6
Ἑᕝᢏ⾡ㄽ㞟➨ᕳᖺ᭶ ሐయᾮ≧ཬሐయᐦᗘᙳ㡪 THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE LEVEE Ⲩᮌ⿱⾜ 1 ㇂ᮏಇ㍜ 2 ▼ཎ㞞つ 3 ᮌஓ 3 Hiroyuki ARAKI, Shunsuke TANIMOTO, Masanori ISHIHARA and Tetsuya SASAKI 1 ṇဨ ༤ᕤ ⊂❧⾜ᨻἲேᅵᮌ◊✲ᡤ ᆅ㉁ᆅ┙◊✲ᅵ㉁ 305-8516 Ⲉᇛ┴ࡤࡃࡘᕷ༡ཎ1-62 ṇဨ ⊂❧⾜ᨻἲேᅵᮌ◊✲ᡤ ᆅ㉁ᆅ┙◊✲ᅵ㉁㸦㸧 3 ṇဨ ᕤಟ ⊂❧⾜ᨻἲேᅵᮌ◊✲ᡤ ᆅ㉁ᆅ┙◊✲ᅵ㉁㸦㸧 The river levees located on non-liquefiable foundation layer were damaged by the 2011 off the Pacific coast of Tohoku Earthquake because liquefaction occurred at the saturated zone inside the river levee. The mechanism of the liquefaction inside a levee has not been clarified fully. In this study, a series of centrifugal model tests was conducted in order to evaluate the effects of soil density on the liquefaction inside a levee. The density of a bottom part of the levee with the degree of compaction (D c ) of 90 % decreases by 3 to 4 % due to the consolidation of the clay foundation layer below the levee. After shaking, crest settlement of the levee with D c of 90 % was approximately half of that of the levee with D c of 85 %. In the case of the levee with D c of 90 %, deformation of liquefaction zone at the bottom of the levee was restrained by the un-liquefaction zone located at the toes of the slope. Key Words : Levee, Earthquake, Liquefaction, Soil density, Centrifugal model test 㸯㸬 ࡌࡣ ㌾ᙅ⢓ᛶᅵᆅ┙⠏ሐሐ㜵㸪ሐయᗏ㒊 ᙧᡂ㣬ᇦᾮ≧㸦ሐయᾮ≧㸧Ⓨ⏕▱ࡀ㸬ሐయᾮ≧ࡌ⏕ࡀᆺⓗሐయ (1) ㌾ᙅ⢓ᛶᅵᆅ┙◁㉁ᅵ⠏ሐయ (2) ሐయⲴ㔜㌾ᙅ⢓ᛶᅵᆅ┙ᘼ≧ᅽᐦỿୗ(3) ㌾ᙅ⢓ᛶᅵᆅ ┙㎸ሐయᗏ㒊ᆅୗỈ௨ୗࡗ࡞㣬≧ ࡓࡗ࠸᮲௳ 1) ࡤ࠼2011ᖺᮾᆅ᪉ኴᖹὒἈᆅ㟈㜿Ṋ㝰ᕝ㸪 㬆℩ᕝ㸪Ụᕝ㸪ឿᕝ㸪᰿ᕝ㸪Ụᡞᕝ㸪ᮾᆅ 㛵ᮾᆅ᪉ᗈ⠊ᅖሐ㜵࠸࠾ሐయᾮ ≧⿕⅏☜ࡀ2) 1993ᖺ㔲㊰Ἀᆅ ᪤ ᆅ㟈࠸࠾㸪ሐయᾮ≧⿕⅏ ☜ࡀ 3) ሐ㜵⪏㟈Ⅼᑐ⟇࠸࠾ᇶ♏ ᆅ┙ᾮ≧║⨨ࡀࡀࡓࡁ2011ᖺᮾᆅ᪉ ኴᖹὒἈᆅ㟈㚷㸪ᚋሐయᾮ≧㛵 ᑐ⟇ᚲせሐ㜵ᢳฟᑐ⟇ᢏ⾡ࡀ❧☜ࡢᚲせ 㸬ሐయᾮ≧⿕⅏༴㝤⟠ᡤᢳฟ┠ⓗ 㸪㇂ᮏ 1) 2011ᖺᮾᆅ᪉ኴᖹὒἈᆅ㟈⿕ࡢᑐ㇟㸪ሐయᾮ≧せᅉศᯒ⾜ࡓࡗ㸬ኳ➃ỿ ⋡⿕⅏⛬ᗘᣦᶆ㸪ἲ໙㓄㸪ሐయᅵ㉁㸪ሐ యୗ㒊㣬ᒙཌ㛵㐃ᛶぢฟࡀࡓ㸪ᾮ≧ ᢠ㛵㐃ᛶ࠸῝ࡢᐦᗘ㛵࠸ࡘ⪃៖ ࠸࡞࠸㸪ሐయ┒࡞࠺ᅵ⮬యᾮ≧ࢬࢽゎ┠ⓗ㸪㐲ᚰᶍᆺᐇ㦂㸬ᯘ 4) ἾⅣᆅ┙◁ࡢ㉁┒ᅵᑐ㇟ࡓࡋ㐲ᚰᐇ㦂ᐇ 㸪┒ᅵෆᾮ≧ࡌ⏕ࡀ┒ᅵᗏ㒊ഃ᪉ὶ 㸪Ἶకࡀ࡞࠸ἲᑼࡣࡀࡇࡍኳ➃ỿୗࡓࡋOkamura et al. 5) ᇶ♏ᆅ ࡢ┙ࡀ࠸ሐయᾮ≧ᙳ㡪࠸ࡘ㸪㐲ᚰᶍᆺ ᐇ㦂㏻ウ⾜ࡓࡗ㸬ሐయⲴ㔜㌾ᙅ⢓ ᛶᅵᒙᅽᐦỿୗሐయᗏ㒊ఙᙇኚᙧࡌ⏕ࡀ ሐయෆᾮ≧ࡌ⏕ࡀࡀ࡞ࡋ㸪᪤ ◊✲ሐయෆᐦᗘ⿕⅏⛬ᗘ㛵㐃ᛶᆅ㟈๓ヲ⣽ᐦᗘศᕸ࠸ࡘ ࠸࡞࠸ ࡇࡑᮏ◊✲ሐయᐦᗘ╔┠㸪ሐయᾮ≧ ᐦᗘᙳ㡪ホ౯┠ⓗࡓࡋ㸬㐲ᚰ ᶍᆺᐇ㦂ᐇ㸪ຍ๓ࡅ࠾ሐయᐦᗘศᕸ- 497 -

