46
Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director Engineering Information Systems Lab eislab.gatech.edu CALS Technology Center Georgia Institute of Technology NASA STEP for Aerospace Workshop Jet Propulsion Lab Pasadena CA January 25-27, 2000

Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

Embed Size (px)

Citation preview

Page 1: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects

Russell S. PeakSenior Researcher & Assistant DirectorEngineering Information Systems Labeislab.gatech.edu

CALS Technology CenterGeorgia Institute of Technology

NASA STEP for Aerospace WorkshopJet Propulsion Lab Pasadena CA

January 25-27, 2000

Page 2: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

2Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Outline

Analysis Integration Objectives & Challenges

Technique Highlights and Applications Constrained Objects (COBs) Overview

Usage for Analysis Integration

Summary

Page 3: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

3Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Analysis Integration Objectives for Simulation-based Design

Environments,Mfg. CAD/CAM,Measurements,

etc.

Conditions

Analysis Results

Ansys

Abaqus

CAE

ImprovedDesign / Process

SelectedAnalysis Module (CBAM)

AutomatedIdealization/

Defeaturization

MCAD

ECAD

DesignProduct Model

CBAM= context-based analysis model

• Highly automated• Reusable, modular, extensible• Product-specific• Leveraging generic solvers

Analysis Results

Ansys

Abaqus

CAE

IterativeImprovements

Analysis Module Catalogs

Analysis Results

Ansys

Abaqus

CAE

Page 4: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

4Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Analysis Integration Challenges: Diverse Disciplines

Thermal

Thermomechanical

Fatigue

Vibration

Electromagnetic

Electrical

PWA 95145

U101

L101 T102

Q105

T101

Q104

R101

CR102

C102

C203 CR154 CR152

R163 CR151 CR101

C104

C103

R109 R110

Q101 Q102 C120

CR133

C153

C146 C147 C106

C111

C112

R230 R232 R233

R102 Q103

U107

U108

U103

U104

U109

U110

U105

U106

C123

R106 R107 R108

R111 R112 R113 R114 R115

R231

C118

x y

PWB 96510

J101

U102

N

Page 5: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

5Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Analysis Integration Challenges: Heterogeneous Transformations

Heterogeneous Transformation

Homogeneous Transformation

Mentor Graphics Cadence

STEPAP210

Mentor Graphics Ansys

STEPAP210

STEPAP209??

DesignModel A

DesignModel B

DesignModel A

AnalysisModel A

Page 6: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

6Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Multi-Fidelity Reusable Idealizations

Design Model

Multi-FidelityIdealizations

2-D bounding box

3-D bounding box

Multiple Uses

SolderJointDeformation

Analysis Models

PWACooling

SolderJointDeformation

PWACooling

Multiple Uses

Page 7: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

7Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Multi-Fidelity Idealizations

p 17, 20

p 19.1

inboard beam

Design Model (MCAD) Analysis Models (MCAE)

1D Beam/Stick Model

3D Continuum/Brick Model

flap support assembly

Page 8: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

8Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Design Geometry - Analysis Geometry Mismatch

Analysis Model (with Idealized Features)

Detailed Design Model

Channel Fitting Analysis

“It is no secret that CAD models are driving more of today’s product development processes ... With the growing number of design tools on the market, however, the interoperability gap with downstream applications, such as finite element analysis, is a very real problem. As a result, CAD models are being recreated at unprecedented levels.” Ansys/ITI press Release, July 6 1999

http://www.ansys.com/webdocs/VisitAnsys/CorpInfo/PR/pr-060799.html

Idealizations

Missing: Explicit idealization relations1 : b = cavity3.inner_width + rib8.thickness/2

+ rib9.thickness/2

Page 9: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

9Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Missing Today:Explicit Design-Analysis Associativity

CAD Modelbulkhead assembly attach point

CAE Model channel fitting analysis

materialproperties

idealizedanalysis

geometry

analysisresults

No explicit

fine-grained

CAD-CAE

associativity

detaileddesigngeometry

Page 10: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

10Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Multi-Directional Relations“The Big Switch”

Sizing/synthesis during early design stages– Input: Desired results - Ex. fatigue life, margin of safety– Output: Idealized design parameters– Outputs then used as targets to guide detailed design

