50
1 Autonomous Navigation in Libration Point Orbits Keric A. Hill Thesis Committee: George H. Born, chair R. Steven Nerem Penina Axelrad Peter L. Bender Rodney Anderson 27 April 2007

Autonomous Navigation in Libration Point Orbits

  • Upload
    lihua

  • View
    67

  • Download
    1

Embed Size (px)

DESCRIPTION

Autonomous Navigation in Libration Point Orbits. Keric A. Hill Thesis Committee: George H. Born, chair R. Steven Nerem Penina Axelrad Peter L. Bender Rodney Anderson 27 April 2007. Why Do We Need Autonomy?. Image credit: http://solarsystem.nasa.gov/multimedia/gallery/. - PowerPoint PPT Presentation

Citation preview

Page 1: Autonomous Navigation in  Libration Point Orbits

1

Autonomous Navigation in Libration Point Orbits

Keric A. Hill

Thesis Committee:

George H. Born, chairR. Steven NeremPenina AxelradPeter L. Bender

Rodney Anderson

27 April 2007

Page 2: Autonomous Navigation in  Libration Point Orbits

2

Why Do We Need Autonomy?

Image credit: http://solarsystem.nasa.gov/multimedia/gallery/

Page 3: Autonomous Navigation in  Libration Point Orbits

3

Measurement Types

Measurement TypeAccuracy

• Horizon Scanner angles to Earth

• Stellar Refraction angles to Earth

• Landmark Tracker angles to Landmark km

• Space Sextant scalar to the Moon km

• Sun sensors angles to the Sun

• Star trackers angles to stars

• Magnetic field sensors angles to Earth km

• Optical Navigation angles to s/c or bodies

• X-ray Navigation scalar to barycenter km

• Forward Link Doppler scalar to groundstation km

• DIODE (near Earth) scalar to DORIS stations m

• GPS (near Earth) 3D position, time cm

• Crosslinks (LiAISON) scalar to other s/c m

Page 4: Autonomous Navigation in  Libration Point Orbits

4

Crosslinks

SST picture

Image credit: http://www.centennialofflight.gov/essay/Dictionary/TDRSS/

• Scalar measurements (range or range-rate)

• Estimate size, shape of orbits

• Estimate relative orientation of the orbits.

Page 5: Autonomous Navigation in  Libration Point Orbits

5

Crosslinks

• Scalar measurements (range or range-rate)

• Estimate size, shape of orbits

• Estimate relative orientation of the orbits.

Image credit: http://www.centennialofflight.gov/essay/Dictionary/TDRSS/

Page 6: Autonomous Navigation in  Libration Point Orbits

6

Two-body Problem SST

Page 7: Autonomous Navigation in  Libration Point Orbits

7

Two-body Problem SST

Page 8: Autonomous Navigation in  Libration Point Orbits

8

Two-body Problem SST

Page 9: Autonomous Navigation in  Libration Point Orbits

9

Two-Body Symmetry

The vector field of accelerations in the x-y plane for the two-body problem.

Page 10: Autonomous Navigation in  Libration Point Orbits

10

Two-Body Solutions

Initial Conditions

000 ,, zyx

Page 11: Autonomous Navigation in  Libration Point Orbits

11

Two-Body Solutions

• All observable:

– a1, a2, e1, e2, v1, v2

• NOT all observable:

– Ω1, Ω2, i1, i2, ω1, ω2

Initial Conditions

Radius20

20

20 zyx

000 ,, zyx

Page 12: Autonomous Navigation in  Libration Point Orbits

12

J2 Symmetry

The vector field of accelerations in the x-z plane for two-body and J2.

Page 13: Autonomous Navigation in  Libration Point Orbits

13

J2 Solutions

Initial Conditions

000 ,, zyx

Page 14: Autonomous Navigation in  Libration Point Orbits

14

J2 Solutions

• Observable:– a1, a2, e1, e2, v1, v2,

– ΔΩ, i1, i2, ω1, ω2

• NOT observable:– Ω1, Ω2

Initial Conditions

000 ,, zyx

Radius:

Height:

20

20 yx

0z

Page 15: Autonomous Navigation in  Libration Point Orbits

15

Circular Restricted Three-body Problem

P1 P2x

y

Barycenter

z

μ 1-μ

r1 r2

spacecraft

Page 16: Autonomous Navigation in  Libration Point Orbits

16

Three-body Symmetry

The vector field of accelerations in the x-z plane for the three-body problem.

