27
Chapter 4 Euclidean Vector Spaces 4.1 Euclidean n-Space 4.2 Linear Transformations from R n to R m 4.3 Properties of Linear Transformations R n to R m

Bab 4.1 Ruang N-Euclid

Embed Size (px)

Citation preview

Page 1: Bab 4.1 Ruang N-Euclid

Chapter 4 Euclidean Vector

Spaces4.1 Euclidean n-Space4.2 Linear Transformations from Rn to Rm

4.3 Properties of Linear Transformations Rn to Rm

Page 2: Bab 4.1 Ruang N-Euclid

4.1 Euclidean n-Space1. Definisi, operasi vektor, dan sifat vektor di ruang-n Euclid2. Hasil kali dalam Euclid

a) Panjang/norm dan jarakb) Sifat panjang dan jarakc) Ketaksamaan Cauchy-Scwartzd) Keortogonalan

3. Alternatif notasi untuk vektor4. Formula matriks untuk hasil kali titik

Page 3: Bab 4.1 Ruang N-Euclid

DefinitionVectors in n-Space

O If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers .

O The set of all ordered n-tuple is called n-space and is denoted by Rn

Page 4: Bab 4.1 Ruang N-Euclid

Definition O Two vectors u=(u1 ,u2 ,…,un) and v=(v1 ,v2 ,…, vn) in Rn are

called equal if

The sum u+v is defined by

and if k is any scalar, the scalar multiple ku is defined by

),...,, 2211 nn vuvuv(u vu

),...,,( 21 nkukukuk u

Page 5: Bab 4.1 Ruang N-Euclid

O The operations of addition and scalar multiplication in this definition are called the standard operations on Rn.

O The Zero vector in Rn is denoted by 0 and is defined to be the vector 0=(0,0,…,0)

O If u=(u1 ,u2 ,…,un) is any vector in Rn , then the negative( or additive inverse) of u is denoted by –u and is defined by -u=(-u1 ,-u2 ,…,-un)

O The difference of vectors in Rn is defined by v-u=v+(-u) =(v1-u1 ,v2-u2 ,…,vn-un)

Page 6: Bab 4.1 Ruang N-Euclid

Theorem 4.1.1Properties of Vector in Rn

O If u=(u1 ,u2 ,…,un), v=(v1 ,v2 ,…, vn) , and w=(w1 ,w2 ,…, wn) are vectors in Rn and k and l are scalars, then:

(a) u+v = v+u (b) u+(v+w) = (u+v)+w(c) u+0 = 0+u = u (d) u+(-u) = 0; that is u-u = 0(e) k(lu) = (kl)u (f) k(u+v) = ku+kv(g) (k+l)u = ku+lu (h) 1u = u

Page 7: Bab 4.1 Ruang N-Euclid

Definition Euclidean Inner Product

OIf u=(u1 ,u2 ,…,un), v=(v1 ,v2 ,…, vn) are vectors in Rn , then the Euclidean inner product u٠v is defined by

nnvuvuvu ...2211vu

Page 8: Bab 4.1 Ruang N-Euclid

Example 1Inner Product of Vectors in R4

OThe Euclidean inner product of the vectors

u=(-1,3,5,7) and v=(5,-4,7,0)in R4 is

u٠v=(-1)(5)+(3)(-4)+(5)(7)+(7)(0)=18

Page 9: Bab 4.1 Ruang N-Euclid

Theorem 4.1.2Properties of Euclidean Inner Product

O If u, v and w are vectors in Rn and k is any scalar, then(a) u٠v = v٠u (b) (u+v)٠w = u٠w+ v٠w

(c) (k u)٠v = k(u٠v)

(d) Further, if and only if v=0

0vv 0vv

Page 10: Bab 4.1 Ruang N-Euclid

Norm and Distance in Euclidean n-Space

O We define the Euclidean norm (or Euclidean length) of a vector u=(u1 ,u2 ,…,un) in Rn by

O Similarly, the Euclidean distance between the points u=(u1 ,u2 ,…,un) and v=(v1 , v2 ,…,vn) in Rn is defined by

222

21

21

...( nuuu) uuu

2222

211 )(...)()(),( nn vuvuvud vuvu

Page 11: Bab 4.1 Ruang N-Euclid

Example 2Length and Distance in R4

(3u+2v)٠(4u+v) = (3u)٠(4u+v)+(2v)٠(4u+v)

= (3u)٠(4u)+(3u)٠v

+(2v)٠(4u)+(2v)٠v

=12(u٠u)+11(u٠v)+2(v٠v)

Page 12: Bab 4.1 Ruang N-Euclid

Example 3Finding Norm and Distance

O If u=(1,3,-2,7) and v=(0,7,2,2), then in the Euclidean space R4

2222

2222

)27()22()73()01(),(

7363)7()2()3()1(

vu

u

d

and

Page 13: Bab 4.1 Ruang N-Euclid

Theorem 4.1.3Cauchy-Schwarz Inequality in Rn

OIf u=(u1 ,u2 ,…,un) and v=(v1 , v2 ,…,vn) are vectors in Rn, then

vuvu

Page 14: Bab 4.1 Ruang N-Euclid

Theorem 4.1.4Properties of Length in Rn

O If u and v are vectors in Rn and k is any scalar, then

)inequality (Triangle (d)