Analysis/req. checking during later design stages– Input: Detailed design parameters– Intermediate results: Idealized design parameters – Output: Analysis results - Ex. fatigue life, margin of

safety– Outputs then compared with requirements

Page 11: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

11Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

X-Analysis Integration TechniquesMulti-Representation Architecture (MRA)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

I n f o r m a l A s s o c i a t i v i t y D i a g r a m

C o n s t r a i n t S c h e m a t i c ( I n f o r m a t i o n M o d e l )

P l a n e S t r a i n B o d i e s S y s t e m

P W A C o m p o n e n t O c c u r r e n c e

CL

1

m a t e r i a l ,E( , )g e o m e t r y

b o d y

p l a n e s t r a i n b o d y , i = 1 . . . 4P W B

S o l d e rJ o i n t

E p o x y

C o m p o n e n tb a s e : A l u m i n a

c o r e : F R 4

S o l d e r J o i n t P l a n e S t r a i n M o d e l

t o t a l h e i g h t , h

l i n e a r - e l a s t i c m o d e l

A P M A B B

3 A P M 4 C B A M

2 A B Bc

4b o d y 3b o d y

2b o d y

1h oT

p r i m a r y s t r u c t u r a l m a t e r i a l

ii

i

1 S M M

D e s i g n M o d e l A n a l y s i s M o d e l

A B B S M M

s o l d e rs o l d e r j o i n t

p w b

c o m p o n e n t

1 . 2 5

d e f o r m a t i o n m o d e l

t o t a l h e i g h t

d e t a i l e d s h a p e

r e c t a n g l e

[ 1 . 2 ]

[ 1 . 1 ]

a v e r a g e

[ 2 . 2 ]

[ 2 . 1 ]

cT c

T s

i n t e r - s o l d e r j o i n t d i s t a n c ea p p r o x i m a t e m a x i m u m

s j

L s

p r i m a r y s t r u c t u r a l m a t e r i a l

t o t a l t h i c k n e s s

l i n e a r - e l a s t i c m o d e l

P l a n e S t r a i n

g e o m e t r y m o d e l 3

a

s t r e s s - s t r a i nm o d e l 1

s t r e s s - s t r a i nm o d e l 2

s t r e s s - s t r a i nm o d e l 3

B o d i e s S y s t e m

x y , e x t r e m e , 3

T 2

L 1

T 1

T 0

L 2

h 1

h 2

T 3

T s j

h s

h c

L c

x y , e x t r e m e , s jb i l i n e a r - e l a s t o p l a s t i c m o d e l

l i n e a r - e l a s t i c m o d e l

p r i m a r y s t r u c t u r a l m a t e r i a l l i n e a r - e l a s t i c m o d e l

c o m p o n e n to c c u r r e n c e

s o l d e r j o i n ts h e a r s t r a i nr a n g e

[ 1 . 2 ]

[ 1 . 1 ]l e n g t h 2 +

3 A P M 2 A B B

Explicit Design-Analysis Associativity

Analysis Module Creation Methodology

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Physical Behavior ResearchDesign Handbooks

CommercialAnalysis Tools

Ansys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder Joint

Component

APM CBAM ABB SMM

Routine Analysis(Module Usage)

Routinization(Module Creation)

CAE

Page 12: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

12Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

XaiToolsX-Analysis Integration Toolkit

t e m p e r a t u r e c h a n g e , T

c t e ,

y o u n g s m o d u lu s , E

s t r e s s ,

s h e a r m o d u lu s , G

p o is s o n s r a t io ,

s h e a r s t r e s s , s h e a r s t r a in ,

t h e r m a l s t r a in , t

e la s t ic s t r a in , e

s t r a in ,

r 2

r 1)1(2

EG

r 3

r 4Tt

Ee

r 5

G

te

Multi-Representation Architecture (MRA)Implementation

Analysis Modules & Building BlocksConstraint Schematics Implementations

deformation model

Thermal Bending System

L

b

T

Treference

t

T

total diagonalpwb

total thickness

coefficient of thermal bending

warpage

al1

al2

mv1

al3

soldersolder joint

pwb

component

1.25

deformation model

total height

detailed shape

rectangle

[1.2]

[1.1]

average

[2.2]