Page 17: Autonomous Navigation in  Libration Point Orbits

17

Lagrange Points

x

y

L1 L2

L4

L5

L3

P1 P2

Page 18: Autonomous Navigation in  Libration Point Orbits

18

Three-body Solutions

Page 19: Autonomous Navigation in  Libration Point Orbits

19

Proving Observability

• Orbit determination with two spacecraft.

• One spacecraft is in a lunar halo orbit.

• Observation type: Crosslink range.

– Gaussian noise 1 σ = 1.0 m.

• Batch processor :

– Householder transformation.

• Fit span = 1.5 halo orbit periods (~18 days).

• Infinite a priori covariance.

• Observations every ~ 6 minutes.

• LOS checks.

Page 20: Autonomous Navigation in  Libration Point Orbits

20

OD Accuracy Metric

Page 21: Autonomous Navigation in  Libration Point Orbits

21

Position Along the Halo

Page 22: Autonomous Navigation in  Libration Point Orbits

22

Initial Positions

Sat 1

Page 23: Autonomous Navigation in  Libration Point Orbits

23

Spacecraft Separation

Page 24: Autonomous Navigation in  Libration Point Orbits

24

Out of Plane Component

LL1 Halo2 constellations

Page 25: Autonomous Navigation in  Libration Point Orbits

25

LL3 Results: Weak

Page 26: Autonomous Navigation in  Libration Point Orbits

26

Halo-Moon

Page 27: Autonomous Navigation in  Libration Point Orbits

27

Monte Carlo Analysis

Page 28: Autonomous Navigation in  Libration Point Orbits

28

Constellation Design Principles

• At least one spacecraft should be in a libration orbit.

• Spacecraft should be widely separated.

• Orbits should not be coplanar.

• Shorter period orbits lead to better results.

• More spacecraft lead to better results.

Page 29: Autonomous Navigation in  Libration Point Orbits

29

Some Interesting Questions

• How does orbit determination work for unstable orbits?

• Why do the phase angles of the spacecraft affect the orbit determination so much?

Page 30: Autonomous Navigation in  Libration Point Orbits

30

Observation Effectiveness

Accumulating the Information Matrix:

The effectiveness of the observation at time ti:

Page 31: Autonomous Navigation in  Libration Point Orbits

31

Observation Effectiveness for Two-body Orbits

Page 32: Autonomous Navigation in  Libration Point Orbits

32

Observation Effectiveness for Three-body Orbits

Page 33: Autonomous Navigation in  Libration Point Orbits

33

Two-body Orbits, by Components

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

-8

10-7

10-6

10-5

10-4

10-3

10-2

Time (days)

com

pone

nts

of

1

xyz

Page 34: Autonomous Navigation in  Libration Point Orbits

34

Three-body Orbits, by Components

0 2 4 6 8 10 12 1410

-5

10-4

10-3

10-2

10-1

100

101

102

Time (days)

com

pone

nts

of

1

xyz

Page 35: Autonomous Navigation in  Libration Point Orbits

35

Observation Effectiveness Dissected

Uncertainty Growth

Observation Geometry

Page 36: Autonomous Navigation in  Libration Point Orbits

36

Instability and Aspect Ratio

Larger Aspect Ratio

Smaller Aspect Ratio

Page 37: Autonomous Navigation in  Libration Point Orbits

37

Uncertainty Growth

Page 38: Autonomous Navigation in  Libration Point Orbits

38

Observation Geometry

Most Effective Observation Vector

Axis of Most Uncertainty

Least Effective Observation

Vector

Axis of Least Uncertainty

Page 39: Autonomous Navigation in  Libration Point Orbits

39

Local Unstable Manifolds

Page 40: Autonomous Navigation in  Libration Point Orbits

40

Realistic Simulations

• Truth Model:

– DE403 lunar and planetary ephemeris

– DE403 lunar librations

– Solar Radiation Pressure (SRP)

– LP100K Lunar Gravity Model

– 7th-8th order Runge-Kutta Integrator

– Stationkeeping maneuvers with execution errors

• Orbit Determination Model:

– Extended Kalman Filter with process noise

– SRP error ~10-9 m/s2

– LP100K statistical clone

– Stationkeeping maneuvers without execution errors

Page 41: Autonomous Navigation in  Libration Point Orbits

41

Halo Orbiter:4 Δv’s per period5% Δv errorscR error -> 1 x 10-9 m/s2

position error RSS ≈ 80 m

Snoopy-Woodstock Simulation

Lunar Orbiter:50x 95 km, polar orbit cR error -> 1 x 10-9 m/s2

5% Δv errors1σ gravity field cloneposition error RSS ≈ 7 m

Propagation: RK78 with JPL DE405 ephemeris, SRP, LP100K Lunar Gravity (20x20)

Orbit Determination: Extended Kalman Filte

Observations: Crosslink range with 1 m noise every 60 seconds

Moon

EarthThe lunar orbiter could hold science

instruments and be tracked to estimate the far side gravity field.