(c)

ifonly and if 0 (b)

0 (a)

vuvu

uu

0uu

u

kk

Page 15: Bab 4.1 Ruang N-Euclid

Theorem 4.1.5Properties of Distance in Rn

O If u, v, and w are vectors in Rn and k is any scalar, then:

)inequality (Triangle ),(),(),( (d)

),(),( (c)

ifonly and if 0),( (b)

0),( (a)

vwwuvu

uvvu

vuvu

vu

ddd

dd

d

d

Page 16: Bab 4.1 Ruang N-Euclid

Theorem 4.1.6

OIf u, v, and w are vectors in Rn with the Euclidean inner product, then

22

4

1

4

1vuvuvu

Page 17: Bab 4.1 Ruang N-Euclid

Definition Orthogonality

O Two vectors u and v in Rn are called orthogonal if u٠v=0

Page 18: Bab 4.1 Ruang N-Euclid

Example 4Orthogonal Vector in R4

0)1)(4()0)(1()2)(3()1)(2(

since ,orthogonal are

)1 ,0 ,2 ,1( and )4 ,1 ,3 ,2(

vectors the spaceEuclidean In the 4

vu

vu

R

Page 19: Bab 4.1 Ruang N-Euclid

Theorem 4,1,7Pythagorean Theorem in Rn

thenproduct,inner Euclidean which theR

in vectorsorthogonal areand If

222

n

vuvu

v u

Page 20: Bab 4.1 Ruang N-Euclid

Alternative Notations for Vectors in Rn (1/2)

nnnnnn

n

n

n

ku

ku

ku

u

u

u

k k

uu

uu

uu

v

v

v

u

u

u

uuu

u

u

u

uuu

,

... or

matrixcolumn aor matrix row a asnotation matrix in R

in ),...,,( vector a write tousefuloften isIt

2

1

2

1

22

11

2

1

2

1

212

1

n

21

uvu

uu

u

Page 21: Bab 4.1 Ruang N-Euclid

Alternative Notations for Vectors in Rn (2/2)

)(

) ..., , ,(), ... , ,(

operation vector theas results same theproduce

...

... ...

or

2211

2121

2121

1211

2121

nn

nn

nn

nn

nn

v, ..., uv, uvu

vvvuuu

... ku kukuuuukk

v ... uv uvu

vvvuuu

vu

u

vu

Page 22: Bab 4.1 Ruang N-Euclid

A Matrix Formula for the Dot Product(1/2)

)(

v u ...v uvu

u

u

u

... v vv

v

v

v

u

u

u

nn

n

n

nn

7

productinner Euclidean for the formula

following thehave enotation wmatrix column in sfor vector Thus,

and

vectorsfor thenotation matrix column use weIf

22112

1

21

2

1

2

1

uvvu

vuvu

uv

vu

T

T

Page 23: Bab 4.1 Ruang N-Euclid

A Matrix Formula for the Dot Product(2/2)

T

If is a matrix, then it follows form

formula (7) and properties of the transpose

that

A (A ) ( A) ( A

( ( (

T T T T

T T T T T T

A n n

A

A A A A A

A

u v v u v u v) u u v

u v v) u v )u v u) u v

u 8

9

T

T

A ( )

A A ( )

v u v

u v u v

Page 24: Bab 4.1 Ruang N-Euclid

Example 5Verifying That

11)1(4)4(2)7)(1(

11)5(5)0(10)2(7

1

4

7

5

0

2

1 1 3

0 4 2

1 2 1

5

10

7

4

2

1

101

142

321

Then

5

0

2

,

4

2

1

,

101

142

321

thatSuppose

vu

vu

v

u

vu

T

T

A

A

A

A

A

Page 25: Bab 4.1 Ruang N-Euclid

A Dot Product View of Matrix Multiplication (1/2)

rj

j

j

irii

rjirjiji

ijij

b

b

b

Bj

... a aa

Ai

bababa

ABij

nrbBrmaA

2

1

21

2211

oftor column vecth theand

of vector rowth theofproduct dot theisWhich

...

is ofentry th then the

matrix, an is andmatrix an is If

Page 26: Bab 4.1 Ruang N-Euclid

A Dot Product View of Matrix Multiplication (2/2)

brrr

xr

xr

xr

b x

crcrcr

crcrcr

crcrcr

ccc

rrr

of entries theare ,...,, and , of vectorsrow theare ..., where

(11)

as formproduct dot in expressed becan systemlinear A

(10)

as expressed becan product matrix then the,...,

are of torscolumn vec theand ..., are of vectorsrow theif Thus,

2121

2

1

2

1

21

22212

12111

21

21

mm

mm

nmmm

n

n

n

m

bbbA,,

b

b

b

A

AB

AB,,

B,,A

Page 27: Bab 4.1 Ruang N-Euclid

Example 6 A Linear System Written in

Dot Product Form

System Dot Product Form

085

5472

143

321

321

321

xx x

xxx

xxx

0

5

1

),,()8,5,1(

),,()4,7,2(

),,()1,4,3(

321

321

321

xxx

xxx

xxx