[2.1]

cTc

Ts

inter-solder joint distanceapproximate maximum

sj

L s

primary structural material

total thickness

linear-elastic model

Plane Strain

geometry model 3

a

stress-strainmodel 1

stress-strainmodel 2

stress-strainmodel 3

Bodies System

xy, extreme, 3

T2

L1

T1

T0

L2

h1

h2

T3

Tsj

hs

hc

L c

xy, extreme, sjbilinear-elastoplastic model

linear-elastic model

primary structural material linear-elastic model

componentoccurrence

solder jointshear strainrange

[1.2]

[1.1]length 2 +

3 APM 2 ABB2

1

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

TM

ODBMS*, PDM*

Other CORBAWrappers*

MCAD: CATIAIDEAS*, Pro/E*, AutoCAD*

ECAD: Mentor Graphics (AP210)Accel (PDIF, GenCAM)*

FEA: Ansys, Elfini*, Abaqus*Math: Mathematica, MatLab*, MathCAD*

In-House Codes

MaterialPropertyManager

ConstraintSolver

COB Schemas

objects, x.cos, x.exp

Custom Tools

Mathematica

Template Libraries: Analysis Packages*, CBAMs, ABBs, APMs, Conditions*Instances: Usage/adaptation of templates

AnalysisCodes

COB Instances

objects, x.coi, x.step

Tool Forms(parameterized

tool models/full* SMMs)

CAD Tool

PersistentObject

Repository

Design Tools

COB Server

StandardParts

Manager

asterisk (*) = in-progress/envisioned extensions

Analysis Mgt. Tools

COB Analysis ToolsNavigator: XaiTools

Editor (text & graphical*)

Pullable Views*,Condition Mgr*, ...

CORBA Wrapper

CAD/E Framework Architecture

Product-Specific Applications

Aerospace structural analysis PWA-B thermomechanical analysis & design

XaiTools PWA-BTM

Electronic package thermal analysisXaiTools ChipPackageTM

Page 13: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

13Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Example Projects

Team Integrated Electronic Response (TIGER)– Sponsor: Defense Advanced Research Prog. Admin. (DARPA) (SCRA subcontract)– Domain: PWA/B thermomechanical analysis

Product Data-Driven Analysis in a Missile Supply Chain (ProAM)– Sponsor: U. S. DoD JECPO National ECRC Program (CTC subcontract)– Stakeholder: U. S. Army Missile Command (AMCOM)– Domain: PWA/B thermomechanical analysis

Design-Analysis Associativity Technology for PSI (PSI-DANTE)– Sponsor: Boeing– Domain: Structural analysis

Design-Analysis Integration Research for Electronic Packaging– Sponsor: Shinko Electric– Domain: Chip package thermal resistance analysis

Page 14: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

14Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Analysis Tools

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Flexible High Diversity Design-Analysis Integration Aerospace Examples:

“Bike Frame” / Flap Support Inboard Beam

Analysis Modules (CBAMs) of Diverse Feature:Mode, & Fidelity

Design Tools

Materials DBFEA

Elfini*MATDB-like

Analyzable Product Model

XaiTools

XaiTools

Fitting:Bending/Shear

3D

1.5D

Modular, Reusable Template Libraries

MCAD ToolsCATIA

Lug:Axial/Oblique; Ultimate/Shear

1.5D

Assembly:Ultimate/

FailSafe/Fatigue*

* = Item not yet available in toolkit (all others have working examples)

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, Dover

D

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

Fasteners DB

FASTDB-like

General Math Mathematica

In-HouseCodes

Image API(CATGEO)

Page 15: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

15Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

ProAM Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue** 1D,

2D

1D,2D,3D

Modular, Reusable Template Libraries

ECAD Tools Mentor Graphics,

Accel*

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

PWBWarpage

1D,2D

Materials DB

PWB Layup ToolXaiTools PWA-B

STEP AP210‡ GenCAM**,

PDIF*

‡ AP210 DIS WD1.7 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

Page 16: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

16Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Design AutomationPost-Lamination Thickness Calculation

Before: Typical Manual Worksheet(as much as 1 hour engr. time)

After: Tool-Aided Design

321

221

1 2/2/C

t

ytC

t

ytC

n

iii

n

iii

B

n

ithickessnestedthicknessationlapost1

__min_

filltoretkthicknessnestedp

isfnsetprepreg _sin__1

_

Page 17: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

17Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Iterative Design & Analysisusing XaiTools PWA-B