Page 42: Autonomous Navigation in  Libration Point Orbits

42

Snoopy

0 5 10 15 20 25 30-200

0

200

x sa

t 1

(m)

Day (RMS = 37.94 m) 64.7% < 1

EKF sat 1 position error with state noise 2.68e-009 m/s2, RSS = 77.78 m

x error

2 stdev

0 5 10 15 20 25 30-200

0

200

y sa

t 1

(m)

Day (RMS = 42.57 m) 52.3% < 1

y error

2 stdev

0 5 10 15 20 25 30-200

0

200

z sa

t 1

(m)

Day (RMS = 52.90 m) 66.1% < 1

z error

2 stdev

L2 halo orbiter EKF position

error

Page 43: Autonomous Navigation in  Libration Point Orbits

43

Woodstock

0 5 10 15 20 25 30-20

0

20

x sa

t 2

(m)

Day (RMS = 5.70 m) 90.8% < 1

EKF sat 2 position error with state noise 1.34e-008 m/s2, RSS = 6.87 m

x error

2 stdev

0 5 10 15 20 25 30-20

0

20

y sa

t 2

(m)

Day (RMS = 2.40 m) 71.3% < 1

y error

2 stdev

0 5 10 15 20 25 30-20

0

20

z sa

t 2

(m)

Day (RMS = 2.99 m) 91.0% < 1

z error

2 stdev

Lunar orbiter EKF position

error

Page 44: Autonomous Navigation in  Libration Point Orbits

44

L2-Frozen Orbit Simulation

0 5 10 15 20 25 30

-200

-100

0

100

200

x sa

t 1

(m)

Day (RMS = 16.66 m) 89.9% < 1

EKF sat 1 position error with state noise 1.34e-011 m/s2, RSS = 19.82 m

x error

2 stdev

0 5 10 15 20 25 30

-200

-100

0

100

200

y sa

t 1

(m)

Day (RMS = 7.49 m) 96.4% < 1

y error

2 stdev

0 5 10 15 20 25 30

-200

-100

0

100

200

z sa

t 1

(m)

Day (RMS = 7.71 m) 99.6% < 1

z error

2 stdev

L2 halo orbiter EKF position

error

Page 45: Autonomous Navigation in  Libration Point Orbits

45

L2-Frozen Orbit Simulation

Frozen orbiter EKF position

error

0 5 10 15 20 25 30-20

-10

0

10

20

x sa

t 2

(m)

Day (RMS = 4.23 m) 33.0% < 1

EKF sat 2 position error with state noise 1.34e-010 m/s2, RSS = 5.38 m

x error

2 stdev

0 5 10 15 20 25 30-20

-10

0

10

20

y sa

t 2

(m)

Day (RMS = 2.53 m) 56.6% < 1

y error

2 stdev

0 5 10 15 20 25 30-20

-10

0

10

20

z sa

t 2

(m)

Day (RMS = 2.16 m) 80.7% < 1

z error

2 stdev

Page 46: Autonomous Navigation in  Libration Point Orbits

46

Frozen Orbit Constellation

Frozen orbiter EKF position

error

Page 47: Autonomous Navigation in  Libration Point Orbits

47

L1-LEO

L1 halo orbiter EKF position

error

Page 48: Autonomous Navigation in  Libration Point Orbits

48

Application: Comm/Nav for the Moon

Image credit: http://photojournal.jpl.nasa.gov

L1 L2

South Pole/

Aitken Basin

Far

Side

EarthMoon

6 out of 10 of the lunar landing sites mentioned in ESAS require a communication relay.

Page 49: Autonomous Navigation in  Libration Point Orbits

49

Future Work

• Perform navigation simulations using independently validated software (GEONS was not quite ready).

• Compare ground-based navigation with space-based navigation at the Moon.

• Obtain and process crosslink measurements for any of the following situations:

– Halo Orbiter – Halo Orbiter

– Halo Orbiter – Lunar Orbiter

– Lunar Orbiter – Earth Orbiter

Page 50: Autonomous Navigation in  Libration Point Orbits

50

Acknowledgements

• This material is based upon work supported under a National Science Foundation Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

• The idea for this research came from Him for whom all orbits are known.