24
AUTOMATED COMPUTATION OF ONE- LOOP AMPLITUDES Darren Forde (SLAC & UCLA) ollaboration with C. Berger, Z. Bern, L. Dixon, F. Febre H. Ita, D. Kosower, D. Maître. arxiv: 0803.4180 [hep-ph]

Automated Computation of One-Loop Amplitudes

  • Upload
    kineks

  • View
    43

  • Download
    2

Embed Size (px)

DESCRIPTION

Darren Forde (SLAC & UCLA). Automated Computation of One-Loop Amplitudes. Work in collaboration with C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, H. Ita, D. Kosower, D. Maître. arxiv : 0803.4180 [hep-ph]. Overview – NLO Computations. What do we need?. - PowerPoint PPT Presentation

Citation preview

Page 1: Automated Computation of One-Loop Amplitudes

AUTOMATED COMPUTATION OF ONE-LOOP AMPLITUDES

Darren Forde(SLAC & UCLA)

Work in collaboration with C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, H. Ita, D. Kosower, D. Maître.

arxiv: 0803.4180 [hep-ph]

Page 2: Automated Computation of One-Loop Amplitudes

OVERVIEW – NLO COMPUTATIONSMaximising discovery potential of the LHC require NLO amplitudes, • Computation of QCD

Backgrounds.• Many process required.• Typically of high multiplicity. • Automation needed.

Automate computation of one-loop amplitudes using BlackHat• Generalised Unitarity.• On-shell recursion.

Page 3: Automated Computation of One-Loop Amplitudes

One-loop high multiplicity processes,

WHAT DO WE NEED?

Newest Les Houches list, (2007)

Page 4: Automated Computation of One-Loop Amplitudes

WHAT’S BEEN DONE? Using analytic and numerical techniques

QCD corrections to vector boson pair production (W+W-, W±Z & ZZ) via vector boson fusion (VBF). (Jager, Oleari, Zeppenfeld)+(Bozzi)

QCD and EW corrections to Higgs production via VBF. (Ciccolini, Denner, Dittmaier)

pp→WW+j+X. (Campbell, Ellis, Zanderighi). (Dittmaier, Kallweit, Uwer) pp → Higgs+2 jets. (Campbell, Ellis, Zanderighi), (Ciccolini, Denner,

Dittmaier). pp → Higgs+3 jets (leading contribution) (Figy, Hankele,

Zeppenfeld). pp → ZZZ, pp → , (Lazopoulos, Petriello, Melnikov) pp → +

(McElmurry) pp → ZZZ, WZZ, WWZ, ZZZ (Binoth, Ossola, Papadopoulos,

Pittau), pp →W/Z (Febres Cordero, Reina, Wackeroth), gg → gggg amplitude. (Ellis, Giele, Zanderighi) 6 photons (Nagy, Soper), (Ossola, Papadopoulos, Pittau), (Binoth,

Heinrich, Gehrmann, Mastrolia)

ttH ttZ

bb

Page 5: Automated Computation of One-Loop Amplitudes

Large number of processes to calculate (for the LHC), Automatic procedure highly desirable.

We want to go from

Implement new methods numerically.

An (1

-,2-,3

+,…,n

+), A

n (1-,2

-,3-,..

AUTOMATION

An (1 -,2 -,3 +,…,n +)

Page 6: Automated Computation of One-Loop Amplitudes

TOWARDS AUTOMATION Many different one-loop computational approaches,

OPP approach – solving system of equations numerically, gives integral coefficients (Algorithm implemented in CutTools) (Ossola, Papadopoulos, Pittau), (Mastrolia, Ossola, Papadopoulos, Pittau)

D-dimensional unitarity + alternative implementation of OPP approach (Ellis, Giele, Kunszt), (Giele, Kunszt, Melnikov)

General formula for integral coefficients (Britto, Feng) + (Mastrolia) + (Yang)

Computation using Feynman diagrams (Ellis, Giele, Zanderighi) (GOLEM (Binoth, Guffanti, Guillett, Heinrich, Karg, Kauer, Pilon, Reiter))

BlackHat (Berger, Bern, Dixon, Febres Cordero, DF, Ita, Kosower, Maître)

Page 7: Automated Computation of One-Loop Amplitudes

BlackHat Numerical implementation of the

unitarity bootstrap approach in c++,Tree amplitud

es

On-shell recursion

Rational

One-loop

Amplitude

Unitarity cuts

Cut-construc

tible

Rational building blocks

“Compact” On-shell inputs

Much fewer terms to compute& no large cancelations comparedwith Feynman diagrams.