AnalyzableProduct Model

PWB Layup Design Tool

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

2 Oz. Cu

2 Oz. CuTetra GF

Tetra GF

3 x 1080

3 x 1080

2 x 2116

2D Plane Strain Model

b L T

t

2

Detailed FEA Check

bi i i

i

w y

t w

/ 2

1D Thermal Bending Model

LayupRe-design

PWB Warpage Modules

Quick Formula-based Check

Page 18: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

18Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Flexible High Diversity Design-Analysis Integration

Electronic Packaging Examples: Chip Packages/Mounting (work-in-progress for Shinko Electric)

EBGA, PBGA, QFP

CuGround

PKG

Chip

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiTools

XaiToolsChipPackage

ThermalResistance 3D

Modular, Reusable Template Librariestemperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

Design Tools

PWB Laminates DB

Materials DB*

Prelim/APM Design ToolXaiTools ChipPackage

ThermalStress

Basic 3D**

** = Demonstration module

Page 19: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

19Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

APM Design ToolPreliminary Design of Packages

Page 20: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

20Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Generic COB Browser with design and analysis objects

(attributes and relations)

CustomizedAnalysis Module Tool

with idealized package cross-section

COB-based Analysis Tools

Typical Input Objects

Page 21: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

21Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

FEATemperature Distribution

COB-based Analysis Tools

Typical Highly Automated Results

Thermal Resistancevs.

Air Flow Velocity

Auto-CreatedFEA Inputs

& Mesh Model

Analysis Module Tool with Results Summaries

Page 22: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

22Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Using Internet-based Analysis Solvers

Finite ElementAnalysis (FEA)

Solver

Client PC Solver Servers

MathSolverXaiTools

Thick Client

Ansys

Mathematica

User Engineering Service Bureau

InternetC

OR

BA

Current:U-Engineer.comPilot Demo

Future:Company Internal orU-Engineer.com

Page 23: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

23Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Outline

Objectives & Challenges Technique Highlights and Applications Constrained Objects (COBs) Overview

Usage for Analysis Integration

Summary

Page 24: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

24Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

COB Structure: Graphical Forms

Spring Primitive

v a r i a b l e s u b v a r i a b l es u b s y s t e m

e q u a l i t y r e l a t i o n

r e l a t i o n

s

a b

dc

a

b

d

c

e

a . das

r 1r 1 ( a , b , s . c )

e = f

s u b v a r i a b l e s . b

[ 1 . 2 ]

[ 1 . 1 ]o p t i o n 1 . 1

ff = s . d

o p t i o n 1 . 2

f = g

o p t i o n c a t e g o r y 1

gcbe

r 2

h o f c o b t y p e h

wL [ j : 1 , n ]

w j

a g g r e g a t e c . we l e m e n t w j

Basic Constraint Schematic NotationTemplate Structure (Schema )

L

L

Fk

u n d e fo rm e d le n g th ,

s p r in g c o n s ta n t, fo rc e ,

to ta l e lo n g a tio n ,

1x

Lle n g th ,0

2x

s ta rt,

e n d ,

oLLL

12 xxL

LkF

r1

r2

r3

Constraint Schematic

FF

k

L

deformed state

Lo

L

x2x1

Figure

LkFr

LLLr

xxLr

:

:

:

3

02

121

Relations

SpringElementary

LL

Fk

1x L

0

2x

Subsystem View(for reuse by other COBs)

Page 25: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

25Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

COB Structure: Lexical Form Spring Primitive

L

L

Fk

u n d e fo rm e d le n g th ,

s p r in g c o n s ta n t, fo rc e ,

to ta l e lo n g a tio n ,

1x

Lle n g th ,0

2x

s ta rt,

e n d ,

oLLL

12 xxL

LkF

r1

r2

r3

Constraint Schematic

Lexical COB Schema Template

COB spring SUBTYPE_OF abb; undeformed_length, L<sub>0</sub> : REAL; spring_constant, k : REAL; start, x<sub>1</sub> : REAL; end, x<sub>2</sub> : REAL; length, L : REAL; total_elongation, &Delta;L : REAL; force, F : REAL; RELATIONS r1 : "<length> == <end> - <start>"; r2 : "<total_elongation> == <length> - <undeformed_length>"; r3 : "<force> == <spring_constant> * <total_elongation>";END_COB;

