3

    5

    6

    8 7

    Eisspeicher

    Pufferspeicher

    PVT-Kollektor

    Mehrere Heizkreise

    „aWT/aLT“

    Wärmepumpe

    WT3WT2

    WT1

    Ice Storage

    Heat pump

    Buffer storage

    PVT-CollectorFacade

    To Do: Modeling the components

    in TRNSYS and validation

  • Many thanks to the funding authority, our project partner and supporters!Project management Project partner

    WIDAG GbR

    Dr. Gerhard Luther

    Funding

    Referat FM:

    Facility Management

    Supporter

    HGE Ingenieur GmbH

    Contact: IZES gGmbH, Altenkesseler Str. 17,Geb. A1, D-66115 Saarbrücken,Tel: 0681-844972-46, Mail: [email protected], www.projekt-lexu.de

    mailto:[email protected]://www.projekt-lexu.de/