b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE LEVEE

1 2 3 3 Hiroyuki ARAKI, Shunsuke TANIMOTO, Masanori ISHIHARA and Tetsuya SASAKI

1

305-8516 1-62

3

The river levees located on non-liquefiable foundation layer were damaged by the 2011 off the Pacific coast of Tohoku Earthquake because liquefaction occurred at the saturated zone inside the river levee. The mechanism of the liquefaction inside a levee has not been clarified fully. In this study, a series of centrifugal model tests was conducted in order to evaluate the effects of soil density on the liquefaction inside a levee. The density of a bottom part of the levee with the degree of compaction (Dc) of 90 % decreases by 3 to 4 % due to the consolidation of the clay foundation layer below the levee. After shaking, crest settlement of the levee with Dc of 90 % was approximately half of that of the levee with Dc of 85 %. In the case of the levee with Dc of 90 %, deformation of liquefaction zone at the bottom of the levee was restrained by the un-liquefaction zone located at the toes of the slope.

Key Words : Levee, Earthquake, Liquefaction, Soil density, Centrifugal model test

(1) (2)

(3)

1)

2011

2) 1993

3)

2011

1) 2011

4)

Okamura et al.5)

- 497 -

Page 2: b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

1)

1.0 m50 G

5.0 m

5.0 m 2 8.0 m

A1

DL3:1 s=2.635 g/cm3

Fc=100 % IP=7.5A-b dmax 1.723 g/cm3

wopt 16.9 %16 % Dc

85 % 90 %Dc

s

=2.746 g/cm3 IP=15.8 Cc=0.183cu/p=0.44 6)

s=2.606 g/cm3 IP=51.5 Cc=0.394 cu/p=0.23

cu/p

1m

G.L.-1.0 m

2.5 m 1.0 m

2.5 m

1)

40 kPa90%

2)

3)

4) CO2

50 kPaG.L. 1.0 m

5) 0.1 G/min 50 G

80 85 kPa

6) G.L.

Dc = 85% Dc = 90% ccu (kPa) 1.60 2.21

cu ( ) 14.0 19.7 RL20 0.136 0.141

(cm/sec) 4.2 10-5

- 498 -

Page 3: b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

Case 2-1 Case 2-2Dc 90 %

Case 2-1 6)

Case 2-26)

G.L.+3.5 m260

Case 2-4 Case 2-8 Dc 85 % 90 %

2-1 (II ) 7) TR

0.9P2 P10

Case 2-1 Case 2-2Case 2-

1 30 DV13 DV5

0.1 %

17.3 mm 20 mm

Dc=80.6 %3

3 80.2 %1 %

G.L.+0 2.5 m

Case 2-2 3.5 m

260

Case 2-1

90.6 % Case 2-1 Dc

87 % 90.0 % Case 2-286 %

Case 2-1 0.2 m Case 2-2 0.3 mCase 2-2

6.25 m0.8 %

Dc (%)

Case 2-1 90.6 Case 2-2 90.0 Case 2-4 84.7 Case 2-8 89.6

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

82.0

0 1 2 3 4

Dc

(%)

Test No.