Page 26: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

26Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

22 m m

10 N

2 m m

5 N /m m

20 m m

e xa m p le 1 , s ta te 1

L

L

Fk

unde fo rm ed leng th ,

sp ring cons tan t, fo rce ,

to ta l e longa tion ,

1x

Lleng th ,0

2x

s ta rt,

end ,

oLLL

12 xxL

LkF

r1

r2

r3

200 lbs

30e6 psiResult b = 30e6 psi (output or intermediate variable)

Result c = 200 lbs (result of primary interest)

X

Relation r1 is suspended X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

Example COB InstanceSpring Primitive

Constraint Schematic Instance Views Lexical COB Instances

Basic Constraint Schematic NotationInstances

input:

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 5.0; start : ?; end : ?; length : ?; total_elongation : ?; force : 10.0;END_INSTANCE;

result (reconciled):

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 5.0; start : ?; end : ?; length : 22.0; total_elongation : 2.0; force : 10.0;END_INSTANCE;

Page 27: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

27Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Multi-Directional I/O (non-causal)Spring Primitive

Constraint Schematic Instance View Lexical COB Instance(state 5)

2 m m

40 N20 N /m m

20 m m

exam p le 1 , s ta te 5

10 m m

32 m m

22 m m

L

L

Fk

unde fo rm ed leng th ,

sp ring cons tan t, fo rce ,

to ta l e longa tion ,

1x

Lleng th ,0

2x

s ta rt,

end ,

oLLL

12 xxL

LkF

r1

r2

r3

input:

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : ?; start : 10.0; end : ?; length : 22.0; total_elongation : ?; force : 40.0;END_INSTANCE;

result:

INSTANCE_OF spring; undeformed_length : 20.0; spring_constant : 20.0; start : 10.0; end : 32.0; length : 22.0; total_elongation : 2.0; force : 40.0;END_INSTANCE;

22 m m

10 N

2 m m

5 N /m m

20 m m

e xa m p le 1 , s ta te 1

L

L

Fk

unde fo rm ed leng th ,

sp ring cons tan t, fo rce ,

to ta l e longa tion ,

1x

Lleng th ,0

2x

s ta rt,

end ,

oLLL

12 xxL

LkF

r1

r2

r3

Design check

Design synthesis

Page 28: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

28Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

COBs as Building BlocksTwo Spring System

P

k1 k2

u2u1

Constraint Schematic

Lexical COB Schema Template

COB spring_system SUBTYPE_OF analysis_system; spring1 : spring; spring2 : spring; deformation1, u<sub>1</sub> : REAL; deformation2, u<sub>2</sub> : REAL; load, P : REAL; RELATIONS bc1 : "<spring1.start> == 0.0"; bc2 : "<spring1.end> == <spring2.start>"; bc3 : "<spring1.force> == <spring2.force>"; bc4 : "<spring2.force> == <load>"; bc5 : "<deformation1> == <spring1.total_elongation>"; bc6 : "<deformation2> == <spring2.total_elongation> + <deformation1>";END_COB;

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

Page 29: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

29Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

input:INSTANCE_OF spring_system; spring1.undeformed_length : 8.0; spring1.spring_constant : 5.5; spring2.undeformed_length : 8.0; spring2.spring_constant : 6.0; load : 10.0;END_INSTANCE;

result:INSTANCE_OF spring_system; spring1.undeformed_length : 8.0; spring1.spring_constant : 5.5; spring1.start : 0.0; spring1.end0 : 9.81818181818182; spring1.force : 10.0; spring1.total_elongation : 1.818181818181818; spring1.length : 9.81818181818182; spring2.undeformed_length : 8.0; spring2.spring_constant : 6.0; spring2.start : 9.81818181818182; spring2.force : 10.0; spring2.total_elongation : 1.666666666666666; spring2.length : 9.66666666666667; spring2.end0 : 19.48484848484848; load : 10.0; deformation1 : 1.818181818181818; deformation2 : 3.484848484848484;END_INSTANCE;

Analysis System InstanceTwo Spring System

Constraint Schematic Instance View Lexical COB Instance

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

1 . 8 1 8

1 0 . 0 6 . 0

8 . 0

5 . 5

8 . 0

3 . 4 8 5

9 . 8 1 8

1 0 . 0

1 0 . 0

9 . 8 1 8

1 . 6 6 7

9 . 6 6 7

1 9 . 4 8

1 . 8 1 8

9 . 8 1 8

Page 30: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

30Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Spring Examples Implemented in XaiTools X-Analysis Integration