(Berger, Bern, Dixon, Febres Cordero, DF, Ita, Kosower, Maître)

Page 8: Automated Computation of One-Loop Amplitudes

Log’s, Polylog’s, etc.

Rational

terms

Loop amplit

ude

Use the most efficient approach for each piece,

THE UNITARITY BOOTSTRAP

Unitarity cuts in 4 dimensions

K3

K2K1

A3

A2

A1

On-shell recurrence relations

Rn

ji

R<n A<n

Recycle results of amplitudes with fewer legs

Page 9: Automated Computation of One-Loop Amplitudes

Function of a complex variable containing only simple poles. (Britto, Cachazo, Feng, Witten) (Bern, Dixon, Kosower)+

(Berger, DF)

A SIMPLE IDEA

( )1 0 2

n

C

A zdzi z

zpoles

( )(0) Res nn

A zAz

z

Integrate over a circle at infinity

Branch cuts

Unitarity techniques, gives loop cut pieces, C

Factorisation properties of amplitude give on-shell recursion.

Loop level?

An

ji

A<n A<n

Gives Rational pieces of loop, R

An(0)

Page 10: Automated Computation of One-Loop Amplitudes

ON-SHELL RECURSION RELATIONS At one-loop recursion using on-shell tree

amplitudes, T, and rational pieces of one-loop amplitudes, R,

Sum over all factorisations. “Inf” term from auxiliary recursion. Not the complete rational result, missing

“Spurious” poles.

Rn T R R T T T

Page 11: Automated Computation of One-Loop Amplitudes

SPURIOUS POLES Shifting the amplitude by z A(z)=C(z)+R(z)

Poles in C as well as branch cuts e.g.

Not related to factorisation poles sl…m, i.e. do not appear in the final result.

Cancel against poles in the rational part. Use this to compute spurious poles from residues

of the cut terms. Location of all spurious poles, zs, is know

Poles located at the vanishing of shifted Gram determinants of boxes and triangles.

z

2 2 2 21 2

22 1 1

1 2

2ln( ) ln( )b bK K

bI K K zK K zY

Y

Res

sz z s

C zR

z

Page 12: Automated Computation of One-Loop Amplitudes

ONE-LOOP INTEGRAL BASIS Numerical computation of the “cut terms”. A one-loop amplitude decomposes into

Compute the coefficients from unitarity by taking cuts

Apply multiple cuts, generalised unitarity. (Bern, Dixon, Kosower) (Britto, Cachazo, Feng)

2

24 n i ij ijk

i ij ijk

R r b c d

Rational terms, from recursion.

Want these coefficients

1-loop scalar integrals (Ellis, Zanderighi) , (Denner, U. Nierste and R. Scharf), (van Oldenborgh, Vermaseren) + many others.

22

1 2 (( ) )( ) i

i

l Kl K i

Glue together tree amplitudes

Page 13: Automated Computation of One-Loop Amplitudes

BOX COEFFICIENTS Quadruple cuts freeze the integral coefficient (Britto,

Cachazo, Feng)

Box Gram determinant appears in the denominator.

Spurious poles will go as the power of lμ in the integrand.

2

1 ; 2 ; 3 ; 4 ;1

1 ( ) ( ) ( ) ( )2ijk ijk a ijk a ijk a ijk a

a

d A l A l A l A l

l

l3

l2

l1

2 2 2 21 2 3 40, 0, 0, 0l l l l 4 delta functions In 4 dimensions 4 integrals

2 3 4 2 3 41 2

2 4 2 4

2 3 4 2 3 43 4

2 4 2 4

, ,2 2

,

1 1 1 1

1 1 1 1

1 1 1 1

1 1.

2 1 12

K K K K K Kl l

K K K K

K K K K K Kl l

K K K K

4 2 4 2 42 1 1 1 1K K K K

4

Page 14: Automated Computation of One-Loop Amplitudes

TWO-PARTICLE AND TRIPLE CUTS What about bubble and triangle terms? Triple cut Scalar triangle coefficients?

Two-particle cut Scalar bubble coefficients?

Disentangle these coefficients.

Additional coefficients

ij ijkk

c d

i ij ijkj jk

b c d

Isolates a single triangle

Page 15: Automated Computation of One-Loop Amplitudes

BUBBLES & TRIANGLES Compute the coefficients using different numbers of

cuts

Analytically examining the large value behaviour of the integrand in these components gives the coefficients (DF) (extension to massive loops (Kilgore))

Modify this approach for a numerical implementation.

i ij ijki ij ijk

b c d

Quadruple cuts, gives box coefficients

Depends upon unconstrained components of loop momenta.

Page 16: Automated Computation of One-Loop Amplitudes

TRIANGLE COEFFICIENTS Apply a triple cut.

Cut integrand, T3, as a contour integral in terms of the single unconstrained parameter t

Subtract box terms. Discrete Fourier projection to compute

1 2 1 2 1 21

2 2tl K K K K K K

t ç ç ç ç ç_ ç

Cut momentum parameterisation

Previously computed from quadruple cut

2 33 2 10 1 2 333 2( )

C C C C tC t C t Ct t t

T t

t

, ( )i

i i i

dt t

Pole Additional propagator Box

2 /(2 1)0 3 0

1 ( )2 1

pij p

j p

C T t ep

Triangle Coeff

Different uses of DFP (Britto, Feng, Mastrolia), (Mastrolia, Ossola, Papadopoulos, Pittau)

(del Aguila, Ossola,

Papadopoulos, Pittau), (DF)

Page 17: Automated Computation of One-Loop Amplitudes

BUBBLE COEFFICIENTS Apply a two-particle cut.

Two free parameters y and t in the integrand B2. Contour integral in terms of t (with y[0,1]) now

contains poles from triangle & box propagators.

Subtract triple-cut terms (previously computed). Compute bubble coefficient using

1 1 1(1 )(1 )

2 2t y yl yK y K K

t

Cut momentum parameterisation

tPole Additional propagator Triangle/Box

42 /5 2 /5

0 2 0 2 00

1 (0, ) 3 (2 / 3, )20

ij ij

j

B B t e B t e

Page 18: Automated Computation of One-Loop Amplitudes

NUMERICAL SPURIOUS POLE EXTRACTION Numerically extract spurious poles, use known pole

locations. Expand Integral functions at the location of the poles,

Δi(z)=0, e.g.

The coefficient multiplying this is also a series in Δi(z)=0, e.g.

Numerically extract the 1/Δi pole from the combination of the two, this is the spurious pole.

2

3 1 2 3 3

1 2 3 1 2 3

31 1 3

11 1 1 1 1

33 1 2 3

16 1

( , ,20

1 1ln( ) 12

)

6 i i i

i

m

i i i i

s s ss s s s s s

s s s

I

s s

s s

s s

s

s

3 2 10 3 3 2

3 3 3

( ) a a aC

Box or triangleGram determinant

Page 19: Automated Computation of One-Loop Amplitudes

NUMERICAL STABILITY Use double precision for majority of points good precision. For a small number of exceptional points use higher precision (up to

~32 or ~64 digits.) Detect exceptional points using three tests,

Bubble coefficients in the cut must satisfy,

For each spurious pole, zs, the sum of all bubbles must be zero,

Large cancellation between cut and rational terms. Box and Triangle terms feed into bubble, so we test all pieces.

1/ ,

11 23 3

1-loop non-log

treefnn k

k c

nb A

NA

1/ ,( ) ( ) 01-loop

non-logn sk

skbA z z

Page 20: Automated Computation of One-Loop Amplitudes

MHV RESULTS Precision tests using 100,000 phase space points

with cuts. ET>0.01√s. Pseudo-rapidity η>3. ΔR>4,

2 2R 10l |og |

| |

num ref

refPrecision A AA

No tests

Apply tests

Recomputed higher precisionPrecision

Log 10

num

ber o

f poi

nts

Page 21: Automated Computation of One-Loop Amplitudes

NMHV RESULTS Other 6-pt amplitudes are similar

Precision

Log 10

num

ber o

f poi

nts

Page 22: Automated Computation of One-Loop Amplitudes

MORE MHV RESULTS Again similar results when increasing the

number of legs

Precision

Log 10

num

ber o

f poi

nts

Page 23: Automated Computation of One-Loop Amplitudes

TIMING On a 2.33GHz Xenon processor we have

The effect of the computation of higher precision at exceptional points can be seen.

Computation of spurious poles is the dominant part.

Helicity Cut part Only

Full double prec.

Full Multi prec.

--++++ 2.4ms 6.8ms 8.3ms--+++++ 4.2ms 10.5ms 14ms--++++++

6.1ms 28ms 43ms

-+-+++ 3.1ms 17.3ms 24ms-++-++ 3.3ms 60ms 76ms---+++ 4.4ms 12ms 16ms--+-++ 5.9ms 42ms 48ms-+-+-+ 6.9ms 62ms 80ms

Page 24: Automated Computation of One-Loop Amplitudes

CONCLUSION

BlackHat• Uses the

unitarity bootstrap to numerically compute one loop amplitudes.

First results• Multiple gluon

amplitudes.• Good control of

numerical instabilities.

• Control of exceptional points.

• Reasonable speed.

Future work• Include fermions

and vector bosons.

• Massive particles.

• Combine into full NLO corrections.