Dc=80.6%(1.388g/cm3)

Dc=80.2%(1.381g/cm3)

a) Case 2-1

b) Case 2-2

Case 2-1, Case 2-2

- 499 -

Page 4: b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

Case 2-1Case 2-2

G.L.+0 2.5 mCase 2-1 Dc 89 91 % Case 2-2 Dc

88 90 %

1.0 m

1.0 m0.2 0.3 m

Case 2-4 1.1 m Case2-8 1.2 m Case 2-4 3 5 m

3DV1 DV3

2.3m

Case 2-8 Case 2-4

DV1 DV3 1.1 m

A1P2 P10 DV1 3

v’v’

v’Case 2-4 12 sec u v’

15 secDV1 3

u 15 secP5 8 u 12

20 secv’ 40 sec

u v’

Case 2-8 u 10 sec15 sec

P2 3 9 10 15 secu

P4 5 7 8u 15 sec 20 sec 25 secv’ 50 sec

DV1 3 u15 sec

a) Case 2-4

b) Case 2-8

a) Case 2-4

b) Case 2-8

- 500 -

Page 5: b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

P6 10 sec u

P6

DV4DV5

Case 2-4 Case 2-8 DV4 5DV1 3

DV5 Case 2-4 0.14 mCase 2-8 0.26 m DV4 Case 2-4

0.22 m Case 2-8 0.12 m

Case 2-1 Case 2-2Case 2-2

Case 2-4 2-8

WCase 2-4 0.2 m

Case 2-8 0.6 m Case 2-8 Case 2-4

-200

20406080

100

v' ( )v' ( )

P2 P10

020406080

100v' ( ) P3

P9

020406080

100

(kPa

)

v' ( )

v' ( )

P4 P8

020406080

100v' ( )

v' ( )

v' ( )

P5 P7

020406080

100v' ( )

v' ( )

P6

-0.50

0.51

1.52

2.53

DV1 DV4 DV2 DV5 DV3

(m)

0 5 10 15 20 25 30 35 40 45 50

-500

0

500

(sec)

(gal

)

A1

DV3

-200

20406080

100

v' ( )v' ( )

P2 P10

020406080

100v' ( ) P3

P9

020406080

100

(kPa

)

v' ( )

v' ( )

P4 P8

020406080

100v' ( )

v' ( )

v' ( ) P5 P7

020406080

100v' ( )

v' ( )

P6

-0.50

0.51

1.52

2.53

DV1 DV4 DV2 DV5 DV3

(m)

0 5 10 15 20 25 30 35 40 45 50

-500

0

500

(sec) (g

al)

A1

Case2-4 Case2-8

2 3 4 5 6 7 8 9 10 11-20

0

20

40

60

80

100

u,

v' (k

Pa)

u 0.0sec 10.0sec 12.0sec 15.0sec 20.0sec 30.0sec 40.0sec

v' v'( ) v'( )

2 3 4 5 6 7 8 9 10 11-20

0

20

40

60

80

100

u,

v' (k

Pa)

u 0.0sec 10.0sec 12.0sec 15.0sec 20.0sec 30.0sec 40.0sec

v' v'( ) v'( )

Case 2-4 Case 2-8

20 25 30 35 40 45 50 556789

101112131415

(m)

(m)

Case2-2(Dc=90%) Case2-4(Dc=85%) Case2-8(Dc=90%)

Case2-4 Case2-8

P2P6

P10P5 P7P4P3 P8 P9

a) b)

201114.6k b) a)

- 501 -

Page 6: b ®g ì lpM / & Øb s8jlibrary.jsce.or.jp/jsce/open/00906/2014/20-0497.pdf1= e ] /¡1= e7 '¨ s º v /b ®"g ì_ lpM / & Øb s8j THE EFFECTS OF SOIL DENSITY ON LIQUEFACTION INDISE

Case 2-8 1.1 m

2011

14.6k

Dc 90% Case 2-8

P2 39 10 Case 2-1 Case 2-2 Dc

P4 5 7 8Case 2-1 Case 2-2 Dc 3 4 %

Case 2-8

Case 2-8

Dc 85 % Case 2-4

Case 2-4

1) Dc 90 %

0.2 0.3 m

Dc 3 4 %

2) Dc 85 %Dc 90 %

Dc 85 % 3) Dc 90 %

4)

Dc 90 %

1) , 18 ,

pp.307-332, 2012 2) Sasaki, Y., Towhata, I., Miyamoto, K., Shirato, M., Narita, A.,

Sasaki, T. and Sako, S.: Reconnaissance report on damage in and around river levees caused by the 2011 off the Pacific coast of Tohoku earthquake, Soils and Foundations, Vol.52, No.5, pp.1016-1032, 2012.

3) 1993 100 pp.13-32 1993.

4)

Vol.6 No. 3 pp. 465-473 2011. 5) Okamura, M., Tamamura, S. and Yamamoto, R.: Seismic stability

of embankments subjected to pre-deformation due to foundation consolidation, Soils and Foundations, Vol. 53, No.1, pp.11-22, 2013.

6) 47

pp. 1349-1350, 2012. 7)

2012.3.

- 502 -