Toolkit

Page 31: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

31Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

COB Modeling Views

COB InstanceLanguage

Extended Constraint Graphs-I

Constraint Schematic-I

STEPPart 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in

Subsystem Views

Object Relationship Diagram

COB SchemaLanguage

I/O Tables

Extended Constraint Graphs

Constraint Schematic

STEPExpress

Express-G

HTML

HTML

Page 32: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

32Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Flexible High Diversity Design-Analysis IntegrationTutorial Examples: Flap Link (Mechanical/Structural Analysis)

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

MCAD Tools

Materials DB

y

xPP

E, A

LLeff

,

L

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiTools

XaiTools

Extension

Torsion1D

1D,2D,3D*

Modular, Reusable Template Libraries

CATIA

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

* = Item not yet available in toolkit (all others have working examples)

Design Tools

Page 33: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

33Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

Tutorial Example:Flap Link Analysis Problems/CBAMs

* Boundary condition objects & pullable views are WIP*

(1) Extension Analysisa. 1D Extensional Rodb. 2D Plane Stress FEA

1. Mode: Shaft Tension

2. BC ObjectsFlaps down : F =

3. Part Feature (idealized)

4. Analysis Calculations

1020 HR Steel

E= 30e6 psi

Leff = 5.0 in

10000 lbs

AF

ELL eff

5. Objective

A = 1.13 in2

allowable 18000 psi

1

allowableMS 1.03

(2) Torsion Analysis

(1a) Analysis Problem for 1D Extension Analysis

Solution Tool Links

BC Object Links(other analyses)*

Design/Idealization Links

Material Links

Pullable Views*

Flap Link SCN

Page 34: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

34Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Flap Linkage Extensional Model:

Lexical COB StructureCOB link_extensional_model SUBTYPE_OF link_analysis_model; DESCRIPTION "Represents 1D formula-based extensional model."; ANALYSIS_CONTEXT PART_FEATURE link : flap_link BOUNDARY_CONDITION_OBJECTS associated_condition : condition; MODE "tension"; OBJECTIVES stress_mos_model : margin_of_safety_model; ANALYSIS_SUBSYSTEMS */ deformation_model : extensional_rod_isothermal; RELATIONS al1 : "<deformation_model.undeformed_length> == <link.effective_length>"; al2 : "<deformation_model.area> == <link.shaft.critical_cross_section.basic.area>"; al3 : "<deformation_model.material_model.youngs_modulus> ==

<link.material.stress_strain_model.linear_elastic.youngs_modulus>";

al4 : "<deformation_model.material_model.name> == <link.material.name>"; al5 : "<deformation_model.force> == <associated_condition.reaction>";

al6 : "<stress_mos_model.allowable> == <link.material.yield_stress>"; al7 : "<stress_mos_model.determined> == <deformation_model.material_model.stress>";END_COB;

Desired categorization of attributes is shown above (as manually inserted) to support pullable views. Categorization capabilities is a planned XaiTools extension.

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

Page 35: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

35Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

FEA-based Analysis Subsystem Used in Linkage Plane Stress Model (2D Analysis

Problem)

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

Higher fidelity version vs. Linkage Extensional Model

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

Page 36: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

36Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Flap Linkage Torsional Model

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t

Diverse Mode (Behavior) vs. Linkage Extensional Model

Page 37: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

37Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Today’s Typical Analysis Catalogspaper-oriented, no associativity

Channel Fitting End Pad Bending Analysis

AngleFitting

BathtubFitting

ChannelFitting

Categories of Idealized FittingsCalculation Steps

Page 38: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

38Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Transformation into Object-Oriented Hierarchy of ABBs

Fitting Casing Body

Channel Fitting Casing Body*

Bathtub Fitting Casing Body

Angle FittingCasing Body

Fitting System ABB

Fitting Wall ABBFitting End Pad ABB

Fitting Bolt Body*

Open Wall FittingCasing Body

Fitting End Pad Bending ABB Fitting End Pad

Shear ABB*

Open Wall Fitting End Pad Bending ABB

Channel FittingEnd Pad Bending ABB*

e

se

tr

Pf

02

3 )2( b 1 teKC

21

e

be

ht

PCf

21 1 KKC

),,,( 011 erRrfK

),(2 we ttfK

),,( 13 hbrfK

baR

2

dfRe

),min( wbwaw ttt

bolt

load

Fitting Washer Body

Specialized Analysis Body

P

ABB

Specialized Analysis System

washercasing

* = Working Examples

Page 39: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

39Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

r1

sefactual shear stress,bolt.head.radius, r0

end_pad.thickness, te

load, P e

setr

Pf

02

Channel Fitting System ABBs

End Pad Bending Analysis

End Pad Shear Analysis

e n d _ p a d .e cce n tr ic ity , e

e n d _ p a d .w id th , b

b o lt.h o le .ra d iu s , r1

r2 r3

r1

h

r1

h

be n d _ p a d .h e ig h t, h3K

befa c tu a l b e n d in g s tre ss ,

ch a n n e l f itt in g fa c to r,

D M 6 -8 1 7 6 6 F ig u re 3 .3

b a se .th ickn e ss , tb

e n d _ p a d .th ickn e ss , te

lo a d , P

23 )2(e

bbeht

PteKf

Page 40: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

40Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Reusable Fitting Analysis Module (CBAM) with explicit design associativity

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Page 41: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

41Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Fitting Analysis Module in XaiTools Integration Focal Point

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between detailed CAD data & idealized analysis features

Fitting & MoS ABBs

Library data for materials & fasteners

Page 42: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

42Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Constrained Object Language (COBs)

Capabilities & features:– Various forms: computable lexical form, graphical form, etc.– Sub/supertypes, basic aggregates, multi-fidelity objects– Multi-directionality (I/O change)– Wrapping external programs as white box relations

Analysis module/template applications: – Product model idealizations– Explicit associativity relations with design models & other analyses– White box reuse of existing tools (e.g., FEA, in-house codes)– Reusable, adaptable analysis building blocks

– Synthesis (sizing) and verification (analysis)

Page 43: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

43Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Constrained Object Language (cont.) Overall characteristics

– Declarative knowledge representation– Combining object & constraint graph techniques– COBs = (STEP EXPRESS subset) + (constraint concepts & views)– Advantages over traditional analysis representations:

» Greater solution control» Richer semantics (e.g., equations wrapped in engineering context)» Capture of reusable knowledge

Further needs …– Higher order constraints– Hybrid declarative/procedural approaches– Etc.

Page 44: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

44Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Summary Emphasis on X-analysis integration (XAI) for design reuse (DAI,SBD) Multi-Representation Architecture (MRA)

– Addressing fundamental XAI/DAI issues:» Multi-fidelity, multi-directional, fine-grained associativity, etc.

– General methodology --> Flexibility & broad application Research advances & applications

– Product data-driven analysis (STEP AP210, GenCAM, etc.)– Internet-based engineering service bureau (ESB) techniques– Object techniques for next-generation aerospace analysis systems– ~10:1 analysis time reduction in pilot tests (chip packages)

Tools and development services– Analysis integration toolkit: XaiTools Framework and applications– Pilot commercial ESB: U-Engineer.com– Company-tailored engineering information system solutions

Motivated by industry & government collaboration

Page 45: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

45Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

Selected Tools and Services offered via Georgia Tech Research Corp.

http://eislab.gatech.edu/

XaiTools Framework™

– General-purpose analysis integration toolkit Product-Specific Toolkits

– XaiTools PWA-B™

– XaiTools ChipPackage™

U-Engineer.com™

– Internet-based engineering service bureau (ESB)– Self-serve analysis modules Full-serve consulting

Research, Development, and Consulting– Analysis integration & optimization– Product-specific analysis module catalogs – Internet-based ESB development– Engineering information technology

» PDM, STEP, GenCAM, XML, UML, Java, CORBA, Internet, …– CAD/CAE/CAM, FEA, thermal & mechanical analysis

Page 46: Automating Product Data-Driven Analysis Using Multifidelity Multidirectional Constrained Objects Russell S. Peak Senior Researcher & Assistant Director

46Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1999 GIT

For Further Information ...

EIS Lab web site: http://eislab.gatech.edu/– Publications, project overviews, tools, etc.– See Publications, DAI/XAI, Suggested Starting Points

XaiTools home page: http://eislab.gatech.edu/tools/XaiTools/

Pilot commercial ESB: http://www.u-engineer.com/– Internet-based self-serve analysis– Analysis module catalog for electronic packaging– Highly automated front-ends to general FEA